高中物理

阅读 / 问答 / 标签

高中物理片段教学和教学片段的区别

所谓片段(片断)教学,是相对于一节完整的课堂教学而言。一般说来,截取某节课的某个局部的教学内容,让教师进行教学,时间大致限定在十来分钟。也就是说,片段教学只是教学实施过程中的一个断面,执教者通过完成指定的教学任务,来表现自己的教学思想、教学能力和教学基本功。

帮我总结一下高中物理的电场和重力场

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为 ,其中比例常数 叫静电力常量, 。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。例如半径均为 的金属球如图9—1所示放置,使两球边缘相距为 ,今使两球带上等量的异种电荷 ,设两电荷 间的库仑力大小为 ,比较 与 的大小关系,显然,如果电荷能全部集中在球心处,则两者相等。依题设条件,球心间距离 不是远大于 ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于 ,故 。同理,若两球带同种电荷 ,则 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷 ,它所受到的电场力 跟它所带电量的比值 叫做这个位置上的电场强度,定义式是 ,场强是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度 的大小,方向是由电场本身决定的,是客观存在的,与放不放检验电荷,以及放入检验电荷的正、负电量的多少均无关,既不能认为 与 成正比,也不能认为 与 成反比。 要区别场强的定义式 与点电荷场强的计算式 ,前者适用于任何电场,后者只适用于真空(或空气)中点电荷形成的电场。 4、电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(a)始于正电荷 (或无穷远),终止负电荷(或无穷远);(b)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 5、匀强电场 场强方向处处相同,场强大小处处相等的区域称为匀强电场,匀强电场中的电场线是等距的平行线,平行正对的两金属板带等量异种电荷后,在两极之间除边缘外就是匀强电场。 6、电势能 由电荷在电场中的相对位置决定的能量叫电势能。 电势能具有相对性,通常取无穷远处或大地为电势能和零点。 由于电势能具有相对性,所以实际的应用意义并不大。而经常应用的是电势能的变化。电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。 7、电势、电势差 ⑴电势是描述电场的能的性质的物理量 在电场中某位置放一个检验电荷 ,若它具有的电势能为 ,则比值 叫做该位置的电势。 电势也具有相对性,通常取离电场无穷远处或大地的电势为零电势(对同一电场,电势能及电势的零点选取是一致的)这样选取零电势点之后,可以得出正电荷形成的电场中各点的电势均为正值,负电荷形成的电场中各点的电势均为负值。 ⑵电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。 ⑶电势相等的点组成的面叫等势面。等势面的特点: (a)等势面上各点的电势相等,在等势面上移动电荷电场力不做功。 (b)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面。 (c)规定:画等势面(或线)时,相邻的两等势面(或线)间的电势差相等。这样,在等势面(线)密处场强较大,等势面(线)疏处场强小。 ⑷电场力对电荷做功的计算公式: ,此公式适用于任何电场。电场力做功与路径无关,由起始和终了位置的电势差决定。 ⑸在匀强电场中电势差与场强之间的关系是 ,公式中的 是沿场强方向上的距离。 8、电场中的导体 ⑴静电感应:把金属导体放在外电场 中,由于导体内的自由电子受电场力作用而定向移动,使导体的两个端面出现等量的异种电荷,这种现象叫静电感应。 ⑵静电平衡:发生静电感应的导体两端面感应的等量异种电荷形成一附加电场 ,当附加电场与外电场完全抵消时,自由电子的定向移动停止,这时的导体处于静电平衡状态。 ⑶处于静电平衡状态导体的特点: (a)导体内部的电场强处处为零,电场线在导体的内部中断。 (b)导体是一个等势体,表面是一个等势面。 (c)导体表面上任意一点的场强方向跟该点的表面垂直。 (d)导体断带的净电荷全部分布在导体的外表面上。

求初高中物理书本中关于 "音" 的所有概念及计算公式

初中物理课本简直没什么好说的。。高中物理课本也讲得太浅了。如果要“所有”的公式,总而言之言而总之归根到本质就是...建议你去看一下大学物理。。。

高中物理光的干涉和衍射的区别学法指导

严格按照波的定义判断,光的干涉的重要特征是,相干波源产生稳定的干涉图象.衍射:饶过障碍物或者小孔传播.折射:从一种介质射入另外一种介质,光的传播方向发生了改变.干涉和衍射的本质——波面上的每一点(面元)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面.其核心思想是:介质中任一处的波动状态是由各处的波动决定的.所以,衍射可以看作是相干波源非常靠近的特殊的干涉.

高中物理中向心加速度的公式该如何推导?

F=ma,F=mv*2

高中物理向心加速度怎么推导

如图甲,一质点绕O点做匀速圆周运动,A点到B点的切线,即线速度Va和Vb,其大小相等。则向心加速度a就是由Vb到Va线速度的单位变化矢量。方法:如图乙,平移矢量Va,使其起点与B点重合,则矢量△V=矢量Vb-矢量Va(即转过某一弧度时线速度的改变量),设矢量Va与Vb的夹角θ就是质点做匀速圆周运动所转过的角(用弧度制表示)。  又如图丁(圆O的一部分,即扇形,OQ=OP=r,同时有弦PQ和弧PQ),设θ为OQ与OP夹角的弧度数(其实是数学上这个角对应的弧长与圆半径的比值,即弧PQ :半径r的值,如一弧度≈57.3°)那么我们知道 X·Y/X=Y,则弧PQ的长度可以表示为“半径r·弧PQ/半径r”即弧长=半径×对应弧度。 当夹角θ很小很小时,可近似认为弧PQ=弦PQ,也就是说弯曲的弧长与笔直的线段长度几乎一样,这就为后面的求△V提供了依据。 回到图乙,如图当OB,OA之间的夹角(等于Vb与Va的夹角)很小很小时,那么对应的△V就很小很小了,并且以B为顶点,母线长为Va(或Vb)的扇形中由A点到B点所扫过的弧△V就可近似等于弦△V,即根据图丁作介绍的,若把图丁中的半径r看做线速度Va(或Vb),弧长=半径×对应弧度(也就是先前的V=ω·r)用在图乙中就是弧△V=△V=线速度(视为半径r)×弧度θ(弧△V与可视为圆半径r的线速度Va或Vb的比值)   而当△V这个量小到单位时(即一秒钟内△V的量),那么这个△V就是我们所说的向心加速度a,向心加速度a=△V/△t,而弧△V=弦△V,所以向心加速度a=弧△V/△t。   首先弧度θ是质点经过某一时间(△t)做圆周运动所转过的角度的弧度数,则角速度ω=θ/△t,表示一秒钟内转过的弧度数,即弧度θ=ω·△t,① 并且△V=弧△V=向心加速度a×△t。②   再根据弧长=半径×对应弧度,弧△V=△V=线速度V×弧度θ(如图丙,当θ小到一定程度时,弧△V=△V,小到单位弧度时就存在这样的关系)再根据①②两式,得出向心加速度a×△t=线速度V(这个矢量的大小始终不变)×角速度ω·△t,同时除去等式左右的△t,于是最终化简为:   向心加速度a=线速度V×角速度ω,即a(n)=ω·V,还有a(n)=ω2·r,a(n)=V2/r等等 都是根据此式以及V=ω·r推理出来的。

高中物理,向心加速度?

只是匀速圆周运动时物体的合力才一直指向圆心的。物体不做匀速圆周运动,所受的合力就不会指向圆心的。比如在车辆在弯道加速所受的合力就不会指向弯道圆心,它必须提供一个给车的向前的力。

高中物理二轮如何复习

1、高中高效的复习,要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的去攻克、落实。哪块内容掌握的不好就多花点时间,复习的时候要系统化,不要东一下西一下,最后啥都没复习好。2、可以学习掌握速读记忆的能力,提高学习复习效率。速读记忆是一种高效的学习、复习方法,其训练原理就在于激活“脑、眼”潜能,培养形成眼脑直映式的阅读、学习方式。速读记忆的练习见《精英特全脑速读记忆训练》,用软件练习,每天一个多小时,一个月的时间,可以把阅读速度提高5、6倍,记忆力、理解力等也会得到相应的提高,最终提高学习、复习效率,取得好成绩。如果你的阅读、学习效率低的话,可以好好的去练习一下。3、要学会整合知识点。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。4、做题的时候要学会反思、归类、整理出对应的解题思路。遇到错的题(粗心做错也好、不会做也罢),最好能把这些错题收集起来,每个科目都建立一个独立的错题集(错题集要归类),当我们进行考前复习的时候,它们是重点复习对象,保证不再同样的问题上再出错、再丢分。

高中物理电容C=εs/4pikd,大学物理里的C推导公式是εs/d,我想请问一下这

4π只是一个常数.ε.=1/4πk是真空电容率“,平行板电容器的电容c跟介电常数ε成正比,跟正对面积成s正比,跟极板间的距离d成反比,”他们只是一个比例.只是一个比例关系.而加了4π后他就成为一个等式,就可以知3求另外一个未知量了.平板电容器由两个彼此靠得很近的平行极板(设为A和B)所组成,两极板的面积均为S,设两极板分别带有+Q,-Q的电荷,于是每块极板的电荷密度为σ=Q/S,,我们略去极板的边缘效应,把两极板间的电场看成是均匀电场,由高斯定理可得两板间场强为E=σ/ε.=Q/ε.再由U=∫ABEdl=Ed=Qd/ε.再根据C=Q/U得出C=ε.S/d既平板电容公式也就是C=S/4πkd注:ε=1/4πk是真空电容率平板电容器的电容与极板的面积S成正比,与极板间的距离d成反比,电容C的大小与电容是否带电无关,只与电容器本身的结构形状有关

高中物理电容C=εs/4pikd,大学物理里的C推导公式是εs/d,我想请问一下这

4π只是一个常数.ε=1/4πk 是真空电容率,而同样ε(大学)可以认为是1/4πk,就跟普朗克常量和约化普朗克常数关系差不多。“,平行板电容器的电容c跟介电常数ε成正比,跟正对面积成s正比,跟极板间的距离d成反比,”他们只是一个比例.只是一个比例关系.而加了4π后他就成为一个等式,就可以知3求另外一个未知量了.平板电容器由两个彼此靠得很近的平行极板(设为A和B)所组成,两极板的面积均为S,设两极板分别带有+Q,-Q的电荷,于是每块极板的电荷密度为σ=Q/S,,我们略去极板的边缘效应,把两极板间的电场看成是均匀电场,由高斯定理可得两板间场强为E=σ/ε.=Q/ε.再由U=∫AB E dl =Ed=Qd/ε.再根据C=Q/U得出C=ε.S/d既平板电容公式也就是C=S/4πkd注:ε=1/4πk 是真空电容率平板电容器的电容与极板的面积S成正比,与极板间的距离d成反比,电容C的大小与电容是否带电无关,只与电容器本身的结构形状有关

高中物理!!!如果单摆运动不看作简谐运动,那么他的周期是什么?意思就是说,不忽略计算。

单摆运动的周期是算不出来的,你课本那个周期是近似值。这些需要用到微积分求解和证明,高中阶段不必要纠结这个问题。

高中物理单摆周期问题,求解

根据单摆周期公式 T=2π(L/g)^1/2=2π=6.28s将单摆放到月球上。 T"=2π(L/g")^1/2=2.5T=5π=15.7s

高中物理单摆实验中若细绳质量不可忽略,会对实验结果有何影响?

单摆实验中,计算绳长时,要计算挂绳子那端的结点到小球球心(重心)的距离。如果绳子质量不可忽略,那么会使得绳子和小球的系统重心上移,导致实际上的单摆的摆长缩短,导致结果有一定的偏差。由单摆周期:T=2π√(L/g)知,计算出来的重力加速度比真实值偏大。

高中物理单摆问题

看不到图。。。先求重力冲量mgt,t为周期的一半再求合外力冲量,机械能守恒算出最低点速度,用动量定理可求出合外力冲量,注意方向水平向右最后求拉力冲量,用合力冲量减去重力冲量!矢量相减

高中物理单摆问题

求图

求高中物理:线速度和角速度的公式以及转换公式,

v=wr

高中物理 线速度和角速度是矢量还是标量?

二者均为矢量线速度的方向是弧线的切线方向。角速度的方向是顺或逆时针方向且与观察者位置有关。

生活中高中物理的现象

战斗机抛炸弹-----是以飞机的速度为初速度的平抛运动。

美国高中物理虚拟实验室有哪些

没有。在美国,物理虚拟实验室被建立在各大高校中,高中是没有物理虚拟实验室的。物理虚拟仿真实验室是一种新兴的实验教学方式。

高中物理 线速度,角速度,周期,转速,向心加速度,向心力是什么

线速度:简单来说,在一个圆上任意找一点,连接圆心与这点构成连线,这个点会有个与这条连线相垂直的速度,这个速度就是线速度角速度:角度单位是rad,角速度就是说一个圆在一秒钟内能转多少rad(国际单位)周期:一个圆在转圈,转一整圈用的时间就是周期啦向心力:比如说一条绳子掉着物体做语速圆周运动,这条线给物体拉力就是向心力啊,记住啊是沿着线方向的力,当然这只是个举例加深你理解向心加速度:还是上个例子,物体速度本来是与线垂直的,但是线的拉力使物体做圆周运动,让物体的速度方向改变,这就是向心加速度的效果,向心力除以物体质量就是向心加速度啦上面是我用最简单语言表达的啦,望采纳。

高中物理 线速度,角速度,周期,转速,向心加速度,向心力是什么

向心力F=ma m是物体的质量 a是向心加速度线速度V=rw r是圆周的半径 w 就是角速度角速度W=2πn n是转速 就是一秒内能转几圈T=2π/w=1/f f是频率

高中物理 线速度,角速度,周期,转速,向心加速度,向心力是什么

1.v=wr线速度=角速度*半径2.w=2兀/t角速度=一圆周/周期3.n*2兀=w转速*圆珠率=角速度4.a=v^2/r=w^2*r=wvr向心加速度和线,角速度的关系5.f=ma向心加速度*质量=向心力4式中的w位置可以代入2式能得出a和t的关系

高中物理: 线框的转速指的是角速度还是线速度

转速不是n么 w=2πn

问一个高中物理问题,角速度ω与线速度ν和转速r/min r/s的换算??

说简单点ω=nr/s

转速和角速度线速度的转化公式以及过程,高中物理高一理科

转速=角速度角速度=线速度/半径

高中物理瞬时速度怎么求

取前后很短时间内的位移除以时间若是匀变速直线运动,可利用中间时刻速度等于平均速度来求;如知道第三秒到第五秒的位移,则第四秒的瞬时速度便等与第三秒到第五秒的平均速度,方法便是第三秒到第五秒的位移除以2秒。运动物体在某一时刻或某一位置时的速度,叫做瞬时速度,简称速度。瞬时速度是矢量,某一时刻(或经某一位置时)瞬时速度的方向,即是这一时刻(或经过一位置时)物体运动的方向。如果物体做匀速直线运动,他在运动过程中速度保持不变,那么他任何时刻的瞬时速度和整个运动过程的平均速度也相同。针对不同运动形式,计算公式是不一样的。1、如果是匀速运动,瞬时速度不变。2、如果是匀变速直线运动,其公式为:v(t)=v0+at。3、如果是自由落体运动:v(t)=gt。4、如果是上抛运动:v(t)=v0-gt。5、如果是下抛运动:v(t)=v0+gt。6、如果是平抛运动:需要利用平行四边形定则分解,再求合速度。v(t)=根号[v0平方+(gt)平方]。

高中物理光学有关光的色散,光的衍射,光的干涉,及偏振的实例.越全越好!

光通过三棱镜后,因色散造成不同颜色折射至不同的角度. 波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播.假设将一个障碍物置放在光源和观察屏之间,则会有光亮区域与阴晦区域出现于观察屏.激光束的发散性质涉及到衍射. 光学干涉测量 可见光的干涉测量是干涉测量术中最先发展同时也得到最广泛应用的类别,早期的实际应用如迈克耳孙测星干涉仪对恒星角直径的测量,但如何获取稳定的相干光源始终是限制光学测量发展的重要原因之一.直至二十世纪六十年代,光学干涉测量技术得到了飞速的发展,这要归功于激光这一高强度相干光源的发明[29][30],计算机等数字集成电路获取并处理干涉仪所得数据的能力大大提升[31],以及单模光纤的应用增长了实验中的有效光程并仍能保持很低的噪声[32].电子技术的发展使人们不必再去观察干涉仪产生的干涉条纹,而可以对相干光的相位差直接进行测量.这里列举了光学干涉测量在多个方面的一些重要应用. 长度测量 用于测量光程差改变,进而测定气体折射率的瑞利干涉仪 长度测量是光学干涉测量最常见的应用之一.如要测量某样品的绝对长度,最简明的方法之一是通过干涉对产生的干涉条纹进行计数;若遇到非整数的干涉条纹情形,则可以通过不断成倍增加相干光的波长来获得更窄的干涉条纹,直到得到满意的测量精度为止[33][34].常见的方法还包括惠普公司研发的惠普干涉仪[35][36],它通过外加一个轴向磁场使氦-氖激光器工作在两个相近频率,从而发出频率相差2兆赫兹的两束激光,再通过偏振分束器使这两束激光产生外差干涉.干涉得到的差频信号被光检测器记录,而待测样品引起的光程差变化则可以通过计数器表示为光波长的整数倍.惠普干涉仪可以测量在60米左右以内的长度,在附加其他光学器件后还可以用于测量角度、厚度、平直度等场合.此外,还可以通过声光调制的方法得到差频信号,并且这种方法能获得更高的差频频率,从而可以从差频信号中得到更高的计数. 长度测量的另一类情形是测量长度的变化,常见的方法如借助声光调制产生的外差干涉,差频信号所携带的相位差会被光检测器记录,从而得到长度的变化[37].在测量像熔凝石英这样热膨胀系数很低的材料的热膨胀系数时,还经常用到一种更精确的方法:将两面部分透射部分反射的玻璃板置于待测样品的两端,从而构成一个法布里-珀罗干涉仪.使用两束发生外差干涉的激光,并通过反馈将其中一束激光的频率锁定到法布里-珀罗干涉仪的一个透射峰值频率上.这样,当样品发生热膨胀而改变法布里-珀罗干涉仪的长度时,透射峰值频率的变化会引起被锁定的激光频率的相应变化,这一变化也会反映到外差信号中从而被探测到. 光学检测包括对光学元件和光学系统的检查和测试,诸如利用等厚干涉条纹来测量玻璃板各处的厚度,以及测量照相机镜头的调制传递函数(MTF)等都属于这类应用.利用等厚干涉来检测样品表面是否平整的最常见方法是斐索干涉仪[40],它利用准直平行光在样品表面反射后与入射光发生干涉,从而得到等厚条纹.此外,还可以采用从迈克耳孙干涉仪改进而来的特怀曼-格林干涉仪[41].特怀曼-格林干涉仪也使用准直平行光源,并由于从迈克耳孙干涉仪改进而来,它可以使两束相干光的光程非常接近,从而相比于斐索干涉仪它对光源的相干长度要求有所降低. 另一类广泛应用于检测光学元件表面、光学系统像差以及测量光学传递函数的干涉仪是剪切干涉仪,它将待测样品出射的波前分成两个,并使其相互错开一定距离(这段距离被称作剪切),两个波前重叠的部分即产生干涉图样.剪切干涉仪分为切向剪切、法向剪切和旋转剪切等类型:切向剪切干涉仪通常是一块平行平面板或略呈角度的劈尖,准直光源入射到平行平面板上就形成了两束错开的相干光;而法向剪切干涉仪则类似于斐索干涉仪和特怀曼-格林干涉仪.剪切干涉仪的优点是省去了作为参考的光学表面,结构简单且两束相干光的光程基本相等,而缺点则是对干涉图样的数值分析比较繁琐. 偏光太阳镜 起偏器对于从淤泥滩的反射光所产生的效应:左图显示出,偏振轴与水平线平行的起偏器会透射这些反射光;右图显示出,旋转这起偏器90°会阻挡几乎全部镜面反射光,如同使用偏光太阳镜. 照射非偏振光于镜面表面(光亮表面),通常得到的反射光会具有某种程度的偏振.1808年,法国物理学者艾蒂安-路易·马吕斯最先观察到这现象.偏光太阳镜利用这效应来降低水平表面反射出来的眩光,特别是当太阳从前方斜照下来时,张眼往前方路面望去会看到的强劲眩光. 天空中的偏振光 右边照片显示出偏振滤光片对于天空景色产生的效应. 传播于地球大气层的太阳光会因为被大气分子瑞利散射而使得散射光产生偏振,从天空中的散射光可以观察到这现象.散射光在清晰的天空中会显得更明亮、更具色彩.在天空中,与太阳照射的光束呈直角方向的位置,最容易观察到这偏振现象(偏振方向与太阳光方向、直角方向相垂直).这种具有部分偏振的散射光,假若使用起偏器,可以使得照片里的天空变得较黑,增加衬度(contrast);这样,可以改良照片的品质. 出现在天空中的偏振光常被用来导航定向.从九世纪至十一世纪间,维京人时常航行于北大西洋.那时期,欧洲人尚未知道怎样使用磁罗盘,维京人主要是使用太阳与星星来导航定向,可是,在阴天,这方法无效.学者猜测他们可能知道怎样使用一种称为“太阳石”(sunstone)的简单仪器,但这争议性理论尚未被证实.1950年代,运输飞机航行在地磁极附近时,由于无法使用磁罗盘,假若无法看到太阳或星星时(例如,在阴天或黄昏),时常会使用“天空罗盘”(sky compass)来导航.这仪器是一种很精致的偏光仪,可以用来观测天空中的偏振光.十九世纪后期, 查理斯·惠斯通(Charles Wheatstone)发明了偏振钟(polar clock).这也是一种偏光仪,可以用来计时.根据惠斯通,偏振钟比日晷的优点更多.

