物理

阅读 / 问答 / 标签

大学物理实验《用常用方法测量长度》实验报告册怎么写

一、题目 二、实验目的 三、实验仪器 四、实验内容 五、数据表格 六、注意事项 七、实验总结 注意事项和实验总结根据自己的实验老师要求可写可不写,对于实验中的某些图一定不能省事不画

求一份大学物理实验报告《光电效应测普朗克常数》?

实验目的1、了解光电效应及其规律,理解爱因斯坦光电方程的物理意义。2、 用减速电位测量光电子初动能,求普朗克常数。 实验原理 光电效应金属在光的照射下释放出电子的现象叫做光电效应。根据爱因斯坦的“光量子概念”,每一个光子具有能量 ,当光照射到金属上时,其能量被电子吸收,一部分耗于电子的逸出功 ,另一部分转换为电子逸出金属表面后的动能。由能量守恒定律得电子的初动能与入射光频率呈线性关系,与入射光的强度无关。任何金属都存在一截止频率 , , 又称红限,当入射光的频率小于 时,不论光的强度如何,都不产生光电效应。此外,光电流大小(即电子数目)只决定于光的强度。实验内容1. 手动测量光电管的U-I特性曲线。(1)将光源、光电管暗盒、微电流放大器等安放在适当位置,光源与光电管的距离取30~50cm,注意两者光路共轴。暂不接线。接通微电流测量放大器电源,预热10~20分钟,进行微电流测量放大器的调零和校准。方法是:“校准、调零、测量”开关置于“调零校准”档,置“电流调节”开关于短路档,调节“调零”旋钮使电流表指零,然后“电流调节”拨向“校准”,调“校准”旋钮使电流表指100,调零和校准可反复调整,使之都能满足要求。(2)用电缆将光电管阴级K与微电流放大器后面板上的“电流输入”相连,用双芯导线将光电管阳极与地连接到后面板的“电压输出”插座上。点亮汞灯。(3) 测量光电管的暗电流.用遮光罩盖住光电管暗盒窗口,将“调零、校准、测量”开关置于“测量”,测量放大器的电压选择置于“直流”,电流调节置 或 ,旋动“电压调节”旋钮,读出-3~+3V间若干电压下相应的电流值,即光电管暗电流。(4)测不同波长的单色光照射时光电管的U-I特性曲线。取下遮光罩,换上滤色片,从-3V开始逐步改变光电管阳极电压,记录相应的光电流。逐次换上5个滤色片,测出不同波长下的U-I曲线,在电流变化明显的地方多测几点,以便准确定出 。2. 用X-Y函数记录仪自动描绘U-I特性曲线。将记录仪的X、Y输入分别与微电流放大器后面板上的X、Y输出相连,将“X量程”置100mV/cm,“Y量程”置1mV/cm,保持手动测试时的实验条件,每换上一个滤色片后,将放大器的“电压选择”开关置“扫描”,自动描绘U-I特性曲线。自动记录时必须密切注视记录笔的移动情况,及时关掉“Y输入”开关或者令记录笔抬起,以免记录仪过载。3. 用微机测绘U-I特性曲线,并求普朗克常数。、(1)在微机的ISA总线插槽上插入PC-XY接口卡,安装电脑X-Y记录仪软件和光电效应测普朗克常数软件。(2)用多芯接口电缆将测量放大器后面板PX-XY接口输出与微机PC-XY接口卡相连。(3)参照GD-Ⅳ微机光电效应实验仪使用说明书附录进行X、Y调零,用电脑X-Y记录仪软件采集5种波长下的U-I特性曲线存成数拓文件(.XYD)。(4)用光电效应测普朗克常数分析软件,测量普朗克常数,并计算实验误差(相对h的公认值),并打印。软件使用方法可参看该软件的“在线帮助”或者仪器使用说明书。 注意事项1. 微机PC-XY接口卡上一定不要接其他外设,否则会损坏主机和外设。2.汞灯熄掉后要等几分钟才能再点燃,所以一般不要轻易关汞灯。

大学物理光栅常数实验报告绿光如何处理

在光栅常数测定的实验中,当平行光未能严格垂直入射光栅时,将产生误差,用对称测盘法只能消除一阶误差,仍存在二阶误差,我们根据推导,采取新的数据处理方式以消除二阶实验误差。1.1 光栅常数测定实验误差分析在光栅光谱和光栅常数测定实验中,我们需要调节光栅平面与分光计转抽平行,且垂直准直管,固定载物台,但事实上,我们很做到,因此导致了平行光不能严格垂直照射光栅平面,产生误差,虽然分光计的对称测盘可以消除一阶误差,但当入射角?较大时,二阶误差也会造成不可忽略的误差。 当平行光垂直入射时,光栅方程为: sin?k?k?/d (1)如上图,当平行光与光栅平面法线成θ角斜入射时的光栅方程为:sin(?k??)?sin??k?/d (2)2012大学生物理实验研究论文sin(?k"??)?sin??k?/d (3)将方程(2)展开并整理,得k?/d?sin(?k??)?sin??sin?k(1?tan因此,平行光不垂直入射引起波长测量的相对误为????ksin??2sin2)22?1?cos?cos??其相对误差同样由人射角?决定,与衍射级次与(1)式比较可知,由于人射角θ不等于零而产生了k和衍射角?k无关,而且对不同光栅,二阶误差误两项误差,如果?很小,第一项??差都一样。 tan(k)sin??tan(k)?可视为一阶误差,221.3数据处理当平行光与光栅平面法线成θ角斜入射时的光栅方程为:第二项2sin???/2可视为二阶误差, 如果?较大,则引起的误差不能忽略。在相同人射角?的条件下,当衍射级次k增加时,?k增加,22sin(?k??)?sin??k?/d (2)"sin?(??k?/d (3) k??)?sintan?k增加,因此一阶误差增大,测量高级次的光谱会使实验误差增大;而误差的二阶误差与衍射级次k和衍射角?k无关,只与入射角?有关。另外,当衍射级次k越高时,衍射角?k越大,估读?k引起sin?k的相对误差也相对越小。1.2减少误差的方法由(2)(3)可解得sin?k"?sin?k??2?cos?k"?cos?k (4)(?k??k")k??dsincos? (5)2由以上两个可知,在实验过程中,我们可以在选择光谱中某一固定波长的谱线后,测出零级条纹的位置,和正负k级(k=1,2,3........)

大学物理实验论文

大学物理实验报告一般有这样几个部分: 1 简要地叙述一下实验的原理; 2 实验所需要的仪器; 3 实验步骤; 4 实验的数据:依次列出所有测量量的数值。 这里最好是列表表示,这样会更方便,同时也把误差列在表中,按照误差计算的方法逐个分步算出。

大学物理实验.一级 第三版 电流表内阻的测量实验报告

(一)实验任务利用所给的仪器设备自组电桥测出电流表的内阻。(二)实验仪器待测电流表(Ig=100μA,Rg≈2×10的3次方欧姆)、电阻箱(0.0~99999.9欧姆,0.2级)、滑线变阻器(50欧姆,110欧姆各一只)、单刀单掷开关两只、直流稳压电源。(三)任务提示利用电桥测电阻时,被测电阻应作为电桥的一个平衡臂。本实验没另给指示电桥平衡的检流计,所以还要考虑怎样利用待测电流表来指示电桥的平衡状态。2009-11-21 17:21 上传下载 (11.13 KB) 用电阻箱式电桥测定电流计的内阻 仪器  电流计(不带灵敏度控制装置);电阻箱(总电阻至少达10000Ω);电阻箱式电桥;勒克朗谢电池。 实验步骤  按电路,其中L是干电池,R是电阻箱,G是待测内阻的电流计,可以用一只放大镜来更细致地观察电流计的偏转。  从比例臂(R1和R2)中拔出10Ω的插塞,调整R使得当K2合上时电流计的偏转约为满刻度的一半。当R3=0和R3=∞时电流计往相反方向偏转,就说明电路连接无误。  当K1也合上时,找出电流计无任何方向的偏转时的R3之值,由此即可得出检流计的内阻。  有时采用R1:R2=10:1的比率,这取决于所用仪器的精度。  数据记录与处理  记录测量电流计内阻时的比例臂的比率和R3的值,并计算出电流计的内阻。  注释:本方法可以用于测量任何安培计和伏特计的内阻。对于微安表,应当使R大到足以使电流降低到适当时值。

跪求大学物理演示实验报告——光学

交大的

大学物理实验牛顿环实验报告(含数据)

用牛顿环测透镜的曲率半径。光的干涉是光的波动性的一种表现,若将同一点光源发出的光分成两束,各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象,干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度,厚度和角度。如果单色光源的波长已知,只需测出第级暗环的半径rm,即可算出平凸透镜的曲率半径R,反之如果R已知,测出rm后就可计算出入射单色光波的波长。由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触,接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑或者空气间隙层中有了尘埃等因素的存在使得在暗环公式中附加了一项光程差。扩展资料:注意事项:1、要求设计出实验数据记录表,原始数据记录不得用铅笔填写,不得大量涂改,实验完成后必须由指导老师签字。2、通用设备简单列明,应写明仪器型号、规格和厂家,有些贵重仪器还要简单标注注意事项,并用括号围起来。3、设计些问题要学生思考和推导,避免抄书,实验报告原理部分以此部分内容完成情况进行打分。参考资料来源:百度百科-牛顿环实验参考资料来源:百度百科-大学物理实验

大学物理实验报告问题

铅笔

大学物理分光计实验报告问题

人们在选购望远镜时,常见其价目表上有几个阿拉伯数字,那么这几个数字说明了什么技术参数呢?下面试举一例子说明一下。例如标有10×50mm5°,即表示其放大倍数为10倍,物镜的直径为50毫米,视野为5度(即在1000处视野宽度为87.4米)。可能有人会认为技术参数的数字越大越好,其实不然。放大倍数与视野宽度成反比,即放大倍数越大,视野宽度越小,这就不利于搜索。物镜直径越大进光量越多,在光线不足时分辩能力就越强,但这必然导致到望远镜的体积增大不利于携带。

大学物理实验报告用拉伸法测量杨氏弹性模量实验体会及创新点

本次实验所需要研究的是弹性形变,所以在实验中必须注意所施加的外力不能过大,来保证物体在外力撤除后物体能够恢复原状,而不产生范性形变。在实验的过程中也必须注意按照实验步骤的操作的过程来实行,对照这注意事项来避免实验中所会出现的错误和误差。本实验精度较高所以细小的失误就有可能引起巨大地误差,所以我们要小心,细心操作。

大学物理实验实验报告试举出一个可以用模拟法进行实验的实例

用稳恒电流场模拟静电场。由于静电场不太好直接测量,所以实验上经常会用电流场来模拟静电场。这是由于电流场的电流密度矢量和静电场的电场强度矢量的数学形式非常类似,使得两个场有很多共同点。

大学物理实验报告怎么写 (半导体热敏电阻的温度特性)

摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言 热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。 Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。 2、实验装置及原理 【实验装置】 FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。 【实验原理】 根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为 (1—1) 式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为 (1—2) 式中 为两电极间距离, 为热敏电阻的横截面, 。 对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有 (1—3) 上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值, 以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。 热敏电阻的电阻温度系数 下式给出 (1—4) 从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。 热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。 当负载电阻 → ,即电桥输出处于开 路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。 若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为: (1—5) 在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则 (1—6) 式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。 3、热敏电阻的电阻温度特性研究 根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。 根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。 表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性 温度℃ 25 30 35 40 45 50 55 60 65 电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748 表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据 i 1 2 3 4 5 6 7 8 9 10 温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4 热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4 0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4 0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9 4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1 根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。 4、实验结果误差 通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示: 表三 实验结果比较 温度℃ 25 30 35 40 45 50 55 60 65 参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748 测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823 相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00 从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。 5、内热效应的影响 在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。 6、实验小结 通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。参考文献: [1] 竺江峰,芦立娟,鲁晓东。 大学物理实验[M] [2] 杨述武,杨介信,陈国英。普通物理实验(二、电磁学部分)[M] 北京:高等教育出版社 [3] 《大学物理实验》编写组。 大学物理实验[M] 厦门:厦门大学出版社 [4] 陆申龙,曹正东。 热敏电阻的电阻温度特性实验教与学[J]<

大学物理实验报告(太阳能电池特性的测定及电阻的测量)答案

1.测量的短路电流与光照强度不能完全正比的原因2.太阳能电池在使用时能否光照强度和短路电流基本是成线性的,2。太阳能电池当然可以短路,它跟普通

大学物理实验报告误差分析主要怎么写

你好, 指对误差在完成系统功能时,对所要求的目标的偏离产生的原因、后果及发生在系统的哪一个阶段进行分析,把误差减少到最低限度。研究目的物理化学以测量物理量为基本内容,并对所测得数据加以合理的处理,得出某些重要的规律,从而研究体系的物理化学性质与化学反应间的关系。然而在物理量的实际测量中,无论是直接测量的量,还是间接测量的量(由直接测量的量通过公式计算而得出的量),由于测量仪器、方法以及外界条件的影响等因素的限制,使得测量值与真值(或实验平均值)之间存在着一个差值,这称之为测量误差。研究误差的目的,不是要消除它,因为这是不可能的;也不是使它小到不能再小,这不一定必要,因为这要花费大量的人力和物力。研究误差的目的是:在一定的条件下得到更接进于真实值的最佳测量结果;确定结果的不确定程度;据预先所需结果,选择合理的实验仪器、实验条件和方法,以降低成本和缩短实验时间。因此我们除了认真仔细地作实验外,还要有正确表达实验结果的能力。这二者是等同重要的。仅报告结果,而不同时指出结果的不确定程度的实验是无价值的,所以我们要有正确的误差概念。希望能帮到你。

大学物理实验的实验结果分析与讨论怎么写?

大学物理实验的实验结果分析与讨论写法可参考如下:(1)根据你做实验时犯得一些错误,如实描述。(2)更正自己的错误,并写出怎样避免其他错误结果。(3)根据自己所做实验数据处理后,给出相应结论。1.有关大学物理实验:(1)《大学物理实验(一)》是2015年西安电子科技大学出版社出版的图书,作者是周恒智、张哲皇。(2)全书分基本技术技能介绍(测量的不确定度和测量数据处理)和包含长度、位移、速度、振动、转动、光常量、光器件参数、电常量、电器件特性、热常量等基本测量及相关测试技术与方法的实验20个。(3)本书各实验内容循序渐进、相互独立,形成较为清晰的层级体系,从而全面提高实验者的动手动脑能力。本书可作为高等学校工科各专业物理实验课程的教材和参考书,也可供相关实验技术人员参考。2.有关实验物理:(1)本书各实验内容循序渐进、相互独立,形成较为清晰的层级体系,从而全面提高实验者的动手动脑能力。本书可作为高等学校工科各专业物理实验课程的教材和参考书,也可供相关实验技术人员参考。(2)对应于物理学分为理论物理和实验物理,物理学家也可以分为理论物理学家和实验物理学家。当然,物理学中理论和实验都是必不可缺的组成部分,所以有时候这样的分类很难界定。只不过在一个物理学家更偏重理论的情况下,他(她)被称为理论物理学家,例如爱因斯坦;而如果偏重实验,则称为实验物理学家,例如法拉第。

急求大学物理实验“液体表面张力系数测定仪”的实验报告!

[实验目的] 1.用拉脱法测量室温下液体的表面张力系数 2.学习力敏传感器的定标方法 [实验原理] 测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即 F=α·π(D1十D2 ) (1) 式中,F为脱离力,D1,D2分别为圆环的外径和内径,α为液体的表面张力系数. 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即 △U=KF (2) 式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,△U为传感器输出电压的大小. [实验装置] 图14-1为实验装置图,其中,液体表面张力测定仪包括硅扩散电阻非平衡电桥的电源和测量电桥失去平衡时输出电压大小的数字电压表.其他装置包括铁架台,微调升降台,装有力敏传感器的固定杆,盛液体的玻璃皿和圆环形吊片,实验证明,当环的直径在3cm附近而液体和金属环接触的接触角近似为零时.运用公式(1)测量各种液体的表面张力系数的结果较为正确.图14-1 液体表面张力测定装置 [实验内容] 一、必做部分 1.力敏传感器的定标 每个力敏传感器的灵敏度都有所不同,在实验前,应先将其定标,步骤如下:打开仪器地电源开关,将仪器预热. (1)在传感器梁端头小钩中,挂上砝码盘,调节电子组合仪上的补偿电压旋钮,使数字电压表显示为零. (2)在砝码盘上分别如0.5g、1.0g、1.5g、2.0g、2.5g、3.0g等质量的砝码,记录相应这些砝码力F作用下,数字电压表的读数值U.(4)用最小二乘法作直线拟合,求出传感器灵敏度K. 2、 环的测量与清洁 (1)用游标卡尺测量金属圆环的外径D1和内径D2 (关于游标卡尺的使用方法请阅实验1) (2)环的表面状况与测量结果有很大的关系,实验前应将金属环状吊片在NaOH溶液中浸泡20-30秒,然后用净水洗净. 3、液体的表面张力系数 (1)将金属环状吊片挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环状吊片下沿与待测液面是否平行,如果不平行,将金属环状片取下后,调节吊片上的细丝,使吊片与待测液面平行. (2)调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体,然后反向调节升降台,使液面逐渐下降,这时,金属环片和液面间形成一环形液膜,继续下降液面,测出环形液膜即将拉断前一瞬间数字电压表读数值U1和液膜拉断后一瞬间数字电压表读数值U2. △U=U1-U2 (3)将实验数据代人公式(2)和(1),求出液体的表面张力系数,并与标准值进行比较. 二、选做部分 测出其他待测液体,如酒精、乙醚、丙酮等在不同浓泄劲时的表面张力系数 =.= 我也是川大的,其实到那实验室,有准备好的资料给你抄的