怎么样才能学好大学物理啊?和高中物理有什么区别?

怎么样才能学好大学物理啊?和高中物理有什么区别? 还是很有区别的,大学物理对数学要求非常高,特别是积分一定要学好,不然没法学。另外大学内容比较深,考自学是很困难的,上课做在前面认真听,特别是量子力学,一旦放弃了一部位很难捡起来了。我深有体会 高中物理怎么样才能学得好? 问题:高中物理怎么样才能学得好? 解答: 课前预习,找本参考书(带有很多例题详细解答的); 认真上好每堂课,因为完全自学很困难 ; 理解各物理规律和原理的内涵,记住必要的公式 ; 做一定量的练习,应该每天坚持(熟能生巧) ; 高三更应该多见识一些题型(见多识广) ; 准备好一本纠错本,随时翻翻看看(温故而知新); 高三的考试很频繁,应注重考试能力的提高 ; 考试时保持好平常心,做到细心(容易题)、耐心(中档题)、信心(难题)。 高中物理怎么学才能学好? 除了概率很小的先天因素外,这里确实存在一个学习方法问题。 谁不想做一个好学生呢?但是要想成为一名真正学习好的学生,第一条就要树立自信,不管我的起点怎么样,高了,我会勇于攀登;低了,我会努力改正。另外要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习,坚信自己能够学好任何课程,坚信“能量的转化和守恒定律”,坚信有几份付出,就应当有几份收获。关于这一条,请看以下三条语录: 我决不相信,任何先天的或后天的才能,可以无需坚定的长期苦干的品质而得到成功的。 ——狄更斯(英国文学家) 有的人能够远远超过其他人,其主要原因与其说是天才,不如说他有专心致志坚持学习和不达目的决不罢休的顽强精神。 ——道尔顿(英国化学家) 世界上最快而又最慢,最长而又最短,最平凡而又最珍贵,最容易被忽视而最令人后悔的就是时间。 ——高尔基(苏联文学家) 以上谈到的第一条应当说是学习态度,思想方法问题。第二条就是要了解作为一名学生在学习上存在如下八个环节:制定计划→课前预习→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里最重要的是:专心上课→及时复习→独立作业→解决疑难→系统总结,这五个环节。在以上八个环节中,存在着不少的学习方法,下面就针对物理的特点,针对就“如何学好物理”,这一问题提出几点具体的学习方法。 (一)三个基本。基本概念要清楚,基本规律要熟悉,基本方法要熟练。关于基本概念,举一个例子。比如说速率。它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。关于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。前者是定义式,适用于任何情况,后者是汇出式,只适用于做匀变速直线运动的情况。再说一下基本方法,比如说研究中学问题是常采用的整体法和隔离法,就是一个典型的相辅形成的方法。最后再谈一个问题,属于三个基本之外的问题。就是我们在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。如,“沿着电场线的方向电势降低”;“同一根绳上张力相等”;“加速度为零时速度最大”;“洛仑兹力不做功”等等。 二)独立做题。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。 (三)物理过程。要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。 画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 (四)上课。上课要认真听讲,不跑神或尽量少跑神。不要自以为是,要虚心向老师学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。 (五)笔记本(纠错本)。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生储存。 (六)学习资料。学习资料要储存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。作记号是指,比方说对练习题吧,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。 (七)时间。时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。比方说,可以利用“回忆”的学习方法以节省时间,睡觉前、等车时、走在路上等这些时间,我们可以把当天讲的课一节一节地回忆,这样重复地再学一次,能达到强化的目的。物理题有的比较难,有的题可能是在散步时想到它的解法的。学习物理的人脑子里会经常有几道做不出来的题贮存著,念念不忘,不知何时会有所突破,找到问题的答案。 (九)知识结构。要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统起来。大到整个物理的知识结构,小到力学的知识结构,甚至具体到章,如静力学的知识结构等等。 (十)数学。物理的计算要依靠数学,对学物理来说数学太重要了。没有数学这个计算工具物理学是步难行的。大学里物理系的数学课与物理课是并重的。要学好数学,利用好数学这个强有力的工具。 (十一)体育活动。健康的身体是学习好的保证,旺盛的精力是学习高效率的保证。要经常参加体育活动,要会一种、二种锻炼身体的方法,要终生参加体育活动,不能间断,仅由兴趣出发三天打鱼两天晒网地搞体育活动,对身体不会有太大好处。要自觉地有意识地去锻炼身体。要保证充足的睡眠,不能以减少睡觉的时间去增加学习的时间,这种办法不可取。不能以透支健康为代价去换取一点好成绩,不能动不动就讲所谓“冲刺”、“拼搏”,学习也要讲究规律性,也就是说总是努力,不搞突击。 高中物理怎么学才能学好啊 物理学科重在理解,靠做题来巩固,首先要尽量吃透老师课堂上的东西,然后做些习题,一定自己做,有不懂的翻课本,因为一定是课本是的东西你没记住,如果知道课本上讲的是什么,做题时做不出来的时候就去联想有关这题的章节讲了那些定律,能不能用到这题上来,开始时一个一个套,慢慢就会变快,不用刻意去套,自己就会去想能用上的定律了.高中物理的重点内容也是要点内容没多少,力与运动:有个牛顿3定律,动量,动能,能量,这些掌握了物理一半就拿到了,然后是电学:主要是实验电路分析,实验在高一二的时候一定注意自己动手,然后记住4到5个定律就行了;还有什么热,光等都只需要记概念,概念记好了这些题就没问题. 总之物理还是要多想,做题只是帮助,真的理解透了,做题只是帮你练练速度,来应付高考的. 怎样才能学好高中物理啊? . 有人辅导,不懂就要问,老师同学等等都可以问,不要怕丢脸,不要不求甚解。看起来较复杂的题多往能量守恒考虑。再者练习题的确要多做,想当初高考时咱也是一天一张物理卷的。除了理解能提高成绩,速度也很重要,注意别人的简便答法。答到点上就可以不用写那么多字,甚至一个文字都没有都是公式步骤。公式没办法,一定要懂,忘了就去看看物理公式大全(一般老师有总结吧)。到一定程度,明显会的题目可以跳过,多遇些题目题型。题海战术才是高手的成才之道。 高中物理怎样才能学好啊。 高中物理很多都是重在理解的,要找到方法,声光热电力五大块,光电算是比较难的,特别是电磁学,需要记住的东西多,也要学会灵活运用,多做题练习,学会总结,祝你取得好成绩~ 891大学物理与921大学物理有什么区别 这是大学物理的分层次教学,不同学校的划分标准略有不同,但是大致如下: A层次:具有很好的物理、数学基础,喜欢学习物理,对物理基本概念、基本原理、基本规律有较好的理解力和悟性,并能熟练应用解决实际问题,能达到全国高等学校大学物理教学大纲所规定的要求. B层次:具有较好的物理、数学基础,数学成绩中等,喜欢物理学习,能基本掌握物理基本概念、基本原理、基本规律及其应用,经过努力能基本达到全国高等学校大学物理教学大纲所规定的要求. C层次:除A,B层次以外的所有学生.这些学生数学成绩较低,对物理课程的学习存有畏难情绪,能够基本理解一般的物理基本概念、基本原理、基本规律,初步具有解决实际问题的能力,通过努力能够基本达到教学大纲所规定的最低要求. 实施分层次教学中的分法是非常重要的环节,其指导思想是变传统的应试教育为素质教育.分层次教学的原则是在不降低教学质量,完成《大纲》任务的前提下,按照不同的教学基本要求,适当采用不同教学内容和教学方法,分头组织教学,对学生个体要求有所不同.分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助他们提高学习成绩,让不同成绩的学生最大限度地发挥其潜力,以逐步缩小差距,达到班级整体优化. 没有高中物理基础,怎么学好大学物理啊? 学习物理非常注重过程,一个认知、理解、运用的过程。 1.认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。 2.理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。 3.运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。 所以,在学习时,首先,不要有惧怕的心理,因为前一段没学好的经历可能会暗示什么,这可能会导致恶性回圈。努力告诉自己“我能行”其实心理暗示很有用!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。 其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。

学习高中物理竞赛,主要看高妙这本书可以吗?

高妙的难度不够

为什么高中物理教资考察大学物理

因为大家都知道,现在高中还是分文理科的。高中物理是理科生必学科目,而且各地的物理教师缺口比较大。选择考取高中物理教师资格证,然后当一名物理老师一个比较好的职业规划。很多考生都会问:高中物理教师资格证难考吗?我们先看看它的考试科目。高中物理教师资格证考试包括笔试和面试。笔试总共考三个科目,教育知识与能力、综合素质(中学)和学科知识与教学能力。其中前两个科目是所有初中和高中教师资格考试都要考的,考试试卷也是一样的,难度不算大。只有学科知识与能力是不同的,它包括高中物理知识,还会涉及到一些大学物理内容。可想而知,肯定有

高中物理没得不好会不会影响大学物理?

高中物理和大学物理可以说是完全不一样的,高中纯粹就是解体模式,大学更讲究灵活

高中物理教师资格证科三考察大学物理哪几本书

并不考察具体的大学物理教书。科目三《学科知识与教学能力》,如果你想考物理教资,那么就会考你一张物理题试卷,难度大致同高考物理难度。

高中物理知识点总结

你的课本上都有总结

高中物理磁场知识点总结

  在高中学习任务日益繁重的生活中如何学好物理,有什么好的方法呢。以下是由我为大家整理的“高中物理磁场知识点总结”,仅供参考,欢迎大家阅读。   高中物理磁场知识点总结   一、磁现象的电本质   1.罗兰实验   正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。   2.安培分子电流假说   法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。   一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。   3.磁现象的电本质   运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。    二、磁场的方向   规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。    三、磁场   磁极和磁极之间的相互作用是通过磁场发生的。   电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。   电流和电流之间的相互作用也是通过磁场产生的   磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。    四、磁感线   1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。   2.磁感线的特点   (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极   (2)磁感线是闭合曲线   (3)磁感线不相交   (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强   3.几种典型磁场的磁感线   (1)条形磁铁   (2)通电直导线   a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;   b.其磁感线是内密外疏的同心圆   (3)环形电流磁场   a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。   b.所有磁感线都通过内部,内密外疏   (4)通电螺线管   a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;   b. 通电螺线管的磁场相当于条形磁铁的磁场    五、 磁通量   1.定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量。   2.定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)   3.单位:韦伯(Wb)   4.物理意义:表示穿过磁场中某个面的磁感线条数。   5.B=φ/S,所以磁感应强度也叫磁通密度    六、磁感应强度   1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度l的乘积Il的比值叫做通电导线处的磁感应强度。   2.定义式:   3.单位:特斯拉(T), 1T=1N/A.m   4.磁感应强度是矢量,其方向就是对应处磁场方向。   5.物理意义: 磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电流强度的大小、导线的长短等因素无关。   6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2面积上的磁感线条数跟那里的磁感应强度一致。   7.匀强磁场   (1) 磁感应强度的大小和方向处处相等的磁场叫匀强磁场   (2) 匀强磁场的磁感线是均匀且平行的一组直线。    七、安培力   1.磁场对电流的作用力叫安培力。   2.安培力大小。   安培力的大小等于电流I、导线长度L、磁感应强度B以及I和B间的夹角的正弦sinθ的乘积,即   F=BIlsinθ。   注意:公式只适用于匀强磁场。   3.安培力的方向   安培力的方向可利用左手定则判断   左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力方向。安培力方向一定垂直于B、I所确定的平面,即F一定和B、I垂直,但B、I不一定垂直。   拓展阅读:高中物理学习方法   课前   课前预习,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查。   课上   老师讲到自己预习时的不懂之处时, 主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。    课后   学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度

高中物理人物及贡献知识点

高中物理人物及贡献知识点如下:1、伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)。2、胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)。3、牛顿(英国物理学家)对物理学的贡献:①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学。②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数。4、卡文迪许贡献:卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值。5、亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)。6、开普勒(德国天文学家)对物理学的贡献:开普勒三定律经典题目开普勒发现了万有引力定律和行星运动规律(错)。托勒密(古希腊科学家)。7、库仑(法国物理学家)贡献:发现了库仑定律——标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用。8、奥斯特(丹麦物理学家)贡献:电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)。法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)。9、法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)。法拉第发现了磁场产生电流的条件和规律(对)。奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)。法拉第发现了磁生电的方法和规律(对)。10、安培(法国物理学家)贡献:①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用。11、洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)。12、阿斯顿贡献:①发现了质谱仪②发现非放射性元素的同位素劳伦斯发现了回旋加速器。

高中物理会考知识点大总结

  高中物理会考,考生复习时,要根据会考考试大纲,理解每个概念规律的物理意义,对每个考点的要求级别A、B、C要清楚,弄懂上面的考题,做好最近的两套会考题。下文为大家总结高中物理会考知识点,欢迎阅读~   第1章力   一、力:力是物体间的相互作用。   1、力的国际单位是牛顿,用N表示;   2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;   3、力的示意图:用一个带箭头的线段表示力的方向;   4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;   (1)重力:由于地球对物体的吸引而使物体受到的力;   (A)重力不是万有引力而是万有引力的一个分力;   (B)重力的方向总是竖直向下的(垂直于水平面向下)   (C)测量重力的仪器是弹簧秤;   (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;   (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;   (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;   (B)弹力包括:支持力、压力、推力、拉力等等;   (C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;   (D)在弹性限度内弹力跟形变量成正比;F=Kx   (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;   (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;   (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;   (C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;   (D)静摩擦力的大小等于使物体发生相对运动趋势的外力;   (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;   (A)合力与分力的作用效果相同;   (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;   (C)合力大于或等于二分力之差,小于或等于二分力之和;   (D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);   二、矢量:既有大小又有方向的物理量。   如:力、位移、速度、加速度、动量、冲量   标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量   三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;   1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;   2、在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;   3、处于平衡状态的物体在任意两个相互垂直方向的合力为零;   第2章直线运动   一、机械运动:一物体相对其它物体的位置变化,叫机械运动;   1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);   2、质点:只考虑物体的质量、不考虑其大小、形状的物体;   (1)质点是一理想化模型;   (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;   如:研究地球绕太阳运动,火车从北京到上海;   3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;   如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;   4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;   (1)位移为零、路程不一定为零;路程为零,位移一定为零;   (2)只有当质点作单向直线运动时,质点的位移才等于路程;   (3)位移的国际单位是米,用m表示   5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;   (1)匀速直线运动的位移图像是一条与横轴平行的直线;   (2)匀变速直线运动的位移图像是一条倾斜直线;   (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;   6、速度是表示质点运动快慢的物理量;   (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;   (2)速率只表示速度的大小,是标量;   7、加速度:是描述物体速度变化快慢的物理量;   (1)加速度的定义式:a=vt-v0/t   (2)加速度的大小与物体速度大小无关;   (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;   (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;   (5)加速度是矢量,加速度的方向和速度变化方向相同;   (6)加速度的国际单位是m/s2   二、匀变速直线运动的规律:   1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at   注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;   (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;   (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;   2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at   注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;   3、推论:2as=vt2-v02   4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=aT2   5、初速度为零的匀加速直线运动:前1秒,前2秒,位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒的位移与时间的关系是:位移之比等于奇数比。   三、自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;   1、位移公式:h=1/2gt2   2、速度公式:vt=gt   3、推论:2gh=vt2   第3章牛顿定律   一、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。   1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;   2、力是该变物体速度的原因;   3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)   4、力是产生加速度的原因;   二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。   1、一切物体都有惯性;   2、惯性的大小由物体的质量唯一决定;   3、惯性是描述物体运动状态改变难易的物理量;   三、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。   1、数学表达式:a=F合/m;   2、加速度随力的产生而产生、变化而变化、消失而消失;   3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。   4、力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;   四、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;   1、作用力和反作用力同时产生、同时变化、同时消失;   2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。   第4章曲线运动 、万有引力定律   一、曲线运动:质点的运动轨迹是曲线的运动;   1、曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向   2、、质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上,且轨迹向其受力方向偏折。   3、曲线运动的特点:   4、曲线运动一定是变速运动;   5、曲线运动的加速度(合外力)与其速度方向不在同一条直线上;   6、力的作用:   (1)力的方向与运动方向一致时,力改变速度的大小;   (2)力的方向与运动方向垂直时,力改变速度的方向;   (3)力的方向与速度方向既不垂直,又不平行时,力既搞变速度的大小又改变速度的方向;   二、运动的合成和分解:   1、判断和运动的方法:物体实际所作的运动是合运动   2、合运动与分运动的等时性:合运动与各分运动所用时间始终相等;   3、合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;   三、平抛运动:被水平抛出的物体在在重力作用下所作的运动叫平抛运动;   1、平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;   2、水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;   3、求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;   四、匀速圆周运动:质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动;   1、线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;   2、角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t   3、角速度、线速度、周期、频率间的关系:   (1)v=2πr/T; (2) ω=2π/T; (3)V=ωr; (4)、f=1/T;   4、向心力:   (1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。   (2)方向:总是指向圆心,与速度方向垂直。   (3)特点:①只改变速度方向,不改变速度大小②是根据作用效果命名的。   (4)计算公式:F向=mv2/r=mω2r   5、向心加速度:a向= v/r=ωr   五、开普勒的三大定律:   1、开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;   说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;   2、开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;   3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;公式:R3/T2=K;   说明:(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;   (2)当把行星的轨迹视为圆时,R表示愿的半径;   (3)该公式亦适用与其它天体,如绕地球运动的卫星;   六、万有引力定律:自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比.   1、计算公式:F=GMm/r2   2、解决天体运动问题的思路:   (1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;   (2)应用在地球表面的物体万有引力等于重力;   (3)如果要求密度,则用m=ρV,V=4πR3/3