大学物理创新实验报告

学院:汽车学院 班级:热动0504 姓名:张志强 学号:0120507210410大学物理实验论文 -------实验心得与体会通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结和体会。自从我第一次上物理实验课的时候我就深深地感觉到物理实验的重要性,因此我每次上课都能全身心地听课,比如说第一次的不确定度等我就比班上其他同学学的要好一点,基本上学会了不确定度的每一步计算、回归直线的绘制以及有效数字的保留等,这也为我以后的实验数据处理带来了极大的方便。我现在还记得我第一次做迈克尔逊干涉仪实验时我虽然用心听讲,但是再我做时候却极为不顺利,因为我调节仪器时怎么也调不出干涉条纹,转动微调手轮也不怎么会用,最后调出干涉条纹了却掌握不了干涉条纹“涌出”或“陷入个数、速度与调节微调手轮的关系。测量钠光双线波长差时也出现了类似的问题,实验仪器用的非常不熟悉,这一切都给我做实验带来了极大的不方便,当我回去做实验报告的时候又发现实验的误差偏大,可庆幸的是计算还顺利。总而言之,第一个实验我做的是不成功,但是我从中总结了实验的不足之处,吸取了很大的教训。因此我从做第二个实验起,就在实验前做了大量的实验准备,比如说,上网做提前预习、认真写好预习报告弄懂实验原理等。因此我从做第二个实验起就在各个方面有了很大的进步,实验仪器的使用也熟悉多了,实验仪器的读数也更加精确了,仪器的调节也更加的符合实验的要求。就拿夫-赫实验/双光栅微振实验来说,我能够熟练调节ZKY-FH-2智能夫兰克—赫兹实验仪达到实验的目的和测得所需的实验数据,并且在实验后顺利地处理了数据和精确地画出了实验所要求的实验曲线。在实验后也做了很好的总结和个人体会,与此同时我也学会了列表法、图解法、函数表示法等实验数据处理方法,大大提高了我的实验能力和独立设计实验以及创造性地改进实验的能力等等。下面我就谈一下我在做实验时的一些技巧与方法。首先,做实验要用科学认真的态度去对待实验,认真提前预习,做好实验预习报告;第二,上课时认真听老师做预习指导和讲解,把老师特别提醒会出错的地方写下来,做实验时切勿出错;第三,做实验时按步骤进行,切不可一步到位,太心急。并且一些小节之处要特别小心,若不会,可以跟其他同学一起探讨一下,把问题解决。第四,实验后数据处理一定要独立完成,莫抄其他同学的,否则,做实验就没有什么意义了,也就不会有什么收获。总而言之,大学物理实验具有非常重要的意义。首先,物理概念的建立、物理规律的发现依赖于物理实验,是以实验为基础的,物理学作为一门科学的地位是由物理实验予以确立的;其次,已有的物理定律、物理假说、物理理论必须接受实验的检验,如果正确就予以确定,如果不正确就予以否定,如果不完全正确就予以修正。例如,爱因斯坦通过分析光电效应现象提出了光量子;伽利略用新发明的望远镜观察到木星有四个卫星后,否定了地心说;杨氏双缝干涉实验证实了光的波动假说的正确性。可以说,物理学的每一次进步都离不开实验。这对我们大学生来说也是非常重要的,尤其是对将来所从事的实际工作所需要具备的独立工作能力和创新能力等素质来讲,也是十分必要的,这是大学物理理论课不能做到,也不能取代的。因此,我希望我能更加努力,在下个学期顺利完成所有的实验,圆满结束大学物理实验。大学物理实验论文赵新梅 学号:0120509330327 信息学院电子0503班在即将结束的这个学期里,我完成了大学物理实验(上)这门课程的学习。物理实验是物理学习的基础,虽然在很多物理实验中我们只是复现课堂上所学理论知识的原理与结果,但这一过程与物理家进行研究分子和物质变化的科学研究中的物理实验是一致的。在物理实验中,影响物理实验现象的因素很多,产生的物理实验现象也错综复杂。老师们通过精心设计实验方案、严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们通过努力能够顺利地解决物理实验呈现的问题,考验了我们的实际动手能力和分析解决问题的综合能力,加深了我们对有关物理知识的理解。通过一学期的课程,我学到了很多东西。做大学物理实验时,为了在规定的时间内快速高效率地完成实验,达到良好的实验效果,需要课前认真地预习,首先是根据实验题目复习所学习的相关理论知识,并根据实验教材的相关内容,弄清楚所要进行的实验的总体过程,弄懂实验的目的、基本原理,了解实验所采用的方法的关键与成功之处;思考实验可能用到的相关实验仪器,对照教材所列的实验仪器,了解仪器的工作原理,性能、正确操作步骤,特别是要注意那些可能对仪器造成损坏的事项。然后还要写预习报告,预习报告能够帮助我们顺利完成实验中的各项操作。在写预习报告的时候,我们一般包括实验目的,基本原理,实验仪器,操作步骤,测量内容,数据表,预习思考题等。数据表与操作步骤密切相关,数据表中的栏目排列顺序应与操作步骤的顺序合理配合。这样就可以随时将数据按顺序填入表中,也可以随时观察和分析数据的规律性。刚开始时我们不注意预习报告里的数据表格,将数据随便的记录在一张纸上,结果发现整理数据时会出现很多混乱和错误,尤其是数据比较多的时候,比如在做《用动力学共振法测固体材料的样式弹性模量》实验时,由于实验前未提前设计好表格,数据记录得很随便,很乱,处理时很困难。后来汲取了教训,在实验前根据所要测的物理量和实验步骤设计好数据表格,在实验记录时和处理数据时轻松了不少。实验教会了我们要养成良好的科学的实验习惯。预习思考题,是加深实验内容或对关键问题的理解、开发视野的一些问题,在实验前认真地思考并回答这些问题,有助于提高实验质量。对于不明白的问题或实验原理中一些不明白的地方,可以跟自己的同学讨论一下或查一下相关的资料,实在不明白的地方可以带到课堂上问老师,只有把实验中所有的地方都弄通弄透彻,才能达到实验应有的效果。预习是做实验前必须的工作,但是做实验的主要工作还是课堂操作。课堂操作需要我们严格的遵守实验的各项原则,要将仪器放置在合理的位置,以方便使用和确保安全,比如象高压电源的输出端钮应该远离操作者。经常需要操纵或调节的器件,应该放在便于操纵的位置上。一些电学实验仪器部件较多,首先要把这些仪器部件一一放在合适的位置上,然后再连线。实验过程中要严格按照实验仪器的操作要求来操作,所有仪器要调整到正确的位置和稳定的状态,在安装和调整仪器时还不能使用书本这些本身就不稳定的物品做垫块,否则容易造成测量数据的分散性,影响实验质量,并且容易在成实验仪器的损坏。在的过程中,经常会出现一些故障或观察到的实验现象与理论上的现象不符,首先应认真思考并检查实验仪器使用以及线路连接是否正确,不正确的及时进行改正,若自己不能解决,应及时请老师来指导,切不可敷衍过关,草草了事。还有读数,需要有足够的耐心和细心,尤其是对一些精度比较高的仪器,读数一定要按照正确的读数方法并且一定要细心。对于数据的纪录,则要求我们要有原始的数据纪录,它是记载物理实验全部操作过程的基础性资料。而且在实验过程中必须认真地观察实验现象,并做如实的记录。如果发现实验现象与实验理论不符合,或者测试结果出现异常,就应该认真检查原因,并细心重做实验。实验完成后,应把所有的实验仪器恢复到原位,并认真清理实验台。在实验操作完成后,应认真地处理实验数据。实验数据是对实验定量分析的依据,是探索、验证物理规律的第一手资料。在系统误差一定的情况下,实验数据处理得恰当与否,会直接影响偶然误差的大小。所以对实验数据的处理是实验复习的重要内容之一。在这一学期中我们学到的处理数据的方法有:1. 平均值法 取算术平均值是为减小偶然误差而常用的一种数据处理方法。通常在同样的测量条件下,对于某一物理量进行多次测量的结果不会完全一样,用多次测量的算术平均值作为测量结果,是真实值的最好近似。 2. 列表法 实验中将数据列成表格,可以简明地表示出有关物理量之间的关系,便于检查测量结果和运算是否合理,有助于发现和分析问题,而且列表法还是图象法的基础。列表时应注意:①表格要直接地反映有关物理量之间的关系,一般把自变量写在前边,因变量紧接着写在后面,便于分析。②表格要清楚地反映测量的次数,测得的物理量的名称及单位,计算的物理量的名称及单位。物理量的单位可写在标题栏内,一般不在数值栏内重复出现。③表中所列数据要正确反映测量值的有效数字。 3. 作图法 选取适当的自变量,通过作图可以找到或反映物理量之间的变化关系,并便于找出其中的规律,确定对应量的函数关系。作图法是最常用的实验数据处理方法之一。 描绘图象的要求是:①根据测量的要求选定坐标轴,一般以横轴为自变量,纵轴为因变量。坐标轴要标明所代表的物理量的名称及单位。②坐标轴标度的选择应合适,使测量数据能在坐标轴上得到准确的反映。为避免图纸上出现大片空白,坐标原点可以是零,也可以不是零。坐标轴的分度的估读数,应与测量值的估读数(即有效数字的末位)相对应。这学期我们还学习了用电脑处理数据。用电脑处理数据方便快捷,可以节省不少时间,而且也比较清晰明了。但是用电脑处理的前提依然是我们对理论知识比较熟悉,而且实验操作过程必须认真地完成,记录的数据准确,有效。撰写实验报告和进行问题讨论等也是大学物理实验不可缺少的重要环节。实验报告是对我们的动手能力、写作能力和总结能力的一种锻炼,实验报告也促进我们对实验过程以及所得结论进行更深刻的思考。我们的实验报告应包括实验过程中所出现的实验现象以及对这些现象的解释,实验中所遇到的问题以及解决方法,实验数据的记录以及对数据进行计算并求得最终的结果,验证跟理论值是否相符,误差的大小,最终得出的结论,对实验思考题进的讨论以及讨论的结果和对实验进行的总结。一份认真的,高水平的实验报告才算是为本次实验画上一个圆满的句号。“加强基础、重视应用、开拓思维、培养能力、提高素质 ”是大学物理试验的指导思想;“加深学生对有关物理知识的理解,培养学生正确的科学实验习惯,提高学生的动手能力、观察分析能力和创新能力”是大学物理实验的目的。学大学物理实验这门课程,是对个人能力的一种锻炼,它不但锻炼了我们的细心、耐心,而且使我养成了良好的学习习惯和严谨的学习态度。这一学期物理实验课程的学习,使我受益匪浅。但我也还有很多不足的地方需要改正,比如做实验速度很慢,下学期我们还将学习这门课程,我在以后的课程学习中一定要 注意慢慢改进。

大学物理实验报告——刚体转动惯量

都会使测量结果偏大,因为1:塔轮和定滑轮之间的拉线不是水平状态时,作用在塔轮上的拉线的力就不是砝码的重力,而是比重力小,如果拉线与水平方向的夹角为a,那么使塔伦转动的力就是砝码重力乘以cosa.当你仍然用原重力计算时,当然得到的转动惯量会变大2:定滑轮与所选用的塔轮半径不垂直的情况与上面说的很类似,你稍一分析就应该能得到结论了

长度测量大学物理实验报告目的与要求

实验教材上有啦 好好看看书

大学物理实验预习实验报告怎么写(给个例子)

物 理 实 验 报 告 班 级 姓 名 学 号 日 期 实验课题 研究平抛物体的运动 实验目的 1.描出平抛物体的运动轨迹. 2.求出平抛物体的初速度. 实验原理 平抛运动可以看作水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。只需测出运动轨迹上某一点的(x,y由x=V0t y= 得:V0=x 器 材 斜槽、白纸、图钉、木扳、有孔的硬纸卡片、小球、重锤线、米尺 实 验 步 骤 1. 用图钉把白纸钉在竖直木板上。 2. 在木板左上角固定斜槽并使其末端点O的切3. 线水平。在纸上记录O点,4. 利用重垂线画出通过O点的竖直线。 5. 在木板的平面上用手按住卡片,6. 使卡片上有空的一面保持水平,7. 调整卡片的位置,8. 使槽上滚下的小球正好穿过卡片的孔,9. 然后用铅笔在卡片的缺口上点个黑点,10. 这就记下了小球平抛的轨迹通过的点。多次实验,11. 描下多个点。 12. 用平滑的曲线将小球通过的点连接起来,13. 就得到小球平抛运动的轨迹。 14. 以O为圆点,15. 画出竖直向下的y轴和水平向右的x轴. 16. 从曲线上选取A、B、C、D四个不同17. 的点,18. 测出它们的坐标,19. 记在表内。根据公式v0=x 求出每次小球平抛运动的初速度,再求出V0的平均值。 实验 记录 X(米) y(米) V0(米/秒) V0(平均值) A B C D 实 验 分 析 1.实验注意点: a. 固定白纸的木板要 。 b. 固定斜槽时,要保证斜槽未端的 。 c.小球每次从槽上 滑下。 d.在白纸上准确记下槽口位置,该位置作为 。 2.实验误差:(1)计算小球初速度时应在轨迹上选距离抛出点稍远一点的地方。(2)木板、斜槽固定好后,实验过程中不改变位置。 实 验 练 习 1.在研究平抛物体的运动的实验中,已测出落下的高度h与对应的射程x如下表,则物体平抛初速度为 。(g=9.8m/s2) h (m) 5.00 11.25 20.00 24.20 x (m) .为什么实验中斜槽的末端的切线必须是水平的?答:.请你依据平抛运动的实验思想,自己设计一个测定玩具手枪子弹速度的方法。(1) 器材: (2) 步骤: (3) 手枪子弹速度V0= 。(用字母表示) 教 师 评 语 记 分 10 回答者: hengzhan

大学物理实验报告怎么写

应该有试验报告纸和试验预习报告纸。有的话照着填。没有的话这样: 预习报告: 1.试验目的。(这个大学物理试验书上抄,哪个试验就抄哪个)。 2。实验仪器。照着书上抄。 3.重要物理量和公式:把书上的公式抄了:一般情况下是抄结论性的公式。再对这个公式上的物理量进行分析,说明这些物理量都是什么东东。这是没有充分预习的做法,如果你充分地看懂了要做的试验,你就把整个试验里涉及的物理量写上,再分析。 4.试验内容和步骤。抄书上。差不多抄半面多就可以了。 5.试验数据。做完试验后的记录。这些数据最好用三线图画。注意标上表号和表名。EG:表1.紫铜环内外径和高的试验数据。 6.试验现象.随便写点。 试验报告: 1.试验目的。方法同上。 2.试验原理。把书上的归纳一下,抄!差不多半面纸。在原理的后面把试验仪器写上。 3。试验数据及其处理。书上有模板。照着做。一般情况是求平均值,标准偏差那些。书上有。注意:小数点的位数一定要正确。 4.试验结果:把上面处理好的数据处理的结果写出来。 5.讨论。如果那个试验的后面有思考题就把思考提回答了。如果没有就自己想,写点总结性的话。或者书上抄一两句比较具有代表性的句子。 实验报告大部分是抄的。建议你找你们学长学姐借他们当年的实验报告。还有,如果试验数据不好,就自己捏造。尤其是看到坏值,什么都别想,直接当没有那个数据过,仿着其他的数据写一个。 不知道。建议还是借学长学姐的比较好,网络上的不一定可以得高分。每个老师对报告的要求不一样,要照老师的习惯写报告。

大一物理实验报告

大学物理实验报告一般有这样几个部分:1 简要地叙述一下实验的原理;2 实验所需要的仪器;3 实验步骤;4 实验的数据:依次列出所有测量量的数值。这里最好是列表表示,这样会更方便,同时也把误差列在表中,按照误差计算的方法逐个分步算出来,这样就不至于被许多的数据弄得头昏脑涨;5 最后把所得出的结论写出来。如果老师要求做思考题的,就写在最后。祝你高速、高质量地完成实验报告!