高三物理知识点归纳:高中物理电学总结大全

 一、电场基本规律   2、库仑定律   (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。   (2)表达式:k=9.0×109N?m2/C2——静电力常量   (3)适用条件:真空中静止的点电荷。   1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。   (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C——密立根测得e的值。   二、电场能的性质   1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。   2、电势φ   (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。   (2)定义式:φ——单位:伏(V)——带正负号计算   (3)特点:   ○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。   ○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。   ○3电势的大小由电场本身决定,与Ep和q无关。   ○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。   (4)电势高低的判断方法   ○1根据电场线判断:沿着电场线电势降低。φA>φB   ○2根据电势能判断:   正电荷:电势能大,电势高;电势能小,电势低。   负电荷:电势能大,电势低;电势能小,电势高。   结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。   3、电势能Ep   (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。   (2)定义式:——带正负号计算   (3)特点:   ○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。   ○2电势能的变化量△Ep与零势能面的选择无关。   4、电势差UAB   (1)定义:电场中两点间的电势之差。也叫电压。   (2)定义式:UAB=φA-φB   (3)特点:   ○1电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。   ○2单位:伏   ○3电场中两点的电势差是确定的,与零势面的选择无关   ○4U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。   5、静电平衡状态   (1)定义:导体内不再有电荷定向移动的稳定状态   (2)特点   ○1处于静电平衡状态的导体,内部场强处处为零。   ○2感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。   ○3处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。   ○4电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。   6、电场力做功WAB   (1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。   (2)表达式:WAB=UABq—带正负号计算(适用于任何电场)   WAB=Eqd—d沿电场方向的距离。——匀强电场   (3)电场力做功与电势能的关系   WAB=-△Ep=EpA-EPB   结论:电场力做正功,电势能减少   电场力做负功,电势能增加   7、等势面:   (1)定义:电势相等的点构成的面。   (2)特点:   ○1等势面上各点电势相等,在等势面上移动电荷,电场力不做功。   ○2等势面与电场线垂直   ○3两等势面不相交   ○4等势面的密集程度表示场强的大小:疏弱密强。   ○5画等势面时,相邻等势面间的电势差相等。   (3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。   三、电场力的性质   1、电场的基本性质:电场对放入其中电荷有力的作用。   2、电场强度E   (1)定义:电荷在电场中某点受到的电场力F与电荷的带电量q的比值,就叫做该点的电场强度。   (2)定义式:E与F、q无关,只由电场本身决定。   (3)电场强度是矢量:大小:单位电荷受到的电场力。   方向:规定正电荷受力方向,负电荷受力与E的方向相反。   (4)单位:N/C,V/m1N/C=1V/m   (5)其他的电场强度公式   ○1点电荷的场强公式:——Q场源电荷   ○2匀强电场场强公式:——d沿电场方向两点间距离   (6)场强的叠加:遵循平行四边形法则   3、电场线   (1)意义:形象直观描述电场强弱和方向理性模型,实际上是不存在的   (2)电场线的特点:   ○1电场线起于正(无穷远),止于(无穷远)负电荷   ○2不封闭,不相交,不相切   ○3沿电场线电势降低,且电势降低最快。一条电场线无法判断场强大小,可以判断电势高低。   ○4电场线垂直于等势面,静电平衡导体,电场线垂直于导体表面   (3)几种特殊电场的电场线   四、应用——带电粒子在电场中的运动   (平衡问题,加速问题,偏转问题)   1、基本粒子不计重力,但不是不计质量,如质子,电子,α粒子,氕,氘,氚   带电微粒、带电油滴、带电小球一般情况下都要计算重力。   2、平衡问题:电场力与重力的平衡问题。   mg=Eq   3、加速问题   (1)由牛顿第二定律解释,带电粒子在电场中加速运动(不计重力),只受电场力Eq,粒子的加速度为a=Eq/m,若两板间距离为d,则   (2)由动能定理解释,   可见加速的末速度与两板间的距离d无关,只与两板间的电压有关,但是粒子在电场中运动的时间不一样,d越大,飞行时间越长。   3、偏转问题——类平抛运动   在垂直电场线的方向:粒子做速度为v0匀速直线运动。   在平行电场线的方向:粒子做初速度为0、加速度为a的匀加速直线运动   带电粒子若不计重力,则在竖直方向粒子的加速度   带电粒子做类平抛的水平距离,若能飞出电场水平距离为L,若不能飞出电场则水平距离为x   带电粒子飞行的时间:t=x/v0=L/v0——————○1   粒子要能飞出电场则:y≤d/2————————○2   粒子在竖直方向做匀加速运动:———○3   粒子在竖直方向的分速度:——————○4   粒子出电场的速度偏角:——————○5   由○1○2○3○4○5可得:   飞行时间:t=L/vO竖直分速度:   侧向偏移量:偏向角:   飞行时间:t=L/vO   侧向偏移量:y"=   偏向角:   在这种情况下,一束粒子中各种不同的粒子的运动轨迹相同。即不同粒子的侧移量,偏向角都相同,但它们飞越偏转电场的时间不同,此时间与加速电压、粒子电量、质量有关。   如果在上述例子中粒子的重力不能忽略时,只要将加速度a重新求出即可,具体计算过程相同   五、电容器及其应用   1、电容器充放电过程:(电源给电容器充电)   充电过程S-A:电源的电能转化为电容器的电场能   放电过程S-B:电容器的电场能转化为其他形式的能   2、电容   (1)物理意义:表示电容器容纳电荷本领的物理量。   (2)定义:电容器所带电量Q与电容器两极板间电压U的比值就叫做电容器的电容。   (3)定义式:——是定义式不是决定式   ——是电容的决定式(平行板电容器)   (4)单位:法拉F,微法μF,皮法pF   1pF=10-6μF=10-12F   (5)特点   ○1电容器的带电量Q是指一个极板带电量的绝对值。   ○2电容器的电容C与Q和U无关,只由电容器本身决定。   ○3在有关电容器问题的讨论中,经常要用到以下三个公式和○3的结论联合使用进行判断   ○4电容器始终与电源相连,则电容器的电压不变。电容器充电完毕,再与电源断开,则电容器的带电量不变。

高中物理知识点总结

http://www.mydown.com/tests/253/253756.html学习物理重要,掌握学习物理的方法更重要。学好物理的“法宝”包括预习、听课、整理、应用(作业)、复习总结等。大量事实表明:做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记、做好练习是巩固、深化、活化物理概念的理解,将知识转化为解决实际问题的能力,从而形成技能技巧的重要途径;善于复习、归纳和总结,能使所学知识触类旁通;适当阅读科普读物和参加科技活动,是学好物理的有益补充;树立远大的目标,做好充分的思想准备,保持良好的学习心态,是学好物理的动力和保证。注意学习方法,提高学习能力,同学们可从以下几点做起。 一、课前认真预习 预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。 课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍。 二、主动提高效率的听课 带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握知识的重点,突破难点,抓住关键,而且能更好地掌握老师分析问题、解决问题的思路和方法,进一步提高自己的学习能力。 三、定期整理学习笔记 在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,符合自己的特点。做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度。在学习时如果轻信自己的记忆力,不做笔记,则往往会在该使用时却想不起来了,很可惜的! 四、及时做作业 作业是学好物理知识必不可少的环节,是掌握知识熟练技能的基本方法。在平时的预习中,用书上的习题检查自己的预习效果,课后作业时多进行一题多解及分析最优解法练习。在章节复习中精选课外习题自我测验,及时反馈信息。因此,认真做好作业,可以加深对所学知识的理解,发现自己知识中的薄弱环节而去有意识地加强它,逐步培养自己的分析、解决问题的能力,逐步树立解决实际问题的信心。 要做好作业,首先要仔细审题,弄清题中叙述的物理过程,明确题中所给的条件和要求解决的问题;根据题中陈述的物理现象和过程对照所学物理知识选择解题所要用到的物理概念和规律;经过冷静的思考或分析推理,建立数学关系式;借助数学工具进行计算,求解时要将各物理量的单位统一到国际单位制中;最后还必须对答案进行验证讨论,以检查所用的规律是否正确,在运算中出现的各物理的单位是否一致,答案是否正确、符合实际,物理意义是否明确,运算进程是否严密,是否还有别的解法,通过验证答案、回顾解题过程,才能牢固地掌握知识,熟悉各种解题的思路和方法,提高解题能力。 五、复习总结提高 对学过的知识,做过的练习,如果不及时复习,不会归纳总结,就容易出现知识之间的割裂而形成孤立地、呆板地学习物理知识的倾向。其结果必然是物理内容一大片,定律、公式一大堆,但对具体过程分析不清,对公式中的物理量间的关系理解不深,不会纵观全局,前后联贯,灵活运用物理概念和物理规律去解决具体问题。因此,课后要及时的复习、总结。课后的复习除了每节课后的整理笔记、完成作业外,还要进行章节的单元复习。要经常通过对比、鉴别,弄清事物的本质、内在联系以及变化发展过程,并及时归纳总结以形成系统的知识。通过分析对比,归纳总结,便可以使知识前后贯通,纵横联系,并从物理量间的因果联系和发展变化中加深对物理概念和规律的理解。这样既能不断巩固加深所学知识,又能提高归纳总结的能力。 六、做好思想准备,调整好学习心态 在学习物理的第一节课时,老师都会讲物理难学,在未学习物理之前就从高年级同学那里听说物理教难学。因此大部分同学在学习物理时都带有一些不正常的学习心态,主要表现有以下几个方面:(1)紧张、畏惧心理。物理难学在他们的心灵里留下了深深的烙印,他们害怕上物理课,害怕做物理作业,害怕老师课堂提问,害怕老师的个别谈话,怕做实验、怕动手,千方百计地回避学习,胆怯的心弦一天到晚紧绷着,不能理论联系实际,不能在实践中运用学过的知识,久而久之,越怕越难学,越难越怕学。(2)“一口吃个胖子”的心理。想把成绩搞上去,但经过一段时间的努力,成绩仍没有什么大的起色,随即产生“反正学不好了”和“我不是学习的料”的错误心理。(3)消极心理。学习松松垮垮、马马虎虎,懒惰思想较重,学习缺乏主动性,处于被动应付状态,上课时经常“开小差”,盼望着“快下课”,老师提问大都说“不会。” 诚然,物理是难学,但绝非学不好,只要按物理学科的特点去学习,按照前面谈到的去做,理解注重思考物理过程,不死记硬背,常动手,常开动脑筋思考,不要一碰到问题就问同学或老师。在学习中要找出适合自己的学习方法,从学习中去寻找乐趣,就能培养自己学习物理的兴趣。比如一个学生在学习力的图示时就编了这样的顺口溜:“四定即定作用点、定方向、定标度、定长度,两标即标箭头、标数值和单位。”现代社会的发展,物理学起着不可估量的作用,同学们要以振兴中华为已任,以学好物理报效祖国为内部动力,要认识到自己学习的责任感和建设祖国的使命感,从而自发地、积极地、主动地学习,就一定能学好物理知识。 怎样学好物理 学习物理重要,掌握学习物理的方法更重要。学好物理的“法宝”包括预习、听课、整理、应用(作业)、复习总结等。大量事实表明:做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记、做好练习是巩固、深化、活化物理概念的理解,将知识转化为解决实际问题的能力,从而形成技能技巧的重要途径;善于复习、归纳和总结,能使所学知识触类旁通;适当阅读科普读物和参加科技活动,是学好物理的有益补充;树立远大的目标,做好充分的思想准备,保持良好的学习心态,是学好物理的动力和保证。注意学习方法,提高学习能力,同学们可从以下几点做起。 一、课前认真预习 预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。 课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍。 二、主动提高效率的听课 带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握知识的重点,突破难点,抓住关键,而且能更好地掌握老师分析问题、解决问题的思路和方法,进一步提高自己的学习能力。 三、定期整理学习笔记 在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,符合自己的特点。做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度。在学习时如果轻信自己的记忆力,不做笔记,则往往会在该使用时却想不起来了,很可惜的! 四、及时做作业 作业是学好物理知识必不可少的环节,是掌握知识熟练技能的基本方法。在平时的预习中,用书上的习题检查自己的预习效果,课后作业时多进行一题多解及分析最优解法练习。在章节复习中精选课外习题自我测验,及时反馈信息。因此,认真做好作业,可以加深对所学知识的理解,发现自己知识中的薄弱环节而去有意识地加强它,逐步培养自己的分析、解决问题的能力,逐步树立解决实际问题的信心。 要做好作业,首先要仔细审题,弄清题中叙述的物理过程,明确题中所给的条件和要求解决的问题;根据题中陈述的物理现象和过程对照所学物理知识选择解题所要用到的物理概念和规律;经过冷静的思考或分析推理,建立数学关系式;借助数学工具进行计算,求解时要将各物理量的单位统一到国际单位制中;最后还必须对答案进行验证讨论,以检查所用的规律是否正确,在运算中出现的各物理的单位是否一致,答案是否正确、符合实际,物理意义是否明确,运算进程是否严密,是否还有别的解法,通过验证答案、回顾解题过程,才能牢固地掌握知识,熟悉各种解题的思路和方法,提高解题能力。 五、复习总结提高 对学过的知识,做过的练习,如果不及时复习,不会归纳总结,就容易出现知识之间的割裂而形成孤立地、呆板地学习物理知识的倾向。其结果必然是物理内容一大片,定律、公式一大堆,但对具体过程分析不清,对公式中的物理量间的关系理解不深,不会纵观全局,前后联贯,灵活运用物理概念和物理规律去解决具体问题。因此,课后要及时的复习、总结。课后的复习除了每节课后的整理笔记、完成作业外,还要进行章节的单元复习。要经常通过对比、鉴别,弄清事物的本质、内在联系以及变化发展过程,并及时归纳总结以形成系统的知识。通过分析对比,归纳总结,便可以使知识前后贯通,纵横联系,并从物理量间的因果联系和发展变化中加深对物理概念和规律的理解。这样既能不断巩固加深所学知识,又能提高归纳总结的能力。 六、做好思想准备,调整好学习心态 在学习物理的第一节课时,老师都会讲物理难学,在未学习物理之前就从高年级同学那里听说物理教难学。因此大部分同学在学习物理时都带有一些不正常的学习心态,主要表现有以下几个方面:(1)紧张、畏惧心理。物理难学在他们的心灵里留下了深深的烙印,他们害怕上物理课,害怕做物理作业,害怕老师课堂提问,害怕老师的个别谈话,怕做实验、怕动手,千方百计地回避学习,胆怯的心弦一天到晚紧绷着,不能理论联系实际,不能在实践中运用学过的知识,久而久之,越怕越难学,越难越怕学。(2)“一口吃个胖子”的心理。想把成绩搞上去,但经过一段时间的努力,成绩仍没有什么大的起色,随即产生“反正学不好了”和“我不是学习的料”的错误心理。(3)消极心理。学习松松垮垮、马马虎虎,懒惰思想较重,学习缺乏主动性,处于被动应付状态,上课时经常“开小差”,盼望着“快下课”,老师提问大都说“不会。” 诚然,物理是难学,但绝非学不好,只要按物理学科的特点去学习,按照前面谈到的去做,理解注重思考物理过程,不死记硬背,常动手,常开动脑筋思考,不要一碰到问题就问同学或老师。在学习中要找出适合自己的学习方法,从学习中去寻找乐趣,就能培养自己学习物理的兴趣。比如一个学生在学习力的图示时就编了这样的顺口溜:“四定即定作用点、定方向、定标度、定长度,两标即标箭头、标数值和单位。”现代社会的发展,物理学起着不可估量的作用,同学们要以振兴中华为已任,以学好物理报效祖国为内部动力,要认识到自己学习的责任感和建设祖国的使命感,从而自发地、积极地、主动地学习,就一定能学好物理知识。 物理这门自然科学课程比较比较难学,靠死记硬背是学不会的,一字不差地背下来,出个题目还是照样不会作。物理课初中、高中、大学各讲一遍,初中定性的东西多,高中定量的东西多。在高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:上课听得懂,听得清,就是在课下做题时不会。这是个普遍的问题,值得物理教师和同学们认真研究。下面就高中物理的学习方法,浅谈一些自己的看法,以便对同学们的学习有所帮助。 一、端正学习态度 首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会做?我作为学理科的教师有这样的切身感受:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会做,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。 要想学好物理,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习。树立信心,坚信自己能够学好任何课程,坚信能量的转化和守恒定律,坚信有几分付出,就应当有几分收获。关于这一条,请看以下三条语录: 我决不相信,任何先天的或后天的才能,可以无需坚定的长期苦干的品质而得到成功的。--狄更斯(英国文学家) 有的人能够远远超过其他人,其主要原因与其说是天才,不如说他有专心致志坚持学习和不达目的决不罢休的顽强精神。 --道尔顿(英国化学家) 世界上最快而又最慢,最长而又最短,最平凡而又最珍贵,最容易被忽视而最令人后悔的就是时间。 --高尔基(苏联文学家) 功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。 二、要注意学习上的八个环节:制定计划→课前预习→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里最重要的是:专心上课→及时复习→独立作业→解决疑难→系统总结,这五个环节。在以上八个环节中,存在着不少的学习方法,下面就针对物理的特点,针对就如何学好物理,这一问题提出几点具体的学习方法。 (一)三个基本。基本概念要清楚,基本规律要熟悉,基本方法要熟练。关于基本概念,举一个例子。比如说速率。它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。关于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。前者是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。再说一下基本方法,比如说研究中学问题是常采用的整体法和隔离法,就是一个典型的相辅形成的方法。最后再谈一个问题,属于三个基本之外的问题。就是我们在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。如,沿着电场线的方向电势降低;同一根绳上张力相等;加速度为零时速度最大;洛仑兹力不做功等等。 (二)独立做题。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。 (三)物理过程。要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。 画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 (四)上课。上课要认真听讲,不走思或尽量少走思。不要自以为是,要虚心向老师学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。 (五)笔记本。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了消化好,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的好题本。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。 (六)学习资料。学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。作记号是指,比方说对练习题吧,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。 (七)时间。时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。比方说,可以利用回忆的学习方法以节省时间,睡觉前、等车时、走在路上等这些时间,我们可以把当天讲的课一节一节地回忆,这样重复地再学一次,能达到强化的目的。物理题有的比较难,有的题可能是在散步时想到它的解法的。学习物理的人脑子里会经常有几道做不出来的题贮存着,念念不忘,不知何时会有所突破,找到问题的答案。 (八)向别人学习。要虚心向别人学习,向同学们学习,向周围的人学习,看人家是怎样学习的,经常与他们进行学术上的交流,互教互学,共同提高,千万不能自以为是。也不能保守,有了好方法要告诉别人,这样别人有了好方法也会告诉你。在学习方面要有几个好朋友。 (九)知识结构。要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统起来。大到整个物理的知识结构,小到力学的知识结构,甚至具体到章,如静力学的知识结构等等。 (十)数学。物理的计算要依靠数学,对学物理来说数学太重要了。没有数学这个计算工具物理学是步难行的。大学里物理系的数学课与物理课是并重的。要学好数学,利用好数学这个强有力的工具。 (十一)体育活动。健康的身体是学习好的保证,旺盛的精力是学习高效率的保证。要经常参加体育活动,要会一种、二种锻炼身体的方法,要终生参加体育活动,不能间断,仅由兴趣出发三天打鱼两天晒网地搞体育活动,对身体不会有太大好处。要自觉地有意识地去锻炼身体。要保证充足的睡眠,不能以减少睡觉的时间去增加学习的时间,这种办法不可取。不能以透支健康为代价去换取一点好成绩,不能动不动就讲所谓冲刺、拼搏,学习也要讲究规律性,也就是说总是努力,不搞突击。 三、注意自学能力的培养 记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。 积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。 综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。 提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题--力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。 综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新,从基础知识最初目标,最终达到学习物理的最高境界。 在物理学习过程中,依照从简单到复杂的认知过程,对照学习的六个层次,逐渐发现自己所在的位置及水平,找出自己的不足,进而确定自己改进和努力方向。高中阶段的学习是为大学学习做准备的,对同学们自学能力提出了更高的要求,以上所述的物理学习的基本过程--记忆,积累,综合,提高就是对自己自学能力的培养过程,学会了学习方法,对物理科有了兴趣,掌握了物理这门实验学科与实际结合比较紧密的特点,经过自己艰苦的努力,定会把高中物理学好。 以上粗浅地谈了一些学习方法,更具体地、更有效的学习方法需要自己在学习过程中不断摸索、总结,别人的方法也要通过自己去检验才能变为自己的东西。