大学物理实验报告一个要写多长时间

大学物理实验报告一个要写两天。物理实验报告需要一边实验一边记录数据最后写总结,实验需要提前准备前后一共两天时间。实验报告包括实验目的、实验仪器、实验原理、实验步骤、注意事项。

大学物理切变膜量的测定实验报告

一、实验目的 a,学习游标卡尺、千分尺的测量原理和使用方法; b,进一步掌握误差、有效数字的基本概念及其运算法则。二、实验原理; a,游标卡尺的游标有n个刻度!它的总长与主尺上(n – 1)个刻度总长相等。设主尺每个 刻度的长为y!游标每个刻度的长为x!则有 nx = (n – 1) y 由此求得主尺与游标每个刻度之差值为 δ = y – x = y / n 差值δ正是游标卡尺能读准的最小刻度值!是游标卡尺的分度值!称为游标的精度。 b,螺距为y的螺旋!每转一周螺旋将沿轴线方向移动一个螺距y。如果转了1 / n周?n 是沿螺旋一周总的刻度线数目,!螺旋将沿轴线移动y / n的距离。y / n称为螺旋测微 计的分度值。三、实验仪器; 仪器名称 组号 型号 量程 分度值 ? 仪螺旋测微器 游标卡尺 圆环、粗铜丝、细铜丝四、实验内容和步骤;. a,用游标卡尺测量圆环的内、外直径和高?在不同部位进行多次测量,!计算绝对误差 b,用螺旋测微计测量粗、细铜丝的直径?在不同部位进行多次测量,!并计算绝对误差五、数据记录( 组号( ;姓名 1、用游标卡尺R测量圆筒的外径D、内径d、和高H; 卡尺零点误差( ; 卡尺的仪器误差 k d ( ) D( ) H( ) 1 2 3 4 5 6 7 8 9 10 平均 2、 用螺旋测微计测量粗铜丝、细铜丝的直径 千分尺零点( 千分尺基本误差 k DD( ) ( ) 12 1 2 3 4 5 6 7 8 9 10 平均

[大学物理综合性实验教学分析] 大学物理油滴实验报告

  摘 要:大学物理实验是理工科院校学生必须掌握的一门公共基础课,实验教学可以训练学生系统的实验方法、实验技能和进行科学实验的基本能力,巩固他们所学到的知识,运用实验的方法不仅便于同学们进行更加深刻的理解书本内容,也利于教师讲授物理课程。但是在目前的大学物理实验课程中还是存在很多不足和需要改进的地方,大学物理实验课程远远没有发挥其应有的作用,随着社会的进步,很多物理方面的技术不断的更新,只有尝试改革、探索新路子,跟随时代的脚步,采用综合性的多样化的物理实验教学,才能促使大学物理实验学科发挥其应有的作用,达成培养学生创新精神与创新能力的目的。   关键词:大学物理 综合性实验教学 教学分析   中图分类号:O4-4 文献标识码:A 文章编号:1672-3791(2012)05(c)-0202-01   传统的教学手法不能很好地促进学生对知识的掌握、对课程的理解,也不能及时地与当前先进的技术产生联系,根据在传统教学中发现的一些弊端,应该采取综合性实验教学,给与学生更多的主动权,结合当前的技术进行试验的设计,要求学生具备综合性实验时具备足够的基础知识和基本技能,在这种教学模式之下,可以进一步提高学生综合运用所学知识的能力、动手能力、创新能力和独立解决问题的能力。   1 传统物理实验教学中存在的弊端和不足   1.1 实验教学模式不合理   在传统的教学模式中,往往是教师先将实验内容安排下去,叫同学们结合课本已有的实验自己预习,但是在进行试验之前,老师会对学生们进行统一的详细讲解,以利于他们能更加快速的完成实验,所以很多学生根本就不愿主动预习,而且实验过程中一直有老师的参与进行解答疑问,留给学生自我思考和解决问题的机会不是很多,最后才有学生完成实验报告,在完成实验报告的时候,很多同学都是共享的数据,因为实验内容都是一样的,所以大部分都不是独立完成的。这种教育模式可以保证学生比较快速的完成实验内容,但是业限制了学生自由发挥的空间,对其理解课本知识也没有很大的帮助,不利于他们创造性思维,对学生整体素质的提高有一定的阻碍。   1.2 教师的教学手段单一、方法简单   很多工科院校的物理实验仅仅是一种作为辅助手段的科目,没有引起足够的重视,教师采用的教学方式比较单一,都是根据课本设置的实验内容进行试验,实验地点大多就是实验室,而且设备也比较有限,没有结合当下比较先进的技术手段,也没有一些创新的改变,试验方法也都是老生常谈,老师会事先详细的讲解实验原理、操作步骤以及需要注意的问题,学生就是按部就班的做实验,而且实验的过程中大多数学生追求实验结果的正确性,而忽略了试验本身和实验的过程,缺少了一个思考和反馈的过程,最后的成果一般都是一实验报告的方式提交,格式、内容都是固定的,学生没有自由发挥的余地,这些都不利于学生的自主学习和对课本内容的思考,对书本知识的认识也不会深刻,更不用说自主创新和拓展性思维了。   1.3 大学物理实验课程内容陈旧、体系封闭   很多大学物理都是分专业然后偏重于某些方面的学习,比如建筑学的学生学习的物理就包括:声、光、热三个方面,因而在安排实验的时候就有相对应的实验,由于范围比较狭窄再加上课本更新的速度并不是很快,很多实验内容已经是很多年前的了,很多实验仪器已经远远落后于现在的技术,实验内容也没有特别大的意义了,还有的实验对实验结论的要求也很严格,非对即错。另外,传统的物理实验课程体系有着严格的分类,包括:力学实验、热学试验、电磁学实验、光学实验和近代物理实验等,这样的安排强调了学科的独立和系统性,但是忽略了学科之间的兼容和互补性,学科之间相对过于独立,缺少了一个融会贯通的过程,这样也使学生的跨学科的创造性思维收到了一定的限制。   2 综合性实验教学模式的方式   2.1 丰富实验的内容   针对旧的教学模式中实验内容严格按照课本的设置,内容和形式都比较单一,这样不能很好地吸引学生,激发他们的兴趣,所以应该使实验的内容变得更加丰富。比如可以将实验的难易程度进行一定的划分,包括:基础性试验、综合性实验、设计性试验和研究性实验,根据课程的进度和深度进行相对应的实验,根据实验的内容,结合工程实践或者生活实例来进行,这样物理实验课堂也会变得生动、形象,逐渐提高学生的兴趣,并提高实验的实效,对待同一个内容,也不要将实验步骤和结论都限定死,可以让学生进行自主设计,再结合课本内容进行一定的反馈,这样既可以锻炼学生的自学能力,也能加强同学之间的合作、交流。   2.2 改变传统的实验和考核方式   在传统的物理实验教学中,教师往往起主导作用,在实验开始之前就把相关的内容详尽的讲述,学生只是被动的接受,这样的学习效率比较低,所以尝试将主动权教给学生,实验方案和实验内容由学生根据所学的,结合相关的学科或者当前的技术手段和最近的物理原理进行设计,这样学生就不用受到教材给定的实验步骤的束缚,或许实验步骤不是最完美的,但是这个过程中学生培养了各方面的能力。传统的考核方式一般都是以交试验报告为主,用这种方式可以详细的记录实验器材、步骤、过程以及实验结果,但是这样提交的作业,缺少了思考的过程,更像是一种记录而不是学习,可以采用其他的方式,比如:提交论文证明自己实验前的猜想或者得出新的结论,这样每个人拿到的题目是不一样的,可以促进相互之间的探讨,扩大了学生的知识面。   3 结语   大学物理实验不仅是学生巩固物理知识,培养综合能力的基础性课程,更是以后进行科学研究的先决条件,但是目前的工科院校对此方面的培养还存在很多不足的有待改善的地方,甚至是制约了学生的创新能力的培养和发展。随着国际高校之间的联系逐渐加强,很多高校已经加大了对物理实验课程的重视,实验条件也有了很大的改善,同时实验教学的教师也为提高实验教学效果进行了大量的有利的探索。祖国现代化建设需要应用型人才,而大学物理实验教学中应该注重这方面人才的培养,构建具有能力培养的实验教学体系,以学生为教学的主体,在教学的过程中不断引导学生发现问题、分析问题、解决问题,激发学生的学习兴趣和潜力,增强其创新意识,培养学生的创新能力和探究能力,使他们能更好的服务于社会。   参考文献   [1] 年晓明,刘伟,徐正藻.大学物理实验教学创新改革对学生创新能力的培养[J].大学物理实验,2008(21).   [2] 樊志琴,蔡根旺.实施创新能力培养深化“物理实验”教学改革[J].科技创新改革,2008(1).

求大学物理实验报告:密度的测量实验原理和实验内容。

一 实验目的实验目的实验目的实验目的 1.掌握物理天平称衡法。 2.掌握用流体静力称衡法测量不规则固体密度。 3.掌握用比重瓶法测小粒固体密度。 二 实验仪器实验仪器实验仪器实验仪器 物理天平(感量0.1g,秤量1000g)、法码、比重瓶(100ml)、烧杯 (450ml)、温度计(50℃/0.1℃)、待测大块固体、待测小粒固体、 待测液体等。 三 实验内容实验内容实验内容实验内容 1.物理天平调节——调水平,调零点。检查天平的灵敏度。 2.用流体静力称衡法测铜块密度,并求出百分误差(应小于3%)。 3.用比重瓶法测金属小颗粒密度,并求出百分误差(应小于3%)。

印象最深的大学物理实验

一. 锥体上滚在演示实验室,老师首先给我们演示的是锥体上滚实验。其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理,其核心在于刚体在重力场中的平衡问题,而自由运动的物体在重力的作用下总是平衡在重力势能极小的位置。电磁炮实验报告 大学物理演示实验报告通过这个实验,我们知道了有时候现象和本质完全相反。二.电磁炮接着我们又做了电磁炮的实验。电磁炮是利用电磁力代替火药爆炸力来加速弹丸的电磁发射系统,它主要有电源、高速开关、加速装置和炮弹组成。电磁炮实验报告 大学物理演示实验报告根据通电线圈磁场的相互作用原理,加速线圈固定在炮管中,当它通入交变电流时,产生的交变磁场就会在线圈中产生感应电流,感应电流的磁场与加速线圈电流的磁场相互作用,使弹丸加速运动并发射出去。电磁炮实验报告 大学物理演示实验报告我们将炮弹放入炮管中距尾部25cm左右,按下启动按钮发射了炮弹。虽然炮弹的射程很小,但我们都觉得很奇妙,做的很开心。

大学物理实验报告怎么写?

看看其他同学的。

大学物理实验筛选电阻实验报告,求大神

我是来捣乱的。同学,这种情况找师兄师姐最有用了,他们知道老师的口味【偷笑】

大学物理实验报告分数重要吗

大学物理实验报告分数重要。1、大学物理实验成绩评定标准对提高实验教学质量具有重要意义,与一般理论课教学主要通过试卷考试进行成绩评定的方式不同。2、实验课的成绩评定更为复杂,既涉及学生对于理论知识的理解、基本实验技能的考察,又需要兼顾对学生实验报告书写、数据处理等多方面的评价。

大学物理实验报告(用牛顿环测定透镜的曲率半径)怎么写

邮箱留下,我发给你

大学物理实验报告-单摆

http://www.cctr.net.cn/search_courseware_detail.asp?id=34822

大学物理实验报告

有倒是有 全是手写版 不知道怎么给你

求大学物理实验报告模板( 电子版)

一楼百度

大学物理实验预习报告要怎样写?

1231经典故事vgdhjas

大学物理实验,薄透镜焦距的测定,写实验报告的误差分析

1、没有标准的平行光源2、透镜对于不同频率的光,焦距不同,叫色差3、光具座的标尺本身有误差4、光束偏离主光轴较大时,聚焦也有误差,叫做球差------

大学物理实验报告误差分析主要怎么写

你好,指对误差在完成系统功能时,对所要求的目标的偏离产生的原因、后果及发生在系统的哪一个阶段进行分析,把误差减少到最低限度。研究目的物理化学以测量物理量为基本内容,并对所测得数据加以合理的处理,得出某些重要的规律,从而研究体系的物理化学性质与化学反应间的关系。然而在物理量的实际测量中,无论是直接测量的量,还是间接测量的量(由直接测量的量通过公式计算而得出的量),由于测量仪器、方法以及外界条件的影响等因素的限制,使得测量值与真值(或实验平均值)之间存在着一个差值,这称之为测量误差。研究误差的目的,不是要消除它,因为这是不可能的;也不是使它小到不能再小,这不一定必要,因为这要花费大量的人力和物力。研究误差的目的是:在一定的条件下得到更接进于真实值的最佳测量结果;确定结果的不确定程度;据预先所需结果,选择合理的实验仪器、实验条件和方法,以降低成本和缩短实验时间。因此我们除了认真仔细地作实验外,还要有正确表达实验结果的能力。这二者是等同重要的。仅报告结果,而不同时指出结果的不确定程度的实验是无价值的,所以我们要有正确的误差概念。希望能帮到你。

大学物理实验牛顿环实验报告(含数据)

用牛顿环测透镜的曲率半径。光的干涉是光的波动性的一种表现,若将同一点光源发出的光分成两束,各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象,干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度,厚度和角度。如果单色光源的波长已知,只需测出第级暗环的半径rm,即可算出平凸透镜的曲率半径R,反之如果R已知,测出rm后就可计算出入射单色光波的波长。由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触,接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑或者空气间隙层中有了尘埃等因素的存在使得在暗环公式中附加了一项光程差。扩展资料:注意事项:1、要求设计出实验数据记录表,原始数据记录不得用铅笔填写,不得大量涂改,实验完成后必须由指导老师签字。2、通用设备简单列明,应写明仪器型号、规格和厂家,有些贵重仪器还要简单标注注意事项,并用括号围起来。3、设计些问题要学生思考和推导,避免抄书,实验报告原理部分以此部分内容完成情况进行打分。参考资料来源:百度百科-牛顿环实验参考资料来源:百度百科-大学物理实验

大学物理实验报告用拉伸法测量杨氏弹性模量实验体会及创新点

本次实验所需要研究的是弹性形变,所以在实验中必须注意所施加的外力不能过大,来保证物体在外力撤除后物体能够恢复原状,而不产生范性形变.在实验的过程中也必须注意按照实验步骤的操作的过程来实行,对照这注意事项来避免实验中所会出现的错误和误差. 本实验精度较高所以细小的失误就有可能引起巨大地误差,所以我们要小心,细心操作.

大学物理实验的实验结果分析与讨论怎么写?

主要分析试验中数据的规律 体现的理论与实验的符合程度 试验中出现问题的原因 问题处理方法方式 以及可以改进的地方

大学物理实验报告——刚体转动惯量

都会使测量结果偏大,因为1:塔轮和定滑轮之间的拉线不是水平状态时,作用在塔轮上的拉线的力就不是砝码的重力,而是比重力小,如果拉线与水平方向的夹角为a,那么使塔伦转动的力就是砝码重力乘以cosa.当你仍然用原重力计算时,当然得到的转动惯量会变大2:定滑轮与所选用的塔轮半径不垂直的情况与上面说的很类似,你稍一分析就应该能得到结论了

急求大学物理实验报告,等倾干涉,激光琴,红外接收演示,液晶光电效应,热磁轮的都可以

你的邮箱地址?

大学物理实验报告-钢丝的杨氏模量测量

实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一 个表征原子间结合力大小的物理参量。杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。扩展资料:注意事项:测量杨氏模量可以采用静态拉伸法,即选取一根细长的钢丝,沿长度方向施加外力使其伸长,假设外力为F,钢丝横截面积为S,钢丝原长为L,伸长量为ΔL, 则对钢丝施加的作用记为F/S,称之为应力,显然同样的力作用在不同横截面积的钢丝上,即便钢丝一样长,伸长量也不一样,所以单位面积上的力显然更为合理,钢丝的变形用ΔL/L来表示,记为应变。对于钢丝,应力越大,应变越大,两者之间存在比例系数。参考资料来源:百度百科-杨氏模量参考资料来源:百度百科-钢丝

长度测量大学物理实验报告目的与要求

目的:1,掌握游标卡尺、螺旋测微计的使用方法和读书规则; 2.进一步熟悉不确定度及有效数字的基本概念; 3.了解选用测量仪器的一般原则; 要求:游标卡尺:它是精密量具,推拉游标尺时不要用力过大,测量中不要弄伤刀口和钳口;用完后要放回盒内,不许放在潮湿的地方,只有这样才能保持它的准确度,延长使用期限. 螺旋测微计:1,测量时必须用棘轮作为保护装置,当测微螺旋杆即将接触到被测物时,应旋转棘轮,并发出咔咔声.即可读书.2.用完放回仪器时,应使测量钳口A、B面间保持1mm以上的空隙.

大学物理实验报告——刚体转动惯量

刚体绕轴转动惯性的度量.其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离. ;求和号(或积分号)遍及整个刚体.转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关.规则形状的均质刚体,其转动惯量可直接计得.不规则刚体或非均质刚体的转动惯量,一般用实验法测定.转动惯量应用于刚体各种运动的动力学计算中. 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积.由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者. 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和. 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量.由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量. 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2. 刚体绕某一点转动的惯性由更普遍的惯量张量描述.惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小. 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小). E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量. 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题. 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息. 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况. 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值. 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离. 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示. 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度. 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度. 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径. 转动惯量定理:M=Jβ 其中M是扭转力矩 J是转动惯量 β是角加速度 例题: 现在已知:一个直径是80的轴,长度为500,材料是钢材.计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩? 分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L. 根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s 电机轴我们可以认为是圆柱体过轴线,所以J=mr^2/2. 所以M=Jβ =mr^2/2△ω/△t =ρπr^2hr^2/2△ω/△t =7.8*10^3 *3.14* 0.04^2 * 0.5 * 0.04^2 /2 * 500/60/0.1 =1.2786133332821888kg/m^2 单位J=kgm^2/s^2=N*m

物理实验报告怎么写?

问题一:物理实验报告的格式怎么写? 实验名称 实验日期 一、实验目的 二、实验仪器和器材(要求标明各仪器的规格型号) 三、实验原理:简明扼要地阐述实验的理论依据、计算公式、画出电路图或光路图 四、实验步骤或内容:要求步骤或内容简单明了 五、数据记录:实验中测得的原始数据和一些简单的结果尽可能用表格形式列出,并要求正确表示有效数字和单位 六、数据处理:根据实验目的对测量结果进行计算或作图表示,并对测量结果进行评定,计算误差或不确定度. 七、实验结果:扼要地写出实验结论 八、误差分析:当实验数据的误差达到一定程度后,要求对误差进行分析,找出产生误差的原因. 九、问题讨论:讨论实验中观察到的异常现象及可能的解释,分析实验误差的主要来源,对实验仪器的选择和实验方法的改进提出建议,简述自己做实验的心得体会,回答实验思考题. 十、(附件)经老师确认后,在预习中设计好的,用于记录实验原始数据的表格. (一般情况下:第八点和第九 问题二:物理实验报告怎么写 因为女生的神经很敏感,男生比较粗一点~ 问题三:大学物理实验报告具体如何写? 大学物理实验报告一般有这样几个部分: 1 简要地叙述一下实验的原理; 2 实验所需要的仪器; 3 实验步骤; 4 实验的数据:依次列出所有测量量的数值。 这里最好是列表表示,这样会更方便,同时也把误差列在表中,按照误差计算的方法逐个分步算出来,这样就不至于被许多的数据弄得头昏脑涨; 5 最后把所得出的结论写出来。 如果老师要求做思考题的,就写在最后。 祝你高速、高质量地完成实验报告!