高中物理知识点电容器

  高中物理知识点电容器1   一、电容器   1. 电容器:任何两个彼此绝缘、相互靠近的导体可组成一个电容器,贮藏电量和能量。两个导体称为电容器的两极。   2. 电容器的带电量:电容器一个极板所带电量的绝对值。   3. 电容器的充电、放电.   操作:把电容器的一个极板与电池组的正极相连,另一个极板与负极相连,两个极板上就分别带上了等量的异种电荷。这个过程叫做充电。   现象:从灵敏电流计可以观察到短暂的充电电流。充电后,切断与电源的联系,两个极板间有电场存在,充电过程中由电源获得的电能贮存在电场中,称为电场能。   操作:把充电后的.电容器的两个极板接通,两极板上的电荷互相中和,电容器就不带电了,这个过程叫放电。   充电——带电量Q增加,板间电压U增加,板间场强E增加, 电能转化为电场能   放电——带电量Q减少,板间电压U减少,板间场强E减少,电场能转化为电能   二、电容   1. 定义:电容器所带的电荷量Q与电容器两极板间的电势U的比值,叫做电容器的电容   C=Q/U,式中Q指每一个极板带电量的绝对值   ①电容是反映电容器本身容纳电荷本领大小的物理量,跟电容器是否带电无关。   ②电容的单位:在国际单位制中,电容的单位是法拉,简称法,符号是F。   常用单位有微法(μF),皮法(pF) 1μF = 10-6F,1 pF =10-12F   2. 平行板电容器的电容C:跟介电常数成正比,跟正对面积S成正比,跟极板间的距离d成反比。   是电介质的介电常数,k是静电力常量;空气的介电常数最小。   3. 电容器始终接在电源上,电压不变;电容器充电后断开电源,带电量不变。   高中物理知识点电容器2   1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍   2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电=9.0×109Nm2/C2,Q1、Q2:两点电荷的(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}   3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}   4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}   5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}   6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}   7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q   8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}   9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}   10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}   11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)   拓展相关:高中物理知识点电总结   高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。   一、运动的描述   1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢s比t,a用δv与t比。   2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,δs等at平方。   3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。   二、力   1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。   2.分析受力要仔细,定量计算七种力;重力有无看   提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。   3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。   多力问题状态揭,正交分解来解决,三角函数能化解。   4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。   三、牛顿运动定律   1.f等ma,牛顿二定律,产生加速度,原因就是力。   合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。   2.n、t等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零   四、曲线运动、万有引力   1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。   2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。   3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。   五、机械能与能量   1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。   2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。   3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。   六、电场   1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kqq与r平方比。   2.电荷周围有电场,f比q定义场强。kq比r2点电荷,u比d是匀强电场。   电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。   场能性质是电势,场线方向电势降。场力做功是qu,动能定理不能忘。   4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。   七、恒定电流   1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。   正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。   2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。   电流做功uit,电热i平方rt。电功率,w比t,电压乘电流也是。   3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。   4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。   路端电压内压降,和就等电动势,除于总阻电流是。   八、磁场   1.磁体周围有磁场,n极受力定方向;电流周围有磁场,安培定则定方向。   2.f比il是场强,φ等bs磁通量,磁通密度φ比s,磁场强度之名异。   3.bil安培力,相互垂直要注意。   4.洛仑兹力安培力,力往左甩别忘记。   九、电磁感应   1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。   感应电动势大小,磁通变化率知晓。   2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。   3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。   必修和选修物理知识点汇总   十、交流电   1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。   中性面计时是正弦,平行面计时是余弦。   2.nbsω是最大值,有效值用热量来计算。   3.变压器供交流用,恒定电流不能用。   理想变压器,初级ui值,次级ui值,相等是原理。   电压之比值,正比匝数比;电流之比值,反比匝数比。   运用变压比,若求某匝数,化为匝伏比,方便地算出。   远距输电用,升压降流送,否则耗损大,用户后降压。   十一、气态方程   研究气体定质量,确定状态找参量。绝对温度用大t,体积就是容积量。   压强分析封闭物,牛顿定律帮你忙。状态参量要找准,pv比t是恒量。   十二、热力学定律   1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。   正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。   2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。   十三、机械振动   1.简谐振动要牢记,o为起点算位移,回复力的方向指,始终向平衡位置,   大小正比于位移,平衡位置u大极。   2.o点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。   到质心摆长行,单摆具有等时性。   3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。   十四、机械波   1.左行左坡上,右行右坡上。峰点谷点无方向。   2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。   3.不同时刻的图像,δt四分一或三,质点动向疑惑散,s等vt派用场。   十五、光学   1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。   反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。   2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。   十六、物理光学   1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗   2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。   十七、动量   1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。   2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。   十八、原子原子核   1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。   2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。   γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。   裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。   变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。

高中物理直线运动知识点

   一、 基本概念   1、 质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。   2、 参考系:任何运动都是相对于某个参照物而言的,这个参照物称为参考系。   3、 坐标系:定量的描述运动,采用坐标系。   4、 时刻和时间间隔:1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。   2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h   5、 路程:物体运动轨迹的长度   6、 位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。 位移的大小小于或等于路程。   7、 速度:物理意义:表示物体位置变化的快慢程度。   分类 平均速度:物体通过的位移与所用的时间之比。   瞬时速度:某一时刻(或某一位置)的速度。   与速率的区别和联系 速度是矢量,而速率是标量   平均速度=位移/时间,平均速率=路程/时间 瞬时速度的大小等于瞬时速率   8、 加速度 物理意义:表示物体速度变化的快慢程度   定义: 物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值 a=(vt—v0)/t (即等于速度的变化率)a不由△v、t决定,而是由F、m决定。 方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)    二、 运动图象   1、x—t图象(即位移图象)   (1)、纵截距表示物体的初始位置。   (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。   (3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。   2、v—t图象(速度图象)   (1)、纵截距表示物体的初速度。   (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。   (3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。   (4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。   (5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。    三、实验:用打点计时器测速度   1、两种打点计时器的异同点   电磁打点计时器: 振针 复写纸 工作电压为4-6V 电源的频率50 Hz时,每隔0.02 s打一次点   电火花打点计时器: 电火花 墨粉盒 电压220V 电源的"频率50 Hz时,每隔0.02 s打一次点   2、纸带分析;   (1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。   (2)、可计算出经过某点的瞬时速度   (3)、可计算出加速度    学好高中物理的方法有哪些   1、善于在高中物理的学习中与初中物理基础知识衔接,初中阶段的物理为你高中的学习打下了基础,你可以在高中物理的学习过程中,灵活运用思维方式转变,实现知识上的带入,在做物理题的过程中要全方位多角度地去考虑各种解题方法,不要局限于某一种解题思路,分析相关物理知识时,要及时总结规律,要有一双善于发现的眼睛和灵活的思辨能力。   2、我们要做好新的物理知识学习同时也要进一步加强已学过的知识点的巩固,思考新旧知识点之间的区别与联系,深化自己对于物理知识上的印象,避免遗忘知识点。   3、做好物理知识上的复习和预习工作,要有一个准确地复习计划,时刻按照计划开展复习工作,达到学过的知识不会被遗忘的目的,在学习新的知识点之前要做好预习工作,这样在上课过程中能够准确抓住老师所讲的物理重点与难点。    匀速圆周运动知识点   1.线速度V=s/t=2πr/T   2.角速度ω=Φ/t=2π/T=2πf   3.向心加速度a=V2/r=ω2r=(2π/T)2r   4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合   5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr   7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)   8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。   注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;   (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

人教版高中物理必修1知识点系统总结

毕业很多年了,你写的也不清楚,叫人怎么答啊给你推荐一本书吧,我个人觉得只适合应试教育,对于应试教育这书算好的王后熊 这是书名,自己找吧,书店没有估计淘宝上也有卖的

高中物理直线运动知识点

高中物理直线运动知识点1    匀变速直线运动重要知识点讲解   基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。   也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。   如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。    ●最核心公式   末速度与时间关系:Vt=Vo+at   位移与时间关系:x=Vot+at^2/2   速度与位移关系:Vt^2-Vo^2=2as    ●重要公式补充   (1)平均速度V=s/t;   (2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;   (3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;   (4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。    ●物体作匀变速直线运动须同时符合下述两条:   ⑴受恒外力作用   ⑵合外力与初速度在同一直线上。    ●重要比例关系   由Vt=at,得Vt∝t。   由s=(at^2)/2,得s∝t^2,或t∝2√s。   由Vt^2=2as,得s∝Vt^2,或Vt∝√s。   今天的内容就介绍到这里了。 高中物理直线运动知识点2   一、 基本关系式   v=v0+at x=v0t+1/2at2 v2-vo2=2ax v=x/t=(v0+v)/2    二、 推论   1、 vt/2=v=(v0+v)/2   2、△x=at2 { xm-xn=(m-n)at2 }   3、初速度为零的匀变速直线运动的比例式   (1)初速度为0的n个连续相等的时间末的速度之比:   V1:V2:V3: :Vn=1:2:3: :n   (2)初速度为0的n个连续相等时间内全位移X之比:   X1: X2: X3: :Xn=1:2   (3)初速度为0的n个连续相等的时间内S之比:   S1:S2:S3::Sn=1:3:5::(2n—1)   (4)初速度为0的n个连续相等的位移内全时间t之比   t1:t2:t3::tn=1:√2:√3::√n   (5)初速度为0的n个连续相等的位移内t之比:   t1:t2:t3::tn=1:(√2—1):(√3—√2)::(√n—√n—1) 应用基本关系式和推论时注意:   (1)、确定研究对象在哪个运动过程,并根据题意画出示意图。   (2)、求解运动学问题时一般都有多种解法,并探求最佳解法。    三、两种运动特例   (1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh   (2)、竖直上抛运动;v0=0 a=-g   四、关于追及与相遇问题   1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。   2、处理方法:物理法,数学法,图象法。    怎么才能学好物理   1、改变观念   和高中物理相比,初中物理知识相对来说还是比较浅显易懂的,并且内容也不算是很多,也更容易掌握一些。但是能学好初中物理,不见得就能学好高中物理了。如果对于学习物理的兴趣没有培养起来,再加上没有好的学习方法,学习高中物理简直就是难上加难。所以想要学好高中物理,首先就需要改变观念,应该对自己有个正确的认识,从头开始。   2、培养对物理的兴趣   兴趣是最好的老师,想要学好高中物理就要对物理这门学科充满兴趣。那么,怎么培养学习物理的兴趣呢?物理是一门和生活紧密相关的学科,理科生应该在平时的时候多注意物理与日常生活、生产和现代科技密切联系,息息相关的地方。甚至是将物理知识应用到实际生活中去,这样可以大大的激发学习物理的兴趣。    万有引力知识点   1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}   2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)   3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}   4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}   5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s   6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}   注:(1)天体运动所需的向心力由万有引力提供,F向=F万;   (2)应用万有引力定律可估算天体的质量密度等;   (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;   (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);   (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 高中物理直线运动知识点3   物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。   【概念及公式】   沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。   s(t)=1/2·at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}*t   v(t)=v(0)+at   其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移 速度公式:v=v0+at   位移公式:x=v0t+1/2at&sup2;   位移---速度公式:2ax=v2;-v02;   条件:物体作匀变速直线运动须同时符合下述两条:   ⑴受恒外力作用 ⑵合外力与初速度在同一直线上。   【规律】   瞬时速度与时间的关系:V1=V0+at   位移与时间的关系:s=V0t+1/2·at^2   瞬时速度与加速度、位移的关系:V^2-V0^2=2as   位移公式 X=Vot+1/2·at ^2=Vo·t(匀速直线运动)   位移公式推导:   ⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度   而匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]·t   利用速度公式v=v0+at,得s=[(v0+v0+at)/2]·t=[v0+at/2]·t=v0·t+1/2·at^2   ⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,dv/dt=a,d2s/dt2=a   于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数   进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0·t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有   s=1/2·at^2+v0·t   这就是位移公式。   推论 V^2-Vo^2=2ax   平均速度=(初速度+末速度)/2=中间时刻的瞬时速度   △X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)   X为位移。   V为末速度   Vo为初速度   【初速度为零的匀变速直线运动的比例关系】   ⑴重要比例关系   由Vt=at,得Vt∝t。   由s=(at^2)/2,得s∝t^2,或t∝2√s。   由Vt^2=2as,得s∝Vt^2,或Vt∝√s。   ⑵基本比例   ①第1秒末、第2秒末、……、第n秒末的速度之比   V1:V2:V3……:Vn=1:2:3:……:n。   推导:aT1 : aT2 : aT3 : ..... : aTn   ②前1秒内、前2秒内、……、前n秒内的位移之比   s1:s2:s3:……sn=1:4:9……:n^2。   推导:1/2·a(T1)^2: 1/2·a(T2)^2: 1/2·a(T3)^2: ...... : 1/2·a(Tn)^2   ③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比   xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。   推导:1/2·a(t)^2:1/2·a(2t)^2-1/2·a(t)^2:1/2·a(3t)^2-1/2·a(2t)^2   ④通过前1s、前2s、前3s……、前ns的位移所需时间之比   t1:t2:……:tn=1:√2:√3……:√n。   推导:由s=1/2a(t)^2t1=√2s/at2=√4s/at3=√6s/a   ⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比   tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)   推导:t1=√(2s/a)t2=√(2×2s/a)-√(2s/a)=√(2s/a)×(√2-1)t3=√(2×3s/a)-√(2×2s/a)=√(2s/a)×(√3-√2)…… 注⑵2=4⑶2=9   【分类】   在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。   若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动   速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。 高中物理直线运动知识点4   一、直线运动   1、质点:用来代替物体的有质量的点。   2、说明:(1)质点是一个理想化模型,实际上并不存在。   (2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动)。②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。   二、参考系和坐标系   1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。   说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。   (2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。   2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。   三、时刻和时间   1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。如“3s末”;和“4s初”。   2、时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示。   四、位置、位移和路程   1、位置:质点所在空间对应的点。建立坐标系后用坐标来描述。   2、位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度。   3、路程:物体运动轨迹的长度,是标量。   五、速度与速率   1、速度:位移与发生这个位移所用时间的.比值(v= ),是矢量,方向与Δx的方向相同。   2、瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量。   3、平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v= ),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量。   说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等。   六、加速度   1、物理意义:描述速度改变快慢及方向的物理量,是矢量。   2、定义:速度的改变量跟发生这一改变所用时间的比值。   3、大小:等于单位时间内速度的改变量。   4、方向:与速度改变量的方向相同。   5、理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率( )。加速度的大小即,而加速度的方向即Δv的方向   七。速度、速度变化量及加速度有哪些区别?   速度等于位移跟时间的比值。它是位移对时间的变化率,描述物体运动的快慢和运动方向。也可以说是描述物体位置变化的快慢和位置变化的方向。   速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差。它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反。速度的变化与速度大小无必然联系。   加速度是速度的变化与发生这一变化所用时间的比值。也就是速度对时间的变化率,在数值上等于单位时间内速度的变化。它描述的是速度变化的快慢和变化的方向。加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系。 高中物理直线运动知识点5    一、 基本概念   1、 质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。   2、 参考系:任何运动都是相对于某个参照物而言的,这个参照物称为参考系。   3、 坐标系:定量的描述运动,采用坐标系。   4、 时刻和时间间隔:1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。   2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h   5、 路程:物体运动轨迹的长度   6、 位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。 位移的大小小于或等于路程。   7、 速度:物理意义:表示物体位置变化的快慢程度。   分类 平均速度:物体通过的位移与所用的时间之比。   瞬时速度:某一时刻(或某一位置)的速度。   与速率的区别和联系 速度是矢量,而速率是标量   平均速度=位移/时间,平均速率=路程/时间 瞬时速度的大小等于瞬时速率   8、 加速度 物理意义:表示物体速度变化的快慢程度   定义: 物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值 a=(vt—v0)/t (即等于速度的变化率)a不由△v、t决定,而是由F、m决定。 方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)    二、 运动图象   1、x—t图象(即位移图象)   (1)、纵截距表示物体的初始位置。   (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。   (3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。   2、v—t图象(速度图象)   (1)、纵截距表示物体的初速度。   (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。   (3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。   (4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。   (5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。    三、实验:用打点计时器测速度   1、两种打点计时器的异同点   电磁打点计时器: 振针 复写纸 工作电压为4-6V 电源的频率50 Hz时,每隔0.02 s打一次点   电火花打点计时器: 电火花 墨粉盒 电压220V 电源的频率50 Hz时,每隔0.02 s打一次点   2、纸带分析;   (1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。   (2)、可计算出经过某点的瞬时速度   (3)、可计算出加速度    学好高中物理的方法有哪些   1、善于在高中物理的学习中与初中物理基础知识衔接,初中阶段的物理为你高中的学习打下了基础,你可以在高中物理的学习过程中,灵活运用思维方式转变,实现知识上的带入,在做物理题的过程中要全方位多角度地去考虑各种解题方法,不要局限于某一种解题思路,分析相关物理知识时,要及时总结规律,要有一双善于发现的眼睛和灵活的思辨能力。   2、我们要做好新的物理知识学习同时也要进一步加强已学过的知识点的巩固,思考新旧知识点之间的区别与联系,深化自己对于物理知识上的印象,避免遗忘知识点。   3、做好物理知识上的复习和预习工作,要有一个准确地复习计划,时刻按照计划开展复习工作,达到学过的知识不会被遗忘的目的,在学习新的知识点之前要做好预习工作,这样在上课过程中能够准确抓住老师所讲的物理重点与难点。    匀速圆周运动知识点   1.线速度V=s/t=2πr/T   2.角速度ω=Φ/t=2π/T=2πf   3.向心加速度a=V2/r=ω2r=(2π/T)2r   4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合   5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr   7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)   8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。   注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;   (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。 高中物理直线运动知识点6    知识点概述    1.知识与技能:   1掌握用v—t图象描述位移的方法.   2掌握匀变速运动位移与时间的关系并运用(知道其推导方法).    2.过程与方法:   1通过对v—t图象位移的求法,明确“面积”与位移的关系。   2通过图像问题,学会用已有知识分析问题的方法和验证匀加速运动的平均速度求法。   3练习位移与时间公式的应用    知识点总结    位移--时间图象(s-t图)   (1)描述:表示位移和时间的关系的图象,叫位移-时间图象,简称位移图象。   (2)物理意义:描述物体运动的位移随时间的变化规律。   (3)坐标轴的含义:横坐标表示时间,纵坐标表示位移。由图象可知任意一段时间内的位移和发生某段位移所用的时间。    匀速直线运动的s-t图   (1)匀速直线运动的s-t图象是一条倾斜的直线,或某直线运动的s-t图象是倾斜直线则表示其作匀速直线运动。   (2)s-t图象中斜率(倾斜程度)大小表示物体运动快慢,斜率(倾斜程度)越大,速度越快。   (3)s-t图象中直线倾斜方式(方向)不同,意味着两直线运动方向相反。   (4)s-t图象中,两物体图象在某时刻相交表示在该时刻相遇。   (5)s-t图象若平行于t轴,则表示物体静止。   (6)s-t图象并不是物体的运动轨迹,二者不能混为一谈。   (7)s-t图只能描述直线运动。   表达式:v =(vt+vo)/2、x=v·t、vt=v0+at、x = v0 + at2/2    常见考点考法    一辆汽车从静止开始加速,加速度a=5m/s2,问:10s后汽车走过的位移为多少?(汽车沿直线运动)   解:因为物体做的是匀加速直线运动,所以:   x = v0t + at2/2 x=250m