急求大学物理实验“液体表面张力系数测定仪”的实验报告!

http://pec.nankai.edu.cn/files/%E7%94%A8%E7%84%A6%E5%88%A9%E6%B0%8F%E7%A7%A4%E6%B5%8B%E5%AE%9A%E6%B6%B2%E4%BD%93%E7%9A%84%E8%A1%A8%E9%9D%A2%E5%BC%A0%E5%8A%9B%E7%B3%BB%E6%95%B0.doc南开大学实验室的实验报告。

实验报告 “生活中的物理现象”

比如讲;1,我们使用的电灯泡,当闭合开关时,电流从电源出来,经过导线达到灯丝,由于灯丝的发热,直至发出光来,用作照明这就是电传输中在电阻上发 热的物理现象;2,电风扇的使用,是利用了电流在导体中流过时,导体周围产生的旋转磁场,使风扇的电动机旋转(电磁力)带动风叶旋转而"作功"的物理现象;3,我们把锅放在发热(或燃烧)的炉子上,而炉子上发出的热量使锅内的食物吸收热能而被烧熟,因为是利用了热传导的物理现象;4,我们的风扇或扇子能有风,是利用了其它的力使扇叶的两面产生了不同的压差,从而产生了风(空气动力);5,我们的车子和人能在地面行走,是利用了物体之间的摩擦力;6,我们能用普通杆秤测量物体重量,是利用了杠杆原理(力学)来达到的; 活物理: 1、筷子的原理是杠杆 2、钟表的时针转动是弹性势能转化为动能 3、日光灯是利用了电磁感应现象中的自感现象 4、夏天炎热时向地面泼水是利用了蒸发降温的原理 5、坐车时启动或刹车都坐不稳是因为惯性 6、加油站设在空旷处是因为压强与体积成反比,体积越大,压强越小,越不容易发生爆炸 7、灯开久了会发热是因为电流的热效应 8、电视出现图象是示波器的进化 9、被门夹到手指会变形是力的作用效果 10、人能走动、动物能爬或走是因为摩擦力的贡献 11、飞机能飞起来是因为流速与压强成反比,流速越大,压强越小 肥皂泡为什么总是先上升后下降日常生活中,我们常看到一些小朋友吹肥皂泡,一个个小肥皂泡从吸管中飞出,在阳光的照耀下,发出美丽的色彩。此时,小朋友们沉浸在欢乐和幸福之中,我们大人也常希望肥皂泡能飘浮于空中,形成一道美丽的风景。但我们常常是看到肥皂泡开始时上升,随后便下降,这是为什么呢? 这个过程和现象,我们只要留心想一下,就会发现,它其中包含着丰富的物理知识。在开始的时候,肥皂泡里是从嘴里吹出的热空气,肥皂膜把它与外界隔开,形成里外两个区域,里面的热空气温度大于外部空气的温度。此时,肥皂泡内气体的密度小于外部空气的密度,根据阿基米德原理可知,此时肥皂泡受到的浮力大于它受到的重力,因此它会上升。这个过程就跟热气球的原理是一样的。 随着上升过程的开始和时间的推移,肥皂泡内、外气体发生热交换,内部气体温度下降,因热胀冷缩,肥皂泡体积逐步减小,它受到的外界空气的浮力也会逐步变小,而其受到的重力不变,这样,当重力大于浮力时,肥皂泡就会下降。大雪后为什么很寂静在冬天,一场大雪过后,人们会感到外面万籁俱静。这是怎么回事?难道是人为的活动减少了吗?那么,为什么在雪被人踩过后,大自然又恢复了以前的喧嚣?原来,刚下过的雪是新鲜蓬松的。它的表面层有许多小气孔。当外界的声波传入这些小气孔时便要发生反射。由于气孔往往是内部大而口径小。所以,仅有少部分波的能量能通过出口反射回来,而大部分的能则被吸收掉了。从而导致自然界声音的大部分能均被这个表面层吸收,故出现了万籁俱寂的场面。而雪被人踩过后,情况就大不相同了。原本新鲜蓬松的雪就会被压实,从而减小了对声波能量的吸收。所以,自然界便又恢复了往日的喧嚣。闪电为什么是弯弯曲曲的大家都知道,带异性电的两块云接近时放出闪电,闪道中因高温使空气体积迅速膨胀、水滴汽化而发出强烈的爆炸声,这就是我们常说的“闪电雷鸣”。闪电为什么总是弯弯曲曲的呢?美国国家气象局的内泽特·赖德尔认为,每当暴风雨来临,雨点即能获得额外的电子。电子是带负电的,这些电子会追寻地面上的正电荷。额外的电子流出云层后,要碰撞别的电子,使别的电子也变成游离电子,因而产生了传导性轨迹。传导的轨迹会在空气中散布着的不规则形状的带电离子群中间跳跃着迂回延伸,而一般不会是直线。所以,闪电的轨迹总是蜿蜒曲折的。 回答人的补充 2009-10-03 11:40 物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:1. 汽车驾驶室外面的观后镜是一个凸镜  利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。  2. 汽车头灯里的反射镜是一个凹镜  它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。  3. 汽车头灯总要装有横竖条纹的玻璃灯罩汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。  4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。 一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。 明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利?阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上1.5V的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“2.4V、0.5A”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上2.4V的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础

如何通过物理实验教学培养学生能力

新的高中物理教学大纲中明确指出:观察现象和学生实验,能够使学生对物理事实获得更具体的、明确的认识,这是理解概念和规律必要的基础。因此,在物理教学中,尤其在物理实验教学中,注意不断地鼓励学生通过观察、比较、实验、归纳、类比等探索手段提出种种假设和猜想来发展他们创新意识就显得尤为重要。一、培养学生的创新能力从兴趣入手没有学习兴趣,学习就失去了动力,创新能分的培养就成了一句空话。教师如果能精心设计好实验,并巧妙地进行演示,创设一定的情境,将趣味性、新颖性和知识融为一体,就能有效地刺激学生的感官,增强学生的有意注意力。二、重视实验基本技能的培养大纲要求要加强学生的实验能力的培养,规定了实验能力的要求。提出“明确实验目的,理解实验原理和方法,学会正确使用仪器进行观察分析测量,会控制实验条件和排除实验故障,会分析处理实验数据并得到正确结论,了解误差和有效数字的概念,会独立的写出简要的实验报告”。对高中使用的基本仪器,提出了两种要求:一种要求能独立正确使用,例如游标卡尺;一种要求在教师的指导下练习使用,例如示波器。为了提高学生的实验能力,教师要根据教学大纲和教材,将每个实验认真分析后,确定每个实验要着重培养学生的哪些方面的能力。在学生做此实验的基础上,应使他们理解控制实验条件,探索物理规律的思想方法,指导学生手脑并用进行实验操作,强化图像处理的技能训练,并学习排除简单的实验故障。在实验教学中,既要考虑给学生以更多的锻炼机会,又要遵循循序渐进的原则。三、正确指导,注重培养学生创新能力完整的设计一个实验,要经历多个环节,在实际考查中,一般不会考查全部环节,而是只考查其中的几个环节。有的题目给出条件和实验器材,要求阐述实验原理;有的要画出实验电路图,要求领会实验原理,确定需测物理量及计算公式;有的则要求学生根据操作步骤及测定的物理量判断出实验原理……虽然考查方式不尽相同,但目前高考中几乎所有的设计型实验题都有一个共同点,就是在给出实验器材的前提下进行考查的,而且都以不同方式或多或少的对实验原理作一定的提示。作为该类实验问题应抓住以下几点:1.认清器材功能和安全要求。2.明确基本连接,例如变阻器的限流接法和分压接法,电流表的内、外接法及其优缺点。3.紧扣原理,合理连接。4.采用多种实验方法,活跃学生思维。如给出干电池、学生电源、电键、电桥、导线、安培表、伏特表、灵敏电流计、变阻箱、定值电阻等器材,要求选用合适的器材,测定干电池的电动势和内阻。这种做法,更具有灵活性和探索性,能使学生全程投入,用脑思考,有利于学生创新精神的培养和创新能力的提高。

求大学物理实验:温度传感器测试及半导体制冷控温 实验报告.

已发

跪求华东理工大学 大学物理实验的预习报告或者实验报告的答案!!!

骚年。这门课狠恶心。。。明天早上就要交了。。我还没动。。。。

用驻波法和相位比较法测声速,示波器的接线和操作有什么不同? 大学物理实验报告的思考问题2

相位比较法即出现李萨如图(l该变量为一个波长时图形恢复原状),驻波法是形成驻波利用驻波波长是原波长的1/2来测,两种方法接线无区别,示波器相位比较法需要把声源处和接收器的电压信号接到x轴和y轴上,其他无区别2。不是一直存在,一直存在的是波的干涉,示波器显示波形幅度最大时与上一最大位置差1/2声波波长3。这样才能使两边都成像,1/s+1/s"=1/f,s+s"=L,使方程有解L必须>=4f(如若,您对我的答复满意,请点击左下角“好评”,谢谢您的采纳。)

大学物理实验示波器的实验报告

实验报告实验题目:声速的测量实验目的:了解超声波的产生,发射和接收的方法,用干涉法和相位法测声速.实验内容1测量实验开始时室温.2驻波法(1)将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)将函数信号发生器接超声声速测定仪的发射端,示波器接接收端.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)通过示波器观察讯号幅度,调整移动尺改变测定仪两端的距离找到使讯号极大的位置,在极大值附近应该使用微调,即固定移动尺螺丝,使用微调螺母调整.(4)从该极大位置开始,朝一个方向移动移动尺,依次记下每次讯号幅度极大(波腹)时游标的读数,共12个值.3相位法(1)将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)将函数信号发生器接超声声速测定仪的发射端,的CH1接在接收端,CH2接在发射端.选择CH1,CH2的X-Y叠加.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)通过观察李萨如图形,调整移动尺改变测定仪两端的距离找到使图形为一条斜率为正的直线的位置.(4)从该位置开始,朝一个方向移动移动尺,依次记下每次图形是斜率为正的直线时游标的读数,共10个值.4测量实验结束时室温,与开始时室温取平均值作为温度t.收拾仪器,整理实验台.5对上面两组数据,分别用逐差计算出l,然后算出声速v,并计算不确定度.与通过t计算出的理论值计算相对误差.数据处理1理论计算实验开始时温度23.0℃,实验结束时温度21.8℃,所以认为实验时温度t=22.4℃.根据理论值计算2驻波法游标读数(mm)95.42100.50105.70110.66115.88120.90126.16131.34136.20141.44146.52151.60逐差=3(mm)30.7430.8430.5030.7830.6430.70相邻游标相减的2倍=i(mm)10.1610.409.8810.4410.0410.5210.369.7210.4810.1610.16标准差的A类不确定度查表得:当n=11,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定查表得,当P=0.95时,=1.96.所以的不确定度选取声波输出频率为34.3KHz,已知不确定度.声速对,有不确定度传递公式:空气中的声速v=(350.99±1.20)m/s(P=0.95)相对误差=3相位法游标读数(mm)110.80121.04131.14141.36151.58161.72171.88182.02192.10202.26逐差=5(mm)50.9250.8450.8850.7450.68相邻游标相减=i(mm)10.2410.1010.2210.2210.1410.1610.1410.0810.16标准差的A类不确定度查表得:当n=9,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定度查表得,当P=0.95时,=1.96.所以的不确定度选取声波输出频率为34.3KHz,已知不确定度声速对,有不确定度传递公式:空气中的声速v=(348.57±1.09)m/s(P=0.95)相对误差=误差分析:1仪器本身的系统误差和由于老化引起的误差.2室温在实验过程中是不断变化的.3无论是驻波法中在上找极大值,还是相位法在上找斜率为正的直线,都是测量者主观的感觉,没有精确测量.思考题1固定两换能器的距离改变频率,以求声速,是否可行答:不可行.因为在声速一定时,频率改变了,波长也会随之改变.所以无法同时测量出频率和波长,也就无法求出声速.不对