高中物理的知识点及公式总结,急求

别人总结的没多大用,关键是自己去做

高中物理知识点总结

复习建议:1、高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中。力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等。⑤⑥解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型。解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律)。后两种方法由于只要考虑初、末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的。电磁学的重点是:①电场的性质;②电路的分析、设计与计算;③带电粒子在电场、磁场中的运动;④电磁感应现象中的力的问题、能量问题等等。2、热学、光学、原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择、实验的形式出现。但绝对不能认为这部分内容分数少而不重视,正因为内容少、规律少,这部分的得分率应该是很高的。

高中物理各章知识点及典型例题总结

以下知识点由 ------ 问学堂 《理 化 夺分奇招》 与您分享一、运动的描述 1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。 2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。 3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。 二、力 1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。 2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。 3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。 多力问题状态揭,正交分解来解决,三角函数能化解。 4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。 三、牛顿运动定律 1.F等ma,牛顿二定律,产生加速度,原因就是力。 合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。 2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零 四、曲线运动、万有引力 1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。 2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。 3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。 五、机械能与能量 1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。 2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。 3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。 六、电场 〖选修3--1〗 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。 七、恒定电流〖选修3-1〗 1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。 电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。 3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。 4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。 八、磁场〖选修3-1〗 1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。 2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。 3.BIL安培力,相互垂直要注意。 4.洛仑兹力安培力,力往左甩别忘记。 九、电磁感应〖选修3-2〗 1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。 感应电动势大小,磁通变化率知晓。 2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。 3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。 十、交流电〖选修3-2〗 1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。 中性面计时是正弦,平行面计时是余弦。 2.NBSω是最大值,有效值用热量来计算。 3.变压器供交流用,恒定电流不能用。 理想变压器,初级U I值,次级U I值,相等是原理。 电压之比值,正比匝数比;电流之比值,反比匝数比。 运用变压比,若求某匝数,化为匝伏比,方便地算出。 远距输电用,升压降流送,否则耗损大,用户后降压。十一、气态方程〖选修3-3〗 研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。 压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。 十二、热力学定律 1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。 正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。 2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。 十三、机械振动〖选修3--4〗 1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置, 大小正比于位移,平衡位置u大极。 2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。 到质心摆长行,单摆具有等时性。 3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。 十四、机械波〖选修3--4〗 1.左行左坡上,右行右坡上。峰点谷点无方向。 2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。 3.不同时刻的图像,Δt四分一或三, 质点动向疑惑散,S等v t派用场。 十五、光学〖选修3-4〗 1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。 反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。 2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。 十六、物理光学 1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗 2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。〖选修3-5〗、 十七、动量 〖选修3--5〗 1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。 2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。 十八、原子原子核〖选修3-5〗 1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。 2.原子核,能改变,αβ两衰变。Α粒是氦核,电子流是β射线。 γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。 裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。 变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。

有关高中物理力学的知识点总结

知识点是靠自己总结的,而不是想着要别人帮着你总结。对于所有学科都是一样,更不用谈物理。

高中物理知识点总结

厉害。

高中物理知识点总结归纳(完整版)

说明:高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。本稿根据网上资料《高中物理实用口诀》整理、修改、补充。删除了部分与新课标不相符的内容。楷体字加粗的,是补充或修改的内容。增补了运动的描述、恒定电流、变压器和热力学定律等内容。 一、运动的描述 1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。 2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。 3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。 二、力 1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。 2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。 3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。 多力问题状态揭,正交分解来解决,三角函数能化解。 4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。 三、牛顿运动定律 1.F等ma,牛顿二定律,产生加速度,原因就是力。 合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。 2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零 四、曲线运动、万有引力 1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。 2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。 3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。 五、机械能与能量 1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。 2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。 3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。 六、电场 〖选修3--1〗 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。 七、恒定电流〖选修3-1〗 1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。 电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。 3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。 4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。 八、磁场〖选修3-1〗 1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。 2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。 3.BIL安培力,相互垂直要注意。 4.洛仑兹力安培力,力往左甩别忘记。 九、电磁感应〖选修3-2〗 1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。 感应电动势大小,磁通变化率知晓。 2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。 3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。 十、交流电〖选修3-2〗 1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。 中性面计时是正弦,平行面计时是余弦。 2.NBSω是最大值,有效值用热量来计算。 3.变压器供交流用,恒定电流不能用。 理想变压器,初级U I值,次级U I值,相等是原理。 电压之比值,正比匝数比;电流之比值,反比匝数比。 运用变压比,若求某匝数,化为匝伏比,方便地算出。 远距输电用,升压降流送,否则耗损大,用户后降压。十一、气态方程〖选修3-3〗 研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。 压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。 十二、热力学定律 1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。 正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。 2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。 十三、机械振动〖选修3--4〗 1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置, 大小正比于位移,平衡位置u大极。 2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。 到质心摆长行,单摆具有等时性。 3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。 十四、机械波〖选修3--4〗 1.左行左坡上,右行右坡上。峰点谷点无方向。 2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。 3.不同时刻的图像,Δt四分一或三, 质点动向疑惑散,S等v t派用场。 十五、光学〖选修3-4〗 1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。 反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。 2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。 十六、物理光学 1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗 2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。〖选修3-5〗、 十七、动量 〖选修3--5〗 1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。 2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。 十八、原子原子核〖选修3-5〗 1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。 2.原子核,能改变,αβ两衰变。Α粒是氦核,电子流是β射线。 γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。 裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。 变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。

高中物理力学知识点总结

  高中物理作为高中比较难的一学科,成为了很多学子的拦路石。为了让学子的学习更有目标。下面是由我为大家整理的“高中物理力学知识点总结”,仅供参考,欢迎大家阅读。    高中物理力学知识点总结   力学知识点一:   力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素,用一条有向线段把力的三要素表示出来的方法叫力图示。   按照力命名的依据不同,可以把力分为:1、按性质命名的力(例如重力、弹力、摩擦力、分子力、电磁力等。);2、按效果命名的力(例如拉力、压力、支持力、动力、阻力等)。   力的作用效果:1、形变;2、改变运动状态。   力学知识点二:   由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。   力学知识点三:   (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。   (2)条件:①接触;②形变。但物体的形变不能超过弹性限度。   (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)   (4)大小:①弹簧的弹力大小由F=kx计算,②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。   力学知识点四:摩擦力:   (1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可。   (2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反.但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。    拓展阅读:高中物理有哪些好的学习方法   高中物理课本   一、多学习、多观察、多思考   其实高中物理讲的就是一些自然界当中事物的定理,这些在我们身边还有很多事物都蕴含这这些真理,生活处处都有物理,就比如说我们每次坐车,我们看外面的世界就可以看见这些车子外面的东西都在向后走,这就是我们高中物理当中的参照物,这个知识点,生活到处都存在知识,你要用心去体会.   只要我们长一颗发现的眼睛,你一定要多看看你的生活当中会有很多的现象,不管是自然的还是生活的,你还要多看看夜晚的星星,看看他的变化,你还会发现物理当中发光、发热以及一些定律问题.这些知识在我们的生活当中还是处处存在的.   一、学会从定理入手   对于一些定理还有就是一些死概念还有的一些规律你们都要高度重视,但是你不光时要记住这些知识,你要学会该怎样利用起来,这才是关键,聪明的孩子是利用这些公式然后应用到自己的错题当中,从中找到问题的所在,你还要做到从一个小小的错题,就可以复习到很多知识,真是双丰收,这也是学生学习高中物理能不能开窍的关键。   二、把不理解改成很熟练   因为在高中物理当中还有很多新的概念,还有一些名词就是比如:势能、弹性势能等,你们不要看见这些没有见过的词,就不喜欢他们,你知道吗?只要你深入的了解,细心去看看,然后你再看看一些教材以及一些辅导书都是可以让你理解的.   对于学习就是你要是越喜欢这个科目,你就会学的越好,可能因为种种的原因让你喜欢这个科目,可能因为是老师的缘故,有的老师抓的紧,你这个科目就学的很好,但是还有的学生就是喜欢这个老师就喜欢这个科目,要是换了老师就不好好学了,其实这样是害了你自己.

高中物理知识点总结

先给个邮箱吧,楼主~~~

高中物理知识点归纳

高中物理知识点归纳1   运动的描述   1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。   2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。   3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。   力   1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。   2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。   3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。   多力问题状态揭,正交分解来解决,三角函数能化解。   4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。   牛顿运动定律   1.F等ma,牛顿二定律,产生加速度,原因就是力。   合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。   2.N、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。   曲线运动、万有引力   1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。   2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。   3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。   机械能与能量   1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。   2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。   3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。   电场〖选修3--1〗   1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。   2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。   电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。   3.场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。   4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。   恒定电流〖选修3-1〗   1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。   正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。   2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s等电阻。   电流做功U I t ,电热I平方R t 。电功率,W比t,电压乘电流也是。   3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。   4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。   路端电压内压降,和就等电动势,除于总阻电流是。   磁场〖选修3-1〗   1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。   2.F比I l是场强,φ等B S磁通量,磁通密度φ比S,磁场强度之名异。   3.BIL安培力,相互垂直要注意。   4.洛仑兹力安培力,力往左甩别忘记。   电磁感应〖选修3-2〗   1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。   2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。   3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。   交流电〖选修3-2〗   1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。   中性面计时是正弦,平行面计时是余弦。   2.NBSω是最大值,有效值用热量来计算。   3.变压器供交流用,恒定电流不能用。   理想变压器,初级U I值,次级U I值,相等是原理。   电压之比值,正比匝数比;电流之比值,反比匝数比。   运用变压比,若求某匝数,化为匝伏比,方便地算出。   远距输电用,升压降流送,否则耗损大,用户后降压。   气态方程〖选修3-3〗   研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。   压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。   热力学定律   1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。   正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。   2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。   机械振动〖选修3--4〗   1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,大小正比于位移,平衡位置u大极。   2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。   到质心摆长行,单摆具有等时性。   3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。 高中物理知识点归纳2   1.光本性学说的发展简史   (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.   (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.   2、光的干涉   光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。   2.干涉区域内产生的亮、暗纹   ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)   ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)   相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。   3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。   ⑴各种不同形状的障碍物都能使光发生衍射。   ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)   ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。   4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。   5.光的电磁说   ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)   ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。   各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。   ⑶红外线、紫外线、X射线的主要性质及其应用举例。   种类产生主要性质应用举例   红外线一切物体都能发出热效应遥感、遥控、加热   紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2   X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 高中物理知识点归纳3   1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)   2.互成角度力的合成:   F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2   3.合力大小范围:|F1-F2|≤F≤|F1+F2|   4.力的.正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)   注:   (1)力(矢量)的合成与分解遵循平行四边形定则;   (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;   (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;   (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;   (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 高中物理知识点归纳4   1.气体的状态参量:   温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,   热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}   体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL   压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)   2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大   3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}   注:   (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;   (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

高中物理知识点汇总

高中物理公式总结物理定理、定律、公式表一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。2)自由落体运动1.初速度Vo=0 2.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。(3)竖直上抛运动1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g

高中物理知识点总结归纳大全

高一物理知识点总结1 一、质点的运动 (1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN<g p="" {加速度方向向下,均失重,加速度方向向上,均超重} 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。 五、振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 动能保持不变,向心力不做功,但动量不断改变。 高二物理知识点总结2 电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C), r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C), UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; 3)常见电场的电场线分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零, 导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J; (8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。 恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总 {I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法:电流表外接法: 电压表示数:U=UR+UA 电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<r真< p=""> 选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<rv p="" 2]<="" [或rx 12.滑动变阻器在电路中的限流接法与分压接法 限流接法 电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<rx< p=""> 注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大; (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻; (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大; (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r); (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。 磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB ;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); ?解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 1、物理学的好可以选什么专业 高中物理学的好可以选什么专业 2、高中不选物理能考什么大学 不选物理真的不能上好大学吗 3、学医不选物理可以填报哪些医学专业 学医高中选哪三科目好 4、高中物理匀变速直线运动公式 5、2021年高中物理高考考点总结 6、高中物理圆周运动公式总结 7、2021年高中物理教师个人教学工作总结 8、2021年高中物理教师教学个人工作总结 9、全国高中物理竞赛复赛试题真题答案 10、2020高中生物理竞赛决赛试题真题答案 电磁感应 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动) {L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} 4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大), ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。 ;