天然气水合物的物理特征

(一)天然气水合物的矿体特征天然气水合物主要为烃类气体和其他气体与水分子组成,其外形如冰雪状。实验室人工合成的天然气水合物通常呈白色(图7-2)。但是天然形成的水合物并非全为白色,可以有多种色彩。一些从墨西哥湾海底获取的天然气水合物就具有黄色、橙色,甚至于红色等多种鲜艳的颜色,而大西洋海底布莱克—巴哈马海台取得的天然气水合物则呈现为灰色或蓝色。这是由于在天然气水合物中还赋存有一些其他物质(如细菌和矿物等),这些物质对水合物呈现不同色彩起到了关键作用(金庆焕等,2006)。图7-2实验室人工合成的天然气水合物 (资源来源:中国数字科技馆)(二)天然气水合物的热物理学特征天然气水合物与冰之间、含气水合物层与冰层之间有明显的相似性:①相同的组合状态的变化―流体转化为固体;②均属放热过程,并产生很大的热效应———0℃融冰时需用0.335kJ的热量,0~20℃分解天然气水合物时的热量为0.5~0.6kJ/g;③结冰或形成天然气水合物时水体积均增大———前者增大9%,后者增大26%~32%;④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或天然气水合物;⑤冰与天然气水合物的密度都不大于水,含天然气水合物层和冻结层密度都小于同类的水层;⑥含冰层与含天然气水合物层的电导率都小于含水层;⑦含冰层和含天然气水合物层弹性波的传播速度均大于含水层。据估算,天然气水合物中水分子和气体分子的摩尔数分别占85%和15%,因此其密度和冰大致相等,但热导率和电阻率远小于冰且具有多孔性(表7-1)。表7-1天然气水合物和冰的物理性质表(据Sloan和Makagon,1997)天然气水合物及其充填的分散介质具有较冰更低的导热率和温度传导率,但却比水的导热率和温度传导率高。据此可以认为,热方法既可以用于陆上水合物气藏的普查和勘探,又可用于海洋沉积中气水合物气藏的普查和勘探。就物理性质而言,天然气水合物像冰,但它既可以存在于零摄氏度以下、又可以存在于零摄氏度以上温度环境中。天然气水合物具有比其他冷凝相(如液化气)气体低几十倍的气体平衡压力。当温度高于水合物生成物的临界值时,即在气体不能液化的条件下,天然气水合物可以生成(郭平等,2006)。

制冷的物理基础是什么?

什么是制冷物理基础? 制冷物理基础,是指利用物理学原理,通过降低物体温度来实现制冷的过程。制冷是一种将热量从低温物体传递到高温物体的过程,这种传递过程需要利用热量的物理特性和热力学原理,以实现冷却效果。制冷的基本原理 制冷的基本原理是通过热力学性质的应用,将热源传导到冷源,从而实现冷却效果。温度是物质内部热振动的体现形式,而热量则是物质内部分子自发运动的结果。因此,制冷方法的基本原理是通过热量的传递和温度降低来实现冷却。实现制冷的方法 目前,实现制冷的方法主要有以下几种:压缩式制冷技术;吸收式制冷技术;液化制冷技术;热泵制冷技术。压缩式制冷技术 压缩式制冷技术是一种将制冷剂压缩成高压气体,让其在冷凝器中放出冷量,从而实现冷却效果的制冷技术。它的基本原理是利用制冷剂在压缩和扩散过程中所产生的温度变化,实现温度的降低和传热的过程。吸收式制冷技术 吸收式制冷技术是利用制冷剂和介质之间的化学反应,从而实现冷却过程的一种制冷技术。它的基本原理是通过制冷剂和介质之间的气态和液态反应,将压缩热量通过吸收剂的吸热过程来实现制冷效果。吸收式制冷技术的优点是环保性高,效率高,但其高度依赖于吸收剂的选择和应用。液化制冷技术 液化制冷技术是利用制冷剂在压力和温度下的相变过程,从而实现冷却效果的一种制冷技术。其基本原理是在恒定温度下,通过改变制冷剂的压力,使其在液态和气态之间进行相变。这种制冷方法的优点是当温度较低时,可以获得较高的制冷效果,但其缺点是成本较高,不适用于大规模应用。热泵制冷技术 热泵制冷技术是一种将低温热量转移为高温热量的热力学过程,通过这种转换过程,实现制冷的效果。其基本原理是在恒定温度下,通过将低温区域的热量传递到高温区域,使低温区域的温度降低,从而实现制冷效果。总结 制冷技术的发展历程经历了很长时间,但目前广泛应用的仍然是压缩式制冷和吸收式制冷技术,其中以压缩式制冷技术使用更为广泛。除此之外,热泵和液化制冷技术也逐渐得到越来越多的应用。

行星物理学的研究内容

研究行星内部结构的主要目的是揭示行星的总体组成,和行星内部存在的物理化学性质均不相同的分层。目前还不能直接用观测手段来探测行星内部,而只能根据行星质量;半径和密度;扁率和动力学椭率;自转等观测资料来推断行星的结构模型。行星内部的高压使得行星内部的凝聚物质的状态方程极为复杂,因而行星内部结构理论的进展,远不如恒星内部结构理论迅速。幸而关于冷的固态氢和固态氨的状态方程已经相当精确地计算出来了,其他某些元素和化合物也有类似的状态变化。马库斯根据太阳型组成及分子氢与金属氢之间的相转变,提出了木星和土星的结构模型。木星和土星间的密度差可以直接用它们的质量不同来解释:与木星相比,压力造成的向金属相的过渡发生在土星的更深处,从而使金属相物质在土星的总质量中只占有较小的份额。虽然在模型计算中还在作这样或那样的修正,但上述图像目前仍然是讨论这两个行星结构的基本前提。至于天王星和海王星,它们的密度比土星要高得多,意味着含有更高浓度的氨和重元素。但对它们的内部结构,目前研究得还很少。行星磁场关于行星磁场,除地磁场外,只有零星的初步知识。由于空间探测技术的发展,情况正在迅速改变。到目前为止,已对水星、金星、火星、木星和土星的磁场作了空间探测。“水手”10号发现水星具有远比火星、金星强大得多的磁场。水星磁极的极性与地球相同,偶极矩指向南。现已肯定水星磁场是这个行星本身所固有的,但对其起源的解释还有争议。迄今为止,行星际探测还没有发现金星拥有固有磁场的充足证据,只是发现金星附近的太阳风激波-这种激波的位形可以用太阳风直接同金星大气的顶部碰撞来解释。激波后的湍流和小尺度磁场是由太阳风同金星相互作用引起的。行星际探测器“火星”2号、3号和5号对火星的探测获得了火星拥有磁场的证据。在太阳风作用下,行星磁场被限制在一定的区域,这个区域称为行星磁层。磁层内充满等离子体,其物理性质和过程受所在行星的磁场的支配。一般说来,磁层的外边界只在向日方向是清晰的,而在背日方向则模糊不清。在向日方向,可以回到行星表面的磁力线与不能回到行星表面的磁力线之间存在着截然的界线,太阳风流动的动压与行星磁场的磁压相等处就是界面。在背日方向行星磁力线与太阳风场连在一起,没有明确界面。现已发现水星、地球和木星有磁层,水星的磁层很像地球的磁层,不过规模较小。木星有更强的、结构更复杂的磁层,同地球磁层差别较大。行星磁层在太阳风作用下,行星磁场被限制在一定的区域,这个区域称为行星磁层。磁层内充满等离子体,其物理性质和过程受所在行星的磁场的支配。一般说来,磁层的外边界只在向日方向是清晰的,而在背日方向则模糊不清。在向日方向,可以回到行星表面的磁力线与不能回到行星表面的磁力线之间存在着截然的界线,太阳风流动的动压与行星磁场的磁压相等处就是界面。在背日方向行星磁力线与太阳风场连在一起,没有明确界面。 已发现水星、地球和木星有磁层,水星的磁层很像地球的磁层,不过规模较小。木星有更强的、结构更复杂的磁层,同地球磁层差别较大。磁层物理过程的主要能源是等离子体流。它是不稳定的,随时间而变化的。图中定性地表示行星磁层的拓扑位形。图的平面是由行星磁轴和太阳风速度矢量决定的。按磁力线的拓扑性质可分为四个区域。区域Ⅰ中的磁力线从太阳表面出发并回到太阳表面上的另一点。区域Ⅱ中的磁力线将太阳与行星联结起来。区域Ⅲ中的磁力线与行星表面交于两点。区域Ⅳ中的磁力线完全被包围在等离子体中,既不同太阳也不同行星接触。按等离子体拓扑来分,可分为A、B、C三区。A区包含的是未受干扰的超声速太阳风等离子体,下边界位于日冕底部。B区是磁鞘,以弓形激波波阵面和磁层顶作为界面,所包含的是被压缩的亚声速(有时是湍流的)等离子体,当它沿磁层边界流动时便变成超声速等离子体。C区是磁层。(见地球弓形激波和地球磁层)。

谁知道初中物理出现过的科学家及他们的国籍和贡献?