高中物理直线运动知识点

高中物理直线运动知识点1    匀变速直线运动重要知识点讲解   基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。   也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。   如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。    ●最核心公式   末速度与时间关系:Vt=Vo+at   位移与时间关系:x=Vot+at^2/2   速度与位移关系:Vt^2-Vo^2=2as    ●重要公式补充   (1)平均速度V=s/t;   (2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;   (3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;   (4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。    ●物体作匀变速直线运动须同时符合下述两条:   ⑴受恒外力作用   ⑵合外力与初速度在同一直线上。    ●重要比例关系   由Vt=at,得Vt∝t。   由s=(at^2)/2,得s∝t^2,或t∝2√s。   由Vt^2=2as,得s∝Vt^2,或Vt∝√s。   今天的内容就介绍到这里了。 高中物理直线运动知识点2   一、直线运动   1、质点:用来代替物体的有质量的点。   2、说明:(1)质点是一个理想化模型,实际上并不存在。   (2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动)。②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。   二、参考系和坐标系   1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。   说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。   (2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。   2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。   三、时刻和时间   1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。如“3s末”;和“4s初”。   2、时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示。   四、位置、位移和路程   1、位置:质点所在空间对应的点。建立坐标系后用坐标来描述。   2、位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度。   3、路程:物体运动轨迹的长度,是标量。   五、速度与速率   1、速度:位移与发生这个位移所用时间的比值(v= ),是矢量,方向与Δx的方向相同。   2、瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量。   3、平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v= ),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量。   说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等。   六、加速度   1、物理意义:描述速度改变快慢及方向的物理量,是矢量。   2、定义:速度的改变量跟发生这一改变所用时间的比值。   3、大小:等于单位时间内速度的改变量。   4、方向:与速度改变量的方向相同。   5、理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率( )。加速度的大小即,而加速度的方向即Δv的方向   七。速度、速度变化量及加速度有哪些区别?   速度等于位移跟时间的比值。它是位移对时间的变化率,描述物体运动的快慢和运动方向。也可以说是描述物体位置变化的快慢和位置变化的方向。   速度的`变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差。它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反。速度的变化与速度大小无必然联系。   加速度是速度的变化与发生这一变化所用时间的比值。也就是速度对时间的变化率,在数值上等于单位时间内速度的变化。它描述的是速度变化的快慢和变化的方向。加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系。 高中物理直线运动知识点3   一、 基本关系式   v=v0+at x=v0t+1/2at2 v2-vo2=2ax v=x/t=(v0+v)/2    二、 推论   1、 vt/2=v=(v0+v)/2   2、△x=at2 { xm-xn=(m-n)at2 }   3、初速度为零的匀变速直线运动的比例式   (1)初速度为0的n个连续相等的时间末的速度之比:   V1:V2:V3: :Vn=1:2:3: :n   (2)初速度为0的n个连续相等时间内全位移X之比:   X1: X2: X3: :Xn=1:2   (3)初速度为0的n个连续相等的时间内S之比:   S1:S2:S3::Sn=1:3:5::(2n—1)   (4)初速度为0的n个连续相等的位移内全时间t之比   t1:t2:t3::tn=1:√2:√3::√n   (5)初速度为0的n个连续相等的位移内t之比:   t1:t2:t3::tn=1:(√2—1):(√3—√2)::(√n—√n—1) 应用基本关系式和推论时注意:   (1)、确定研究对象在哪个运动过程,并根据题意画出示意图。   (2)、求解运动学问题时一般都有多种解法,并探求最佳解法。    三、两种运动特例   (1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh   (2)、竖直上抛运动;v0=0 a=-g   四、关于追及与相遇问题   1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。   2、处理方法:物理法,数学法,图象法。    怎么才能学好物理   1、改变观念   和高中物理相比,初中物理知识相对来说还是比较浅显易懂的,并且内容也不算是很多,也更容易掌握一些。但是能学好初中物理,不见得就能学好高中物理了。如果对于学习物理的兴趣没有培养起来,再加上没有好的学习方法,学习高中物理简直就是难上加难。所以想要学好高中物理,首先就需要改变观念,应该对自己有个正确的认识,从头开始。   2、培养对物理的兴趣   兴趣是最好的老师,想要学好高中物理就要对物理这门学科充满兴趣。那么,怎么培养学习物理的兴趣呢?物理是一门和生活紧密相关的学科,理科生应该在平时的时候多注意物理与日常生活、生产和现代科技密切联系,息息相关的地方。甚至是将物理知识应用到实际生活中去,这样可以大大的激发学习物理的兴趣。    万有引力知识点   1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}   2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)   3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}   4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}   5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s   6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}   注:(1)天体运动所需的向心力由万有引力提供,F向=F万;   (2)应用万有引力定律可估算天体的质量密度等;   (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;   (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);   (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 高中物理直线运动知识点4   物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。   【概念及公式】   沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。   s(t)=1/2·at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}*t   v(t)=v(0)+at   其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移 速度公式:v=v0+at   位移公式:x=v0t+1/2at&sup2;   位移---速度公式:2ax=v2;-v02;   条件:物体作匀变速直线运动须同时符合下述两条:   ⑴受恒外力作用 ⑵合外力与初速度在同一直线上。   【规律】   瞬时速度与时间的关系:V1=V0+at   位移与时间的关系:s=V0t+1/2·at^2   瞬时速度与加速度、位移的关系:V^2-V0^2=2as   位移公式 X=Vot+1/2·at ^2=Vo·t(匀速直线运动)   位移公式推导:   ⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度   而匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]·t   利用速度公式v=v0+at,得s=[(v0+v0+at)/2]·t=[v0+at/2]·t=v0·t+1/2·at^2   ⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,dv/dt=a,d2s/dt2=a   于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数   进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0·t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有   s=1/2·at^2+v0·t   这就是位移公式。   推论 V^2-Vo^2=2ax   平均速度=(初速度+末速度)/2=中间时刻的瞬时速度   △X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)   X为位移。   V为末速度   Vo为初速度   【初速度为零的匀变速直线运动的比例关系】   ⑴重要比例关系   由Vt=at,得Vt∝t。   由s=(at^2)/2,得s∝t^2,或t∝2√s。   由Vt^2=2as,得s∝Vt^2,或Vt∝√s。   ⑵基本比例   ①第1秒末、第2秒末、……、第n秒末的速度之比   V1:V2:V3……:Vn=1:2:3:……:n。   推导:aT1 : aT2 : aT3 : ..... : aTn   ②前1秒内、前2秒内、……、前n秒内的位移之比   s1:s2:s3:……sn=1:4:9……:n^2。   推导:1/2·a(T1)^2: 1/2·a(T2)^2: 1/2·a(T3)^2: ...... : 1/2·a(Tn)^2   ③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比   xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。   推导:1/2·a(t)^2:1/2·a(2t)^2-1/2·a(t)^2:1/2·a(3t)^2-1/2·a(2t)^2   ④通过前1s、前2s、前3s……、前ns的位移所需时间之比   t1:t2:……:tn=1:√2:√3……:√n。   推导:由s=1/2a(t)^2t1=√2s/at2=√4s/at3=√6s/a   ⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比   tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)   推导:t1=√(2s/a)t2=√(2×2s/a)-√(2s/a)=√(2s/a)×(√2-1)t3=√(2×3s/a)-√(2×2s/a)=√(2s/a)×(√3-√2)…… 注⑵2=4⑶2=9   【分类】   在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。   若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动   速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。 高中物理直线运动知识点5    知识点概述    1.知识与技能:   1掌握用v—t图象描述位移的方法.   2掌握匀变速运动位移与时间的关系并运用(知道其推导方法).    2.过程与方法:   1通过对v—t图象位移的求法,明确“面积”与位移的关系。   2通过图像问题,学会用已有知识分析问题的方法和验证匀加速运动的平均速度求法。   3练习位移与时间公式的应用    知识点总结    位移--时间图象(s-t图)   (1)描述:表示位移和时间的关系的图象,叫位移-时间图象,简称位移图象。   (2)物理意义:描述物体运动的位移随时间的变化规律。   (3)坐标轴的含义:横坐标表示时间,纵坐标表示位移。由图象可知任意一段时间内的位移和发生某段位移所用的时间。    匀速直线运动的s-t图   (1)匀速直线运动的s-t图象是一条倾斜的直线,或某直线运动的s-t图象是倾斜直线则表示其作匀速直线运动。   (2)s-t图象中斜率(倾斜程度)大小表示物体运动快慢,斜率(倾斜程度)越大,速度越快。   (3)s-t图象中直线倾斜方式(方向)不同,意味着两直线运动方向相反。   (4)s-t图象中,两物体图象在某时刻相交表示在该时刻相遇。   (5)s-t图象若平行于t轴,则表示物体静止。   (6)s-t图象并不是物体的运动轨迹,二者不能混为一谈。   (7)s-t图只能描述直线运动。   表达式:v =(vt+vo)/2、x=v·t、vt=v0+at、x = v0 + at2/2    常见考点考法    一辆汽车从静止开始加速,加速度a=5m/s2,问:10s后汽车走过的位移为多少?(汽车沿直线运动)   解:因为物体做的是匀加速直线运动,所以:   x = v0t + at2/2 x=250m 高中物理直线运动知识点6    一、 基本概念   1、 质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。   2、 参考系:任何运动都是相对于某个参照物而言的,这个参照物称为参考系。   3、 坐标系:定量的描述运动,采用坐标系。   4、 时刻和时间间隔:1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。   2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h   5、 路程:物体运动轨迹的长度   6、 位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。 位移的大小小于或等于路程。   7、 速度:物理意义:表示物体位置变化的快慢程度。   分类 平均速度:物体通过的位移与所用的时间之比。   瞬时速度:某一时刻(或某一位置)的速度。   与速率的区别和联系 速度是矢量,而速率是标量   平均速度=位移/时间,平均速率=路程/时间 瞬时速度的大小等于瞬时速率   8、 加速度 物理意义:表示物体速度变化的快慢程度   定义: 物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值 a=(vt—v0)/t (即等于速度的变化率)a不由△v、t决定,而是由F、m决定。 方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)    二、 运动图象   1、x—t图象(即位移图象)   (1)、纵截距表示物体的初始位置。   (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。   (3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。   2、v—t图象(速度图象)   (1)、纵截距表示物体的初速度。   (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。   (3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。   (4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。   (5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。    三、实验:用打点计时器测速度   1、两种打点计时器的异同点   电磁打点计时器: 振针 复写纸 工作电压为4-6V 电源的频率50 Hz时,每隔0.02 s打一次点   电火花打点计时器: 电火花 墨粉盒 电压220V 电源的频率50 Hz时,每隔0.02 s打一次点   2、纸带分析;   (1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。   (2)、可计算出经过某点的瞬时速度   (3)、可计算出加速度    学好高中物理的方法有哪些   1、善于在高中物理的学习中与初中物理基础知识衔接,初中阶段的物理为你高中的学习打下了基础,你可以在高中物理的学习过程中,灵活运用思维方式转变,实现知识上的带入,在做物理题的过程中要全方位多角度地去考虑各种解题方法,不要局限于某一种解题思路,分析相关物理知识时,要及时总结规律,要有一双善于发现的眼睛和灵活的思辨能力。   2、我们要做好新的物理知识学习同时也要进一步加强已学过的知识点的巩固,思考新旧知识点之间的区别与联系,深化自己对于物理知识上的印象,避免遗忘知识点。   3、做好物理知识上的复习和预习工作,要有一个准确地复习计划,时刻按照计划开展复习工作,达到学过的知识不会被遗忘的目的,在学习新的知识点之前要做好预习工作,这样在上课过程中能够准确抓住老师所讲的物理重点与难点。    匀速圆周运动知识点   1.线速度V=s/t=2πr/T   2.角速度ω=Φ/t=2π/T=2πf   3.向心加速度a=V2/r=ω2r=(2π/T)2r   4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合   5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr   7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)   8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。   注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;   (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

高中物理圆周运动知识点总结

高中物理教学中,圆周运动问题既是一个重点,又是一个难点。那么你知道高中物理圆周 运动知识 点有哪些吗?这次我给大家整理了高中物理圆周运动知识点,供大家阅读参考。 目录 高中物理圆周运动知识点 圆周运动的特点 高中物理学习方法有哪些 高中物理圆周运动知识点 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才能到达最高点,否则小球就会在圆周上的某一点(这一点一定在水平直径以上)绳子的拉力为零时,小球就脱离圆周轨道。 (2)物体在杆或圆管的环形轨道上作竖直面内圆周运动,虽然物体从最低点沿圆周向最高点运动的过程中,速度越来越小,由于物体可以受到杆的拉力和压力(或圆管对它的向内或向外的作用力),所以,物体在圆周上的任意一点的速度均可为零。 <<< 圆周运动的特点 匀速圆周运动的特点:轨迹是圆,角速度,周期,线速度的大小(注:因为线速度是矢量,"线速度"大小是不变的,而方向时时在变化)和向心加速度的大小不变,且向心加速度方向总是指向圆心。 线速度定义:质点沿圆周运动通过的弧长ΔL与所用的时间Δt的比值叫做线速度,或者角速度与半径的乘积。 线速度的物理意义:描述质点沿圆周运动的快慢,是矢量。 角速度的定义:半径转过的弧度(弧度制:360°=2π)与所用时间t的比值。(匀速圆周运动中角速度恒定) 周期的定义:作匀速圆周运动的物体,转过一周所用的时间。 转速的定义:作匀速圆周运动的物体,单位时间所转过的圈数。 <<< 高中 物理 学习 方法 有哪些 一、课堂上认真听课。学生一天中基本上都是在课堂上度过,如果课堂都无法做到认真听讲,这就相当于盖房子连砖都没有一样。对于高中物理的学习,最重要的是要聚精会神听课,全神贯注,不要开小差。课堂中学习的内容也都是物理学习的重点,只有认真听课,才能打好基础。 二、做好 课前预习 。 我们都知道笨鸟先飞的道理,由于我们基础差,物理学习一定要走在别人前头,建议基础差的同学课前一定要预习,这样与之相关的旧知识可以复习一下,新知识如果不懂可以标记出来课堂重点去听,这样可以带着问题去听课,由于已经自学过一遍,听课的时候更容易跟上老师讲课的进度,不会出现听不懂而失去信心不愿意听的现象。 三、课本先吃透,掌握基本知识点和定理。不少同学学习物理普遍存在课本都没掌握,甚至最基础的公式、定理都没记住,谈何灵活应用。同时课本上的物理知识不建议死记硬背,一定要理解记忆,特别是定理,要深入理解它的内涵、外延、推导、应用范围等, 总结 出各种知识点之间的联系,在头脑中形成知识网络。 四、重视物理错题。对于每天出现的错题,课上老师重点讲解的错题及总结的错题,要及时的进行深入研究、并及时归类、总结,做到同样的错误不一错再错。 <<< 高中物理圆周运动知识点总结相关 文章 : ★ 高中物理知识点总结大全 ★ 高中物理会考知识点总结 ★ 高中物理知识点总结与公式归纳 ★ 高中物理基础知识总结 ★ 高中物理必修二知识点总结 ★ 高中物理选修3-4知识点总结 ★ 高三物理知识点归纳总结 ★ 高中物理必修二知识点总结(曲线运动) ★ 高一物理知识点归纳大全 ★ 高中物理必修二知识点总结(期末必备) var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?8a6b92a28ca051cd1a9f6beca8dce12e"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中物理选修3-5知识点总结

大多数高中生对物理都有点畏惧,但是物理是理科生高考必考的科目,是必须要学好一门课程,那么选修3-5的物理课本有哪些重要的知识点呢?下面是我为大家整理的关于高中物理选修3-5知识点 总结 ,希望对您有所帮助。欢迎大家阅读参考学习! ▼▼目录▼▼ 高中物理选修3-5知识 选修3-5物理知识点 高中物理重点知识 高中物理选修3-5知识 一、动量守恒定律 1、 动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。(碰撞、爆炸、反冲) 注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。 2、动量守恒定律的表达式 m1v1+m2v2=m1v1/+m2v2/ (规定正方向) △p1=-△p2/ 3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。必须注意区别总动量守恒与某一方向动量守恒。 4、碰撞 (1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒, ; (2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒, ;动能守恒, ; 特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度 ,vB= . 特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度) (3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。 5、人船模型--两个原来静止的物体(人和船)发生相互作用时,不受 其它 外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系) 二、量子理论的建立 黑体和黑体辐射 1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hν。h为普朗克常数(6.63×10-34J.S) 2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。(普朗克的能量子理论很好的解释了这一现象) >>> 选修3-5物理知识点 一、光电效应 光子说 光电效应方程 1、光电效应(表明光子具有能量) (1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。(实验图在课本) (2)光电效应的研究结果: 新教材:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压: ;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。 老教材:①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应;②光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大;③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 (3)光电管的玻璃泡的内半壁涂有碱金属作为阴极K(与电源负极相连),是因为碱金属有较小的逸出功。 2、光子说:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子被成为光子。 3、光电效应方程:EK = h - WO (掌握Ek/Uc-ν图象的物理意义)同时,h 截止 = WO(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。) 二、康普顿效应(表明光子具有动量) 1、1918-1922年康普顿(美)在研究石墨对X射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象叫光的散射。 2、在光的散射过程中,有些散射光的波长比入射光的波长略大,这种现象叫康普顿效应。 3、光子的动量: p=h/λ 三、光的波粒二象性 物质波 概率波 不确定关系 1、光的波粒二象性:干涉、衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子,由于光既有波动性,又有粒子性,只能认为光具有波粒二象性。但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。(P41 电子干涉条纹对概率波的验证) 2、光子的能量E=hν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量--频率ν和波长λ。由以上两式和波速公式c=λν还可以得出:E = p c。 3、物质波:1924年德布罗意(法)提出,实物粒子和光子一样具有波动性,任何一个运动着的物体都有一种与之对应的波,波长λ=h / p,这种波叫物质波,也叫德布罗意波。(P38 电子的衍射图样;电子显微镜的分辨率为何远远高于光学显微镜) 4、概率波:从光子的概念上看,光波是一种概率波。 5、不确定关系: ,△x表示粒子位置的不确定量,△p表示粒子在x方向上的动量的不确定量。 (为何粒子位置的不确定量△x越小,粒子动量的不确定量△p越大,用单缝衍射进行解释? P43 图) >>> 高中物理重点知识 力 力是物体间的相互作用 1.力的国际单位是牛顿,用N表示; 2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3.力的示意图:用一个带箭头的线段表示力的方向; 4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等; 重力:由于地球对物体的吸引而使物体受到的力; a.重力不是万有引力而是万有引力的一个分力; b.重力的方向总是竖直向下的(垂直于水平面向下) c.测量重力的仪器是弹簧秤; d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; 弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; b.弹力包括:支持力、压力、推力、拉力等等; c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; d.在弹性限度内弹力跟形变量成正比;F=Kx 摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力; d.静摩擦力的大小等于使物体发生相对运动趋势的外力; 合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; a.合力与分力的作用效果相同; b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; c.合力大于或等于二分力之差,小于或等于二分力之和; d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); >>> 高中物理选修3-5知识点总结相关 文章 : ★ 高中物理选修知识点2021 ★ 高二物理必修五知识点 ★ 高二物理必修三知识点总结 ★ 高中物理动量守恒定律知识点总结 ★ 高中物理动量守恒定律重要知识点 ★ 高二物理必修三第一章知识点 ★ 高考物理必考知识点总结 ★ 高三物理必修三知识点总结 ★ 高中物理教育工作述职总结最新范文5篇 ★ 高二物理选修知识点重点梳理 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?fff14745aca9358ff875ff9aca1296b3"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中物理会考知识点大总结

高中物理会考知识点大总结   高中物理会考,考生复习时,要根据会考考试大纲,理解每个概念规律的物理意义,对每个考点的要求级别A、B、C要清楚,弄懂上面的考题,做好最近的两套会考题。下文为大家总结高中物理会考知识点,欢迎阅读~   第1章力   一、力:力是物体间的相互作用。   1、力的国际单位是牛顿,用N表示;   2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;   3、力的示意图:用一个带箭头的线段表示力的方向;   4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;   (1)重力:由于地球对物体的吸引而使物体受到的力;   (A)重力不是万有引力而是万有引力的一个分力;   (B)重力的方向总是竖直向下的(垂直于水平面向下)   (C)测量重力的仪器是弹簧秤;   (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;   (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;   (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;   (B)弹力包括:支持力、压力、推力、拉力等等;   (C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;   (D)在弹性限度内弹力跟形变量成正比;F=Kx   (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;   (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;   (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;   (C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;   (D)静摩擦力的大小等于使物体发生相对运动趋势的外力;   (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;   (A)合力与分力的作用效果相同;   (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;   (C)合力大于或等于二分力之差,小于或等于二分力之和;   (D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);   二、矢量:既有大小又有方向的物理量。   如:力、位移、速度、加速度、动量、冲量   标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量   三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;   1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;   2、在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;   3、处于平衡状态的物体在任意两个相互垂直方向的合力为零;   第2章直线运动   一、机械运动:一物体相对其它物体的位置变化,叫机械运动;   1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);   2、质点:只考虑物体的质量、不考虑其大小、形状的物体;   (1)质点是一理想化模型;   (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;   如:研究地球绕太阳运动,火车从北京到上海;   3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;   如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;   4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;   (1)位移为零、路程不一定为零;路程为零,位移一定为零;   (2)只有当质点作单向直线运动时,质点的位移才等于路程;   (3)位移的国际单位是米,用m表示   5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;   (1)匀速直线运动的位移图像是一条与横轴平行的直线;   (2)匀变速直线运动的位移图像是一条倾斜直线;   (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;   6、速度是表示质点运动快慢的物理量;   (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;   (2)速率只表示速度的大小,是标量;   7、加速度:是描述物体速度变化快慢的物理量;   (1)加速度的定义式:a=vt-v0/t   (2)加速度的大小与物体速度大小无关;   (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;   (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;   (5)加速度是矢量,加速度的方向和速度变化方向相同;   (6)加速度的国际单位是m/s2   二、匀变速直线运动的规律:   1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at   注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;   (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;   (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;   2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at   注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;   3、推论:2as=vt2-v02   4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=aT2   5、初速度为零的匀加速直线运动:前1秒,前2秒,位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒的位移与时间的关系是:位移之比等于奇数比。   三、自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;   1、位移公式:h=1/2gt2   2、速度公式:vt=gt   3、推论:2gh=vt2   第3章牛顿定律   一、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。   1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;   2、力是该变物体速度的原因;   3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)   4、力是产生加速度的原因;   二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。   1、一切物体都有惯性;   2、惯性的大小由物体的质量唯一决定;   3、惯性是描述物体运动状态改变难易的物理量;   三、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。   1、数学表达式:a=F合/m;   2、加速度随力的产生而产生、变化而变化、消失而消失;   3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。   4、力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;   四、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;   1、作用力和反作用力同时产生、同时变化、同时消失;   2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。   第4章曲线运动 、万有引力定律   一、曲线运动:质点的运动轨迹是曲线的运动;   1、曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向   2、、质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上,且轨迹向其受力方向偏折。   3、曲线运动的特点:   4、曲线运动一定是变速运动;   5、曲线运动的加速度(合外力)与其速度方向不在同一条直线上;   6、力的作用:   (1)力的方向与运动方向一致时,力改变速度的大小;   (2)力的方向与运动方向垂直时,力改变速度的方向;   (3)力的方向与速度方向既不垂直,又不平行时,力既搞变速度的大小又改变速度的方向;   二、运动的合成和分解:   1、判断和运动的方法:物体实际所作的运动是合运动   2、合运动与分运动的等时性:合运动与各分运动所用时间始终相等;   3、合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;   三、平抛运动:被水平抛出的物体在在重力作用下所作的运动叫平抛运动;   1、平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;   2、水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;   3、求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;   四、匀速圆周运动:质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动;   1、线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;   2、角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t   3、角速度、线速度、周期、频率间的关系:   (1)v=2πr/T; (2) ω=2π/T; (3)V=ωr; (4)、f=1/T;   4、向心力:   (1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。   (2)方向:总是指向圆心,与速度方向垂直。   (3)特点:①只改变速度方向,不改变速度大小②是根据作用效果命名的。   (4)计算公式:F向=mv2/r=mω2r   5、向心加速度:a向= v/r=ωr   五、开普勒的三大定律:   1、开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;   说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;   2、开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;   3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;公式:R3/T2=K;   说明:(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;   (2)当把行星的轨迹视为圆时,R表示愿的半径;   (3)该公式亦适用与其它天体,如绕地球运动的卫星;   六、万有引力定律:自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比.   1、计算公式:F=GMm/r2   2、解决天体运动问题的思路:   (1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;   (2)应用在地球表面的物体万有引力等于重力;   (3)如果要求密度,则用m=ρV,V=4πR3/3

高中物理力学知识点全面总结

力(常见的力、力的合成与分解)1)常见的力1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)5.万有引力F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)6.静电力F=kQ1Q2/r2(k=9.0×109Nm2/C2,方向在它们的连线上)7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)注:(1)劲度系数k由弹簧自身决定;(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;(3)fm略大于μFN,一般视为fm≈μFN;(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力与洛仑兹力方向均用左手定则判定。2)力的合成与分解1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高中物理知识点全总结

复习建议:1、高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中。力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等。⑤⑥解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型。解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律)。后两种方法由于只要考虑初、末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的。电磁学的重点是:①电场的性质;②电路的分析、设计与计算;③带电粒子在电场、磁场中的运动;④电磁感应现象中的力的问题、能量问题等等。2、热学、光学、原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择、实验的形式出现。但绝对不能认为这部分内容分数少而不重视,正因为内容少、规律少,这部分的得分率应该是很高的。

高中物理知识点归纳

高中物理知识点归纳1   1.气体的状态参量:   温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,   热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}   体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL   压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)   2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大   3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}   注:   (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;   (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。 高中物理知识点归纳2   1.光本性学说的发展简史   (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.   (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.   2、光的干涉   光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。   2.干涉区域内产生的亮、暗纹   ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)   ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)   相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。   3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。   ⑴各种不同形状的障碍物都能使光发生衍射。   ⑵发生明显衍射的"条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)   ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。   4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。   5.光的电磁说   ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)   ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。   各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。   ⑶红外线、紫外线、X射线的主要性质及其应用举例。   种类产生主要性质应用举例   红外线一切物体都能发出热效应遥感、遥控、加热   紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2   X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 高中物理知识点归纳3   1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)   2.互成角度力的合成:   F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2   3.合力大小范围:|F1-F2|≤F≤|F1+F2|   4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)   注:   (1)力(矢量)的合成与分解遵循平行四边形定则;   (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;   (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;   (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;   (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 高中物理知识点归纳4   运动的描述   1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。   2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。   3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。   力   1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。   2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。   3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。   多力问题状态揭,正交分解来解决,三角函数能化解。   4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。   牛顿运动定律   1.F等ma,牛顿二定律,产生加速度,原因就是力。   合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。   2.N、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。   曲线运动、万有引力   1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。   2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。   3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。   机械能与能量   1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。   2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。   3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。   电场〖选修3--1〗   1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。   2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。   电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。   3.场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。   4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。   恒定电流〖选修3-1〗   1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。   正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。   2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s等电阻。   电流做功U I t ,电热I平方R t 。电功率,W比t,电压乘电流也是。   3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。   4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。   路端电压内压降,和就等电动势,除于总阻电流是。   磁场〖选修3-1〗   1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。   2.F比I l是场强,φ等B S磁通量,磁通密度φ比S,磁场强度之名异。   3.BIL安培力,相互垂直要注意。   4.洛仑兹力安培力,力往左甩别忘记。   电磁感应〖选修3-2〗   1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。   2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。   3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。   交流电〖选修3-2〗   1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。   中性面计时是正弦,平行面计时是余弦。   2.NBSω是最大值,有效值用热量来计算。   3.变压器供交流用,恒定电流不能用。   理想变压器,初级U I值,次级U I值,相等是原理。   电压之比值,正比匝数比;电流之比值,反比匝数比。   运用变压比,若求某匝数,化为匝伏比,方便地算出。   远距输电用,升压降流送,否则耗损大,用户后降压。   气态方程〖选修3-3〗   研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。   压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。   热力学定律   1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。   正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。   2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。   机械振动〖选修3--4〗   1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,大小正比于位移,平衡位置u大极。   2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。   到质心摆长行,单摆具有等时性。   3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

高中物理知识点归纳总结

  想要了解高中物理的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“高中物理知识点归纳总结”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!   高中物理知识点归纳总结   1.大的物体不一定不能看成质点,小的物体不一定能看成质点。   2.平动的物体不一定能看成质点,转动的物体不一定不能看成质点。   3.参考系不一定是不动的,只是假定为不动的物体。   4.选择不同的参考系物体运动情况可能不同,但也可能相同。   5.在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。   6.忽视位移的矢量性,只强调大小而忽视方向。   7.物体做直线运动时,位移的大小不一定等于路程。   8.位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。   9.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。   10.使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。   11.使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。   12.“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。   13.着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。   14.平均速度不是速度的平均。   15.平均速率不是平均速度的大小。   16.物体的速度大,其加速度不一定大。   17.物体的速度为零时,其加速度不一定为零。   18.物体的速度变化大,其加速度不一定大。   19.加速度的正、负仅表示方向,不表示大小。   20.物体的加速度为负值,物体不一定做减速运动。   21.物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。   22.物体的速度大小不变时,加速度不一定为零。   23.物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。   24.位移图象不是物体的运动轨迹。   25.解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。   26.图象是曲线的不表示物体做曲线运动。   27.由图象读取某个物理量时,应搞清这个量的大小和方向,特别要注意方向。   28.v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。   29.人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。   30.严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。   31.自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。   32.自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。   33.自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。   34.自由落体加速度通常可取9.8m/s2或10m/s2,但并不是不变的,它随纬度和海拔高度的变化而变化。   35.四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。   36.匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。   37.常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。   38.汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。   39.找准追及问题的临界条件,如位移关系、速度相等等。   40.用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。   拓展阅读:怎么学好高中物理   1、预习   高中物理与初中有差异较大,无论是从知识要求的深度和广度,还是课堂的容量上,都需要我们在上课之前对所学内容有所了解。因此,在每次上课前,花一定时间(时间长度没有限制)将课堂上所学的知识预先浏览一下,熟悉课堂上所要学习的知识,明确课堂的重点,找出自己理解上的难点,从而做到有的放矢地去听课;另外,也能培养自学能力和独立思考能力。   2、上课   上课是获取知识的重要环节,也是学习的中心环节。上课时应该注意三个问题:   (1)主动听课   在教学活动中,应以教师为主导学生为主体,学生才是学习的“主人”,如果学生能够根据老师讲课的程序积极主动地思考,在理解基础知识的基础上,对难点和重点进行推理性的思维和接受,以主动的态度去听课,积极地进行思考,努力参与到老师的课堂教学中去,那么,学习效率一定会很高。   (2)注意课堂要点   要听好课,我们应善于抓课堂的要点,上课时,我们应有意识地去注意老师讲课的重点内容。有经验的老师,总是将主要精力放在突出重点、突破难点上,进行到重要的地方,或放慢速度,重点强调;或板书纲目,仔细讲解等;对于难点,就需要我们在预习时做到心中有数,到时候注意专心听讲。总之,我们要做到“会听课”。   (3)做到听课和做笔记两不误   有的同学一上课就不停的记不停的写,结果一节课下来一点都没有听到,不知道这节课老师讲了些什么?那么,应该如何处理好听课和做笔记的关系呢?我认为,上课时,应该把主要精力放在听课上,而不是做笔记上,笔记中要记的内容应该是:课堂重点、课堂难点、课堂疑点、补充结论或例题等课本上没有的内容,并不是教师的所有板书内容。总之,我们应该有摘要、有重点地记。有的同学从来就不做笔记,这也不好,特别是对于高中物理学习是不利的。因为我们的记忆是有限的,老师讲的内容转瞬即逝,我们对知识的记忆随时间延长会逐渐遗忘,没有做笔记我们以后复习有些内容就找不到。   3、复习   有的同学只要老师一布置了作业就会马上去做,觉得完成了作业,就完成了学习任务,就掌握了知识,结果是一边做作业,一边翻课本、笔记,到头来知识没有掌握。如果能够静下心来将每课堂课所学的内容进行认真思考、回顾,在此基础上再去完成作业就会起到事半功倍的效果。心理学研究表明:知识在学习最初的两三天内遗忘是最快的,也是最多的,所以,我们只有对知识进行及时的复习才能减少遗忘达到巩固知识的目的。   4、作业   在复习的基础上,我们再做作业。做作业的目的有两个:一是巩固课堂所学的内容;二是运用课上所学来知识解决一些具体的实际问题。因此,做作业时,应该认真对待,独立完成,积极思考,注意总结。应该明确“做题的目的是提高对知识的掌握水平”,切忌“为了做题而做题”。   高中物理主观题怎么拿高分   1、简洁文字说明与方程式相结合   有的考生解题是从头到尾只有方程,没有必要的文字说明,方程中使用的符号表示不清;有的考生则相反,文字表达太长,像写作文,关键方程没有列出,既耽误时间,又占据了答卷的空间。   2、尽量用常规方法,使用通用符号   有些考生解题时不从常规方法入手,而是为贪图简单、便利用一些特殊奇怪的方法,虽然是正确的,但阅卷老师短时间不易看懂。同样,使用一些不常用的符号来表达一些特别的物理量,阅卷老师也可能会看错。   3、分步列式,不要用综合或连等式   考生都清楚:高考评分标准是分步骤给分的,写出每一个过程对应的方程式,只要说明、表达正确都可以得相应的分数;有些学生喜欢写出一个综合式,或是连等式,而评分原则是“综合式找错”,即只要发现综合式中有一处错,全部过程都不能得分。   所以对于不会解的题,分步列式也可以得到相应的过程分,增加得分机会。   4、对复杂的数值计算题,最后结果要先解出符号表达,再代入数值进行计算。   最后结果的表达式占有一定的分值,结果表达式正确而计算过程出错,只会丢掉很少的分。若没有结果表达式又出现计算错误,失分机会很大。   5、在解题时,一定要运用物理量单位符号来规范解题   解答物理题目时,一定要采用课本规定的物理符号来表示,用到的其他符号,如:化学元素符号、数学符号等,一般采用它们在化学、数学等学科中原有的通用形式。

高中物理必修的知识点归纳

   高中物理必修知识点(一)   动量守恒定律是宏观世界和微观世界都遵守的共同规律,应用非常广泛。动量守恒定律的适用条件是相互作用的物质系统不受外力,实际上我们知道,真正满足不受外力的情况几乎是不存在的。所以,动量守恒定律应用重在“三个”选取。   动量守恒条件近似性的选取   根据动量守恒定律成立时的受力情况分以下三种:   (1)系统受到的合外力为零的情况。   (2)系统所受的外力比相互作用力(内力)小很多,以致可以忽略外力的影响。   因为动量守恒定律是针对系统而言的,它告诉我们,系统内各个物体之间尽管有内力作用,不管这些内力是什么性质的力,系统内力的冲量只能改变系统中单个物体的动量,而不能改变系统的总动量。如碰撞问题中摩擦力,碰撞过程中的重力等外力比相互作用的内力小得多且碰撞时间很小时,可忽略其力的冲量的影响,认为系统的总动量守恒。这是物理学中忽略次要因素,突出重点的常用方法。   (3)系统整体上不满足动量守恒的条件,但在某一特定方向上,系统不受外力或所受的外力远小于内力,则系统沿这一方向的分动量守恒。   在高一物理教材中,回复力是根据水平方向的弹簧振子的振动规律总结出来的,即回复力指的是使弹簧振子回到平衡位置的力亦即弹簧的弹力。这就使得学生对回复力的理解比较狭隘,且不能将它灵活应用到其它的简谐振动模式中去。因此我们在高三复习时有必要将回复力问题讲清、讲透。   一、给回复力完整的定义。   回复力是指振动物体所受的总是指向平衡位置的合外力。从此定义中让学生认识到:   1.回复力是合外力,不单纯是指某一个力。它是根据力的作用效果命名的,类似于向心力。   2.回复力的方向是“指向平衡位置”。如图作简谐   振动的单摆,受重力和绳的拉力作用,绳的拉力和重 力的法向分力的合力提供圆周运动的向心力;指向平衡位置的合外力是重力的切向分力,它提供了单摆振动的回复力。   二、加强对回复力公式的理解和应用。   简谐振动的回复力公式为F=-KX   1.式中“—”号表示回复力的方向与物体对平衡位置的`位移方向相反,亦即指向平衡位置。计算时为避免发生错误,将“—”号省去,直接判断回复力的方向。   2. 式中K是指回复力与位移成正比的比例系数,不能与弹簧的劲度系数相混淆。如上图单摆的振动中:F=mgsinα,若α<5°,有sinα=X/L,则F= mgX/L,即K=mg/L 。一般而言,弹簧振子的振动中K表示弹簧的劲度系数,但也不能一概而论。    高中物理必修知识点(二)   一、力是物体对物体的作用   1、施力物体与受力物体是同时存在、同时消失的;力是相互的。   2、力是矢量(什么叫矢量——满足平行四边形定则)。   3、力的大小、方向、作用点称为力的三要素。   4、力的图示和示意图。   5、力的分类:根据产生力的原因即根据力的性质命名有重力、弹力、分子力、电场力、磁场力等;根据力的作用效果命名即效果力如拉力、压力、向心力、回复力等。   6、力的效果:(1)加速度或改变运动状态;(2)形变。   7、力的拓展:(1)改变运动状态的原因;(2)产生加速度;(3)牛顿第二定律;(4)牛顿第三定律。   二、常见的三种力   1、重力   (1)产生:由于地球的吸引而使物体受到的力,是万有引力的一个分力。   (2)方向:竖直向下或垂直于水平面向下。   (3)大小:G=mg,可用弹簧秤测量。   两极引力=重力(向心力为零)   赤道引力=重力+向心力(方向相同)   由两极到赤道重力加速度减小,由地面到高空重力加速度减小。   (4) 作用点:重力作用点是重心,是物体各部分所受重力的合力的作用点。重心的测量方法:均匀规则几何体的重心在其几何中心,薄片物体重心用悬挂法;重心不一定在物体上。   2、弹力   (1)产生:发生弹性形变的物体恢复原状,对跟它接触并使之发生形变的另一物体产生的力的作用。   (2)产生条件:两物体接触;有弹性形变。   (3)方向:弹力的方向与物体形变的方向相反,具体情况有:轻绳的弹力方向是沿着绳收缩的方向;支持力或压力的方向垂直于接触面,指向被支撑或被压的物体;弹簧弹力方向与弹簧形变方向相反。   (4)大小:弹簧弹力大小F=kx(其它弹力由平衡条件或动力学规律求解):①K是劲度系数,由弹簧本身的性质决定。②X是相对于原长的形变量。③力与形变量成正比。   (5)作用点:接触面或重心。

高中物理的知识点总结

物理这门学科的学习,不外乎要掌握三个条件,第一个条件是基础物理公式,符号定理的掌握。第二个条件是运算能力的快速准确性,而第三个条件便是 逻辑思维 的锻炼,学生能够快速的思考问题,解决问题,有着自己的思路。下面我给大家分享一些高中物理的知识点,希望能够帮助大家,欢迎阅读! 高中物理的知识点1 力是物体间的相互作用 1.力的国际单位是牛顿,用N表示; 2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3.力的示意图:用一个带箭头的线段表示力的方向; 4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等; 重力:由于地球对物体的吸引而使物体受到的力; a.重力不是万有引力而是万有引力的一个分力; b.重力的方向总是竖直向下的(垂直于水平面向下) c.测量重力的仪器是弹簧秤; d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; 弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; b.弹力包括:支持力、压力、推力、拉力等等; c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; d.在弹性限度内弹力跟形变量成正比;F=Kx 摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力; d.静摩擦力的大小等于使物体发生相对运动趋势的外力; 合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; a.合力与分力的作用效果相同; b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; c.合力大于或等于二分力之差,小于或等于二分力之和; d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); 矢量 矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量) 标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量) 直线运动 物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零; (1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向; (2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向; (3)处于平衡状态的物体在任意两个相互垂直方向的合力为零; 高中物理的知识点2 机械运动 机械运动:一物体相对 其它 物体的位置变化。 1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止); 2.质点:只考虑物体的质量、不考虑其大小、形状的物体; (1)质点是一理想化模型; (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时; 如:研究地球绕太阳运动,火车从北京到上海; 3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段; 例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔; 4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线; (1)位移为零、路程不一定为零;路程为零,位移一定为零; (2)只有当质点作单向直线运动时,质点的位移才等于路程; (3)位移的国际单位是米,用m表示 5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移; (1)匀速直线运动的位移图像是一条与横轴平行的直线; (2)匀变速直线运动的位移图像是一条倾斜直线; (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大; 6.速度是表示质点运动快慢的物理量 (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度; (2)速率只表示速度的大小,是标量; 7.加速度:是描述物体速度变化快慢的物理量; (1)加速度的定义式:a=vt-v0/t (2)加速度的大小与物体速度大小无关; (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零; (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关; (5)加速度是矢量,加速度的方向和速度变化方向相同; (6)加速度的国际单位是m/s2 匀变速直线运动 1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at 注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值; (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均; (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均; 2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2 注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值; 3.推论:2as=vt2-v02 4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2 5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比; 高中物理的知识点3 1)常见的力 1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力) 5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同) 8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0) 9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μFN,一般视为fm≈μFN; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕; (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 4动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。 5振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。 6冲量与动量(物体的受力与动量的变化) 1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定} 4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p"′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒} 7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的动能} 8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体} 9.物体m1以v1初速度与静止的物体m2发生弹性正碰: v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2) 10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相 对子 弹相对长木块的位移} 高中物理的知识点4 质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g(从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 2质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的环绕速度和最小发射速度均为7.9km/s。 高中物理的知识点5 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+ 电流关系I总=I1=I2=I3I并=I1+I2+I3 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成(2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小。 (3)使用 方法 :机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法 电流表外接法 电压表示数:U=UR+UA电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R) 选用电路条件Rx>>RA[或Rx>(RARV)1/2]选用电路条件Rx<<(rarv)1=""2]<=""> 12.滑动变阻器在电路中的限流接法与分压接法 电压调节范围小,电路简单,功耗小。 电压调节范围大,电路复杂,功耗较大。 便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp 高中物理的知识点 总结 相关 文章 : ★ 高中物理知识点总结大全 ★ 高中物理知识点总结2020新归纳 ★ 高中物理知识点总结归纳2020 ★ 最新高中物理知识点总结 ★ 高中物理知识点总结新归纳 ★ 高中物理知识点总结 ★ 高二物理知识点总结大全 ★ 高中物理知识点小结2020 ★ 高中物理复习知识点提纲归纳总结

高中物理知识点总结

物理知识点梳理力学部分:1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系 — 冲量与动量变化的关系 — 功与能量变化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;3、基本运动类型:运动类型 受力特点 备注直线运动 所受合外力与物体速度方向在一条直线上 一般变速直线运动的受力分析匀变速直线运动 同上且所受合外力为恒力 1. 匀加速直线运动2. 匀减速直线运动曲线运动 所受合外力与物体速度方向不在一条直线上 速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动 所受合外力为恒力且与物体初速度方向垂直 运动的合成与分解匀速圆周运动 所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力) 一般圆周运动的受力特点向心力的受力分析简谐运动 所受合外力大小与位移大小成正比,方向始终指向平衡位置 回复力的受力分析4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。动量机械能的综合题:(1) 单个物体应用动量定理、动能定理或机械能守恒的题型;(2) 系统应用动量定理的题型;(3) 系统综合运用动量、能量观点的题型:① 碰撞问题;② 爆炸(反冲)问题(包括静止原子核衰变问题);③ 滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);④ 子弹射木块问题;⑤ 弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);⑥ 单摆类问题:⑦ 工件皮带问题(水平传送带,倾斜传送带);⑧ 人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);机械波的图像应用题:(1)机械波的传播方向和质点振动方向的互推;(2)依据给定状态能够画出两点间的基本波形图; (3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;(4)机械波的干涉、衍射问题及声波的多普勒效应。电磁学部分:1、 基本概念:电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速2、 基本规律:电量平分原理(电荷守恒)库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)电场力做功的特点及与电势能变化的关系电容的定义式及平行板电容器的决定式部分电路欧姆定律(适用条件)电阻定律串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)焦耳定律、电功(电功率)三个表达式的适用范围闭合电路欧姆定律基本电路的动态分析(串反并同)电场线(磁感线)的特点等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)电动机的三个功率(输入功率、损耗功率、输出功率)电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)安培定则、左手定则、楞次定律(三条表述)、右手定则电磁感应想象的判定条件感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线通电自感现象和断电自感现象正弦交流电的产生原理电阻、感抗、容抗对交变电流的作用变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)3、 常见仪器:示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。4、 实验部分:(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);(7)用多用电表测电阻及黑箱问题;(8)练习使用示波器;(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)5、 常见题型:电场中移动电荷时的功能关系;一条直线上三个点电荷的平衡问题;带电粒子在匀强电场中的加速和偏转(示波器问题);全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);通电导线在匀强磁场中的平衡问题;带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何知识求解;在有界磁场中的运动时间);闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);带电粒子在复合场中的运动(正交、平行两种情况):①. 重力场、匀强电场的复合场;②. 重力场、匀强磁场的复合场;③. 匀强电场、匀强磁场的复合场;④. 三场合一;复合场中的摆类问题(利用等效法处理:类单摆、类竖直面内圆周运动);LC振荡电路的有关问题;

高中物理知识点大全

  高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。接下来是我为大家整理的高中物理知识点大全,希望大家喜欢!    高中物理知识点大全一   力学的基本规律之:匀变速直线运动的基本规律(12个方程);   三力共点平衡的特点;   牛顿运动定律(牛顿第一、第二、第三定律);   力学的基本规律之:万有引力定律;   天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);   力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);   动量守恒定律(四类守恒条件、方程、应用过程);   功能基本关系(功是能量转化的量度)   力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);   功能原理(非重力做功与物体机械能变化之间的关系);   力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);   简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;   简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。    高中物理知识点大全二   1.超重现象   定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。   产生原因:物体具有竖直向上的加速度。   2.失重现象   定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。   产生原因:物体具有竖直向下的加速度。   3.完全失重现象   定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。   产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。   【超重和失重就是物体的重量增加和减小吗?】   答:不是。   只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。   注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。   另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。    高中物理知识点大全三   一、三种产生电荷的方式:   1、摩擦起电:   (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;   (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;   (3)实质:电子从一物体转移到另一物体;   2、接触起电:   (1)实质:电荷从一物体移到另一物体;   (2)两个完全相同的物体相互接触后电荷平分;   (3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;   3、感应起电:把电荷移近不带电的导体,可以使导体带电;   (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;   (2)实质:使导体的电荷从一部分移到另一部分;   (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;   4、电荷的基本性质:能吸引轻小物体;   二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。   三、元电荷:一个电子所带的电荷叫元电荷,用e表示。   1、e=1.6×10-19c;   2、一个质子所带电荷亦等于元电荷;   3、任何带电物体所带电荷都是元电荷的整数倍;   四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,   1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)   2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)   3、库仑力不是万有引力;   五、电场:电场是使点电荷之间产生静电力的一种物质。   1、只要有电荷存在,在电荷周围就一定存在电场;   2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质   六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;   1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;   2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)   3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2   七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题 方法 :分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;   八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。   1、电场线不是客观存在的线;   2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线.DAT   (1)只有一个正电荷:电场线起于正电荷终于无穷远;   (2)只有一个负电荷:起于无穷远,终于负电荷;   (3)既有正电荷又有负电荷:起于正电荷终于负电荷;   3、电场线的作用:   1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);   2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;   4、电场线的特点:   1、电场线不是封闭曲线;2、同一电场中的电场线不向交;   九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;   1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场   十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。   1、定义式:UAB=WAB/q;2、电场力作的功与路径无关;   3、电势差又命电压,国际单位是伏特;   十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;   1、电势具有相对性,和零势面的选择有关;2、电势是标量,单位是伏特V;   3、电势差和电势间的关系:UAB=φA-φB;4、电势沿电场线的方向降低;   时,电场力要作功,则两点电势差不为零,就不是等势面;   4、相同电荷在同一等势面的任意位置,电势能相同;   原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;   5、电场线总是由电势高的地方指向电势低的地方;   6、等势面的画法:相另等势面间的距离相等;   十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。   1、数学表达式:U=Ed;   2、该公式的使适用条件是,仅仅适用于匀强电场;   3、d是两等势面间的垂直距离;   十三、电容器:储存电荷(电场能)的装置。   1、结构:由两个彼此绝缘的金属导体组成;   2、最常见的电容器:平行板电容器;   十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。   1、定义式:C=Q/U;   2、电容是表示电容器储存电荷本领强弱的物理量;   3、国际单位:法拉简称:法,用F表示   4、电容器的电容是电容器的属性,与Q、U无关;   十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×109N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)   1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;   2、当电容器未与电路相连通时电容器两板所带电荷量不变;   十六、带电粒子的加速:   1、条件:带电粒子运动方向和场强方向垂直,忽略重力;   2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;   3、推论:当初速度为零时,Uq=1/2mvt2;   4、使带电粒子速度变大的电场又名加速电场;    高中物理知识点大全四   1、热现象:与温度有关的现象叫做热现象。   2、温度:物体的冷热程度。   3、温度计:要准确地判断或测量温度就要使用的专用测量工具。   4、温标:要测量物体的温度,首先需要确立一个标准,这个标准叫做温标。   (1)摄氏温标:单位:摄氏度,符号℃,摄氏温标规定,在标准大气压下,冰水混合物的温度为0℃;沸水的温度为100℃。中间100等分,每一等分表示1℃。   (a)如摄氏温度用t表示:t=25℃   (b)摄氏度的符号为℃,如34℃   (c)读法:37℃,读作37摄氏度;–4.7℃读作:负4.7摄氏度或零下4.7摄氏度。   (2)热力学温标:在国际单位之中,采用热力学温标(又称开氏温标)。单位:开尔文,符号:K。在标准大气压下,冰水混合物的温度为273K。   热力学温度T与摄氏温度t的换算关系:T=(t+273)K。0K是自然界的低温极限,只能无限接近永远达不到。   (3)华氏温标:在标准大气压下,冰的熔点为32℉,水的沸点为212℉,中间180等分,每一等分表示1℉。华氏温度F与摄氏温度t的换算关系:F=5t+32   5、温度计   (1)常用温度计:构造:温度计由内径细而均匀的玻璃外壳、玻璃泡、液面、刻度等几部分组成。原理:液体温度计是根据液体热胀冷缩的性质制成的。常用温度计内的液体有水银、酒精、煤油等。   6、正确使用温度计   (1)先观察它的测量范围、最小刻度、零刻度的位置。实验温度计的范围为-20℃-110℃,最小刻度为1℃。体温温度计的范围为35℃-42℃,最小刻度为0.1℃。   (2)估计待测物的温度,选用合适的温度计。   (3)温度及的玻璃泡要与待测物充分接触(但不能接触容器底与容器侧面)。   (4)待液面稳定后,才能读数。(读数时温度及不能离开待测物)。 高中物理知识点大全相关 文章 : 1. 最新高中物理知识点总结 2. 2019年高中物理知识点整理大全 3. 高中物理知识点总结 4. 高一物理知识点口诀汇总 5. 高中物理 知识点 6. 高考物理知识点大全集锦 7. 高一物理知识点笔记汇总 8. 高中物理知识点和公式 9. 高中物理必背知识点知识归纳 10. 高中物理知识点与学习方法

有哪位好心的去整理一下高中物理的物理学史考点啊!!

这个只要看书就能解决的,你把屋里课本拿出来,逐个字的读,然后自己几下你没记住的物理学是知识点就可以了,对自己多点耐心,其实物理学是还是很好掌握的.如果你不像我将要进行高考,你也可以去买一本物理学史的书来看,就跟小说一样嘛!

高中物理学史的内容,第九题选什么?多选

我认为是答案是BCD。

高中物理学史问题,解释AB选项即可

A。卢瑟福原子模型估计的是原子核大小,汤姆逊模型估计的是原子大小B、基态到第一激发态只有一种能级差,也只有一种频率光子可以吸收。

高中物理学史的,第一题选什么?

答案选A没错很高兴为您解答,,不懂的来问我。。谢谢!!

高中物理问题

阶段第一阶段的绳子没有理顺拉直绳子,绳子摩擦的引力完全失重的状态是有限的,只有通过重力绳

高中物理选修3-2有哪些物理学史比较重要?

从考试来说,基本不考3-2的物理学史,只要基本记得法拉第电磁理论就可以了

谁有高中物理学史

物理学史考点总结1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。 18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。 19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。 20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。 21、托马斯•杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉) 22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。 23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。 24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。 25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。 26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。 27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。 28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。 29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。 30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。 31、玛丽•居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。 32、约里奥•居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素。

求高中物理课本中所有的物理学家对应的供献、事,一句话左右的,出现在选择题里的

1

高中物理学史实有些什么?

高中课本上都有,看看书就知道了,特别是近代物理,要花点时间记住.如:汤姆生发现电子,卢瑟福发现质子,查德威克发现中子等17世纪对光的认识明确地形成了两种学说,一种是牛顿主张的微粒说,认为光是从光源发出的一种物质微粒另一种是惠更斯提出的波动说,认为光是在空间传播的某种波。 爱因斯坦提出光子说,普朗克提出量子论

有哪位好心的去整理一下高中物理的物理学史考点啊!!

三、电磁学:1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。(转化)2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。3.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。4.1911年荷兰科学家昂尼斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。5.1841~1842年 焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。6.1820年,丹麦物理学家奥斯特发现电流可以使周围的磁针偏转的效应,称为电流的磁效应。安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥;同时提出了安培分子电流假说。荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。7.汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。1932年美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。8.1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;1834年楞次发表确定感应电流方向的定律。9.1832年亨利发现自感现象,即在研究感应电流的同时,发现因电流变化而在电路本身引起感应电动势的现象。日光灯的工作原理即为其应用之一。双绕线法制精密电阻为消除其影响应用之一。10.1864年英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场的基本方程组,后称为麦克斯韦方程组,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波(注意第二册P243的图)。1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。四、光学:1.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。2.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)3.1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。4.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,1887年由赫兹证实。1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。1900年,德国物理学家普朗克为解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律。(量子力学的说明在第三册P56)1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)光具有波粒二象性,光是电磁波、概率波、横波(光的偏振说明光是一种横波)。光的电磁说中要注意电磁波谱(第三册P31),还要注意原子光谱(涉及光谱分析第三册P50)5.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。(明确其局限性)6.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。(第三册P54)五、原子物理学:1.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。2.1909年-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变的快慢(半衰期)与原子所处的物理和化学状态无关。4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。5.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年 在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。6.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。7.现代粒子物理:1932年发现了正电子,1964年提出夸克模型;

谁有整理的比较全的高中物理学史?

汗,我有,是先前做课题研究的,从公元前到二十世纪的,有点大,哥是手机,发了就没流量了。。。。。。

高中物理学史

什么情况???

求高中物理学史,希望能对各位科学家的成就及所做的实验等进行解说!!

啥是高中物理学史,是经典物理学史么?

高中物理学史 有耐心的进

fda

高中物理学史

新课标高考高中物理学史必修部分:(必修1、必修2 )一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。四、热学(3-3选做):29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。32、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K热力学第三定律:热力学零度不可达到。五、波动学(3-4选做):33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。39、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。六、光学(3-4选做):40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。41、1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象。42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。七、相对论(3-4选做):49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;53、激光——被誉为20世纪的“世纪之光”;八、波粒二象性(3-5选做):54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。十、原子物理学(3-5选做):59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.物理学史专题★伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)经典题目伽利略根据实验证实了力是使物体运动的原因(错)伽利略认为力是维持物体运动的原因(错)伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)★胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)★牛顿(英国物理学家)对物理学的贡献①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对)★卡文迪许贡献:测量了万有引力常量典型题目牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)★亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)★开普勒(德国天文学家)对物理学的贡献 开普勒三定律经典题目开普勒发现了万有引力定律和行星运动规律(错)托勒密(古希腊科学家)观点:发展和完善了地心说哥白尼(波兰天文学家) 观点:日心说第谷(丹麦天文学家) 贡献:测量天体的运动威廉?赫歇耳(英国天文学家)贡献:用望远镜发现了太阳系的第七颗行星——天王星汤苞(美国天文学家)贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星泰勒斯(古希腊)贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体★库仑(法国物理学家)贡献:发现了库仑定律——标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)库仑发现了电流的磁效应(错)富兰克林(美国物理学家)贡献:①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理②统一了天电和地电密立根 贡献:密立根油滴实验——测定元电荷昂纳斯(荷兰物理学家) 发现超导欧姆: 贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家)电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)★法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)法拉第发现了磁场产生电流的条件和规律(对)奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)法拉第发现了磁生电的方法和规律(对)★安培(法国物理学家)①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用(对)安培提出了磁场对运动电荷的作用力公式(错)狄拉克(英国物理学家)贡献:预言磁单极必定存在(至今都没有发现)★洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)阿斯顿贡献:①发现了质谱仪 ②发现非放射性元素的同位素劳伦斯(美国) 发现了回旋加速器★楞次 发现了楞次定律(判断感应电流的方向)★汤姆生(英国物理学家)贡献:①发现了电子(揭示了原子具有复杂的结构)②建立了原子的模型——枣糕模型经典题目汤姆生通过对阴极射线的研究发现了电子(对)★卢瑟福(英国物理学家)指导助手进行了α粒子散射实验(记住实验现象)提出了原子的核式结构(记住内容)发现了质子经典题目汤姆生提出原子的核式结构学说,后来卢瑟福用 粒子散射实验给予了验证(错)卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)卢瑟福的a粒子散射实验可以估算原子核的大小(对)卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)★波尔(丹麦物理学家)贡献:波尔原子模型(很好的解释了氢原子光谱)经典题目玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)玻尔理论是依据a粒子散射实验分析得出的(错)玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)★贝克勒尔(法国物理学家)发现天然放射现象(揭示了原子核具有复杂结构)经典题目天然放射性是贝克勒尔最先发现的(对)贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)★伦琴 贡献:发现了伦琴射线(X射线)★查德威克 贡献:发现了中子★约里奥u2022居里和伊丽芙u2022居里夫妇①发现了放射性同位素②发现了正电子经典题目居里夫妇用α粒子轰击铝箔时发现电子(错)约里奥u2022居里夫妇用α粒子轰击铝箔时发现正电子(对)★普朗克 贡献:量子论
 1 2 3 4 5 6  下一页  尾页