惠更斯 荷兰物理学家、天文学家、数学家。是与牛顿同一时代的科学家,是历史上最著名的物理学家之一,他对力学的发展和光学的研究都有杰出的贡献,在数学和天文学方面也有卓越的成就,是近代自然科学的一位重要开拓者。他建立向心力定律,提出动量守恒原理,改进了计时器。 海森伯 1932年度的诺贝尔物理学奖金于1933年授予海森伯,因为他创立了量子力学(矩阵力学)。它导致了氢的同素异形形式的发现。此外,他还获得许多其他方面的奖励。 焦 耳 焦耳最早的工作是电学和磁学方面的研究,后转向对功热转化的实验研究。 1866年由于他在热学、电学和热力学方面的贡献,被授予英国皇家学会柯普莱金质奖章。 伽利略 伟大的物理学家、天文学家、科学革命的先驱,是人类改变世界的大科学家之一。 卡文迪许 卡文迪许的才能是多方面的。1784年左右他研究了空气的组成,发现普通空气中氮占五分之四,氧占五分之一。他确定了水的成分,肯定了它不是元素而是化合物。他还发现了硝酸。 卡文迪许在热学理论、计温学、气象学、大地磁学等方面都有研究。 卢瑟福 他关于放射性的研究确立了放射性是发自原子内部的变化。他通过α粒子为物质所散射的研究,无可辩驳的论证了原子的核模型,因而一举把原子结构的研究引上了正确的轨道,于是他被誉为原子物理学之父。人工核反应的实现是卢瑟福的另一项重大贡献。 李政道 李政道和杨振宁荣获1957年度诺贝尔物理学奖,是基于他们在1956年提出的“李一杨假说”-在基本粒子的弱相互作用中宇称可能是不守恒的,这被另一位华裔女物理学家吴健雄(1912 -1997)用实验所证实,从而推翻了过去在物理学界被奉为金科玉律的宇称守恒定律,为人类在探索微观世界的道路上打开了一扇新的大门。 钱伟长 他首次将张量分析及微分几何用于弹性板壳研究并建立了薄板薄壳的统一理论,提出了线壳理论的非线性微分方程组,国际上称为“钱伟长方程”。他还首次成功地用系统摄动法处理非线性方程,迄今国际上仍用此法处理这类问题。 他首次将张量分析及微分几何用于弹性板壳研究并建立了薄板薄壳的统一理论,提出了线壳理论的非线性微分方程组,国际上称为“钱伟长方程”。他还首次成功地用系统摄动法处理非线性方程,迄今国际上仍用此法处理这类问题。 牛顿 牛顿在科学上最卓越的贡献是微积分和经典力学的创建。 阿尔伯特·爱因斯坦 著名理论物理学家,相对论的创立者。钱学森(著名科学家、物理学家。我国近代力学事业的奠基人之一。在空气动力学、航空工程、喷气推进、工程控制论、物理力学等技术科学领域做出许多开创性贡献。) 2、钱三强(核物理学家,中国科学院院士,在“核裂变”方面成绩突出,是许多交叉学科和横断性学科的倡导者。为中国原子能科学事业的创立和“两弹”研究作出了重要贡献) 3、竺可桢(地理学家、气象学家、中国现代气象学和地理学的一代宗师,是我国物候学研究的创始者、推动者) 4、李四光(古生物学家、地层学家、大地构造学家、第四纪冰川学家。是中国地质力学的创始人。“”化石新分类标准的提出、中国南方震旦纪与北方石炭纪地层系统的建立、中国东部第四纪冰川的发现与研究是他对地质科学的重大贡献。) 5、袁隆平(农学家、杂交水稻育种专家,中国研究杂交水稻的创始人,世界上成功利用水稻杂交优势的第一人。他于1981年荣获我国第一个国家特等发明奖,被国际上誉为“杂交水稻之父”。) 6、侯德榜(著名科学家,杰出的化工专家,我国重化学工业的开拓者) 7、周培源(著名力学家、理论物理学家、教育家和社会活动家,我国近代力学事业的奠基人之一) 8、茅以升(著名桥梁专家、土木工程学家、桥梁专家、工程教育家) 9、邓稼先(物理学家,在核物理、理论物理、中子物理、等离子体物理、统计物理和流体力学等方面取得突出成就) 10、童第周(生物学家、中国实验胚胎学的创始人) 11、钱伟长(著名力学家、应用数学家、教育家和社会活动家。是我国近代力学的奠基人之一。兼长应用数学、物理学、中文信息学,著述甚丰。特别在弹性力学、变分原理、摄动方法等领域有重要成就。) 12、严济慈(物理学家、教育家,中国现代物理研究奠基者之一。) 13、吴有训(物理学家,中国近代物理学奠基人,教育家) 14、张钰哲(中国现代天文学家,“中华”小行星的发现者。) 15、汤飞凡(微生物学家,世界上第一个分离出沙眼病毒的人,沙眼病毒被称为“汤氏病毒”) 16、丁颖(著名的农业科学家、教育家、水稻专家,中国现代稻作科学主要奠基人。) 17、梁希(林学家) 18、林巧稚(著名妇产科专家中国科学院第一位女学部委员。) 19、张孝骞(中国科学院学部委员、政协全国委员会常委等职。他长期从事内科学的教学和科研工作,是中国胃肠病学的奠基人,一生确珍和治疗了许多疑难病症。) 20、吴阶平(医学家,医学教育家,中国泌尿外科开拓者之一,在泌尿外科、男性计划生育等方面有突出贡献。)

了解光子碰撞有助于寻找标准模型之外的物理

欧洲核子研究组织大型强子对撞机的紧凑介子螺线管实验。来源:欧洲核子研究中心 莱斯大学的物理学家和他们的同事们刚刚证实了一个有87年 历史 的预测,即物质可以直接由光产生。他们详细说明了这一过程将如何影响未来对原始等离子体和标准模型之外的物理学的研究。 “我们本质上是在研究光的碰撞,”莱斯大学物理学和天文学副教授、发表在《物理评论快报》(Physical Review Letters)上的这项研究的合著者李伟(Wei Li)说。 “我们从爱因斯坦那里知道,能量可以转化为质量,”粒子物理学家李说,他与数百名同事在高能粒子加速器上进行实验,如欧洲核研究组织的大型强子对撞机(LHC)和布鲁克海文国家实验室的相对论重离子对撞机(RHIC)。 像RHIC和LHC这样的加速器通常通过加速接近光速的原子碎片并使它们相互碰撞来将能量转化为物质。2012年在大型强子对撞机中发现希格斯粒子就是一个显著的例子。当时,希格斯粒子是标准模型(Standard Model)中最后一个未观测到的粒子。标准模型描述了原子的基本作用力和构成要素。 令人印象深刻的是,物理学家们知道标准模型只能解释宇宙中大约4%的物质和能量。李教授说,本周由赖斯大学博士后研究员杨帅主持的这项研究,对研究标准模型之外的物理学具有启示意义。 “有论文预测,你可以从这些离子碰撞中创造出新的粒子,在这些碰撞中我们有如此高的光子密度,这些光子-光子相互作用可以创造出标准模型之外的新物理,”李说。 杨说:“要寻找新的物理,必须非常精确地理解标准模型过程。当人们建议使用光子-光子相互作用来寻找新的物理学时,我们在这里看到的效应以前没有被考虑过。考虑到这一点非常重要。” 当物理学家加速相反方向的重离子束并将它们指向对方时,就会产生这种效应。这些离子是像金或铅这样的大质量元素的原子核,而离子加速器对于研究强力特别有用,这种强力将原子核中的中子和质子中的夸克束缚在一起。物理学家利用重离子碰撞来克服这些相互作用,并观察夸克和胶子,夸克和胶子通过强作用力相互作用时交换粒子。 但原子核并不是重离子加速器中唯一会发生碰撞的东西。离子束也会产生电场和磁场,这些电场和磁场用自己的光云将束中的每个原子核包裹起来。这些云随着原子核移动,当来自相反光束的云相遇时,被称为光子的单个光粒子可以迎面相遇。 在7月发表的一项PRL研究中,Yang和他的同事利用RHIC的数据表明光子-光子碰撞从纯能量中产生物质。在实验中,轻碰撞与原子核碰撞同时发生,产生了一种叫做夸克-胶子等离子体(QGP)的原始汤。 “在RHIC中,你可以让光子-光子碰撞在形成夸克-胶子等离子体的同时产生质量,”杨说。“所以,你在夸克胶子等离子体内部创造了新的质量。” 杨博士2018年发表在PRL上的关于RHIC数据的博士论文表明,光子碰撞可能会以一种轻微但可测量的方式影响等离子体。李说,这既有趣又令人惊讶,因为光子碰撞是一种电磁现象,而夸克-胶子等离子体是由强力主导的,比电磁力强得多。 “要与夸克-胶子等离子体进行强烈的相互作用,只有电荷是不够的,”李说。“你不会期望它与夸克-胶子等离子体发生非常强烈的相互作用。” 他说,人们提出了各种各样的理论来解释杨的意外发现。 “一种提出的解释是,光子-光子相互作用看起来不同,不是因为夸克-胶子等离子体,而是因为两个离子彼此更接近,”李说。“这与量子效应以及光子如何相互作用有关。” 杨推测,如果是量子效应造成了这种异常现象,当离子彼此擦肩而过,但各自的光云中的光子发生碰撞时,就会产生可检测的干涉图样。 “所以这两个离子不会直接碰撞,”杨说。“他们实际上是经过的。它被称为超外围碰撞,因为光子会碰撞,但离子不会碰撞。” 理论认为,超外围光子-光子碰撞的量子干涉模式应与通过的离子之间的距离成正比。利用大型强子对撞机紧密型介子螺线管(CMS)实验的数据,杨、李和同事们发现,他们可以通过测量一些完全不同的东西来确定这个距离或碰撞参数。 欧洲核子研究组织大型强子对撞机的紧凑介子螺线管实验。来源:欧洲核子研究中心 “这两个离子,当它们靠近时,离子被激发并开始发射中子的可能性就会更高,中子会沿着束流线直走,”Li说。“我们在CMS有一个探测器。” 每次超外围光子-光子碰撞都会产生一对名为μ子的粒子,它们通常会从碰撞的相反方向飞出。正如理论预测的那样,Yang, Li和同事们发现量子干涉扭曲了介子的离开角度。而近距离发射的离子之间的距离越短,扭曲就越大。 李说,这种效应是由光子碰撞的运动引起的。虽然每个光子都随其主离子向光束的方向移动,但光子也可以远离它们的主离子。 “光子也有垂直方向的运动,”他说。“事实证明,确实如此,随着撞击参数越来越小,垂直运动越来越强。 “这让它看起来像是有什么东西在修改μ子,”李说。他说:“看起来一个人的发展角度和另一个人不同,但事实并非如此。这是光子运动方式改变的假象,垂直于光束方向,在产生介子的碰撞之前。” 杨说,这项研究解释了他之前发现的大多数异常现象。同时,该研究为控制光子相互作用的冲击参数建立了一种新的实验工具,将产生深远的影响。 他说:“我们可以轻松地说,大部分是来自QED效应。”“但这并不排除夸克胶子等离子体仍然存在相关效应。这项工作给了我们一个非常精确的基线,但我们需要更精确的数据。我们还有至少15年的时间在CMS收集QGP数据,数据的精度将越来越高。”

本科物理学师范就业前景

第九十一回 金平府元夜观灯 玄英洞唐僧供状 第九十二回 三僧大战青龙山 四星挟捉犀牛怪

关於电浆(物理科幻迷请进)

光是什么?电磁振荡。电浆是什么。等离子体。是物质。

物理和化学有什么区别?

简单来说:物理是物质性的变化,而化学是机物,相对的反应。不同在于一个是粒子,一个光子的对比,会更加了解。

我眼中的物理 作文

物理学是探讨物质结构和运动基本规律的基础学科。与其他科学相比,物理学更着重于物质世界普遍而基本的规律的追求。 物理学的任务和目的是:用一系列尽可能简明的概念和方程(定律),去统一概括物质的结构和基本规律。 物理学依赖于一种基本信念:物质世界存在着完整的因果链条,即自然界是统一的,牛顿力学则是体现这种信念的第一个成功范例。 从牛顿力学的创建到现在,已经三百多年了,物理学已经大大发展了,远远超过了经典力学原有的水平。但是,就物理学的最基本的追求和物理学的总目标来说,却一直没有变化。经典力学时代的追求和目标,可以说时至今日仍然是整个物理学的追求和目标。这个最基本的追求和目标,就是自然界的统一。的确,从整个物理学的发展进程中,可以看到一条鲜明的主线,这就是执著地追求宇宙的统一,找寻支配宇宙万物的最基本、最统一的规律。 物理学的兴起,是从经典力学开始的。在经典力学之前,人类文明中虽然已有不少具有物理价值的发现和发明,但是并不存在一门独立的物理学。17世纪,牛顿在伽利略、开普勒等人工作的基础上,建立了完整的经典力学理论,这是现代意义下的物理学的开端。从18世纪到19世纪,在大量实验的基础上,卡诺、焦耳、开尔文、克劳修斯等建立了宏观的热力学理论,克劳修斯、麦克斯韦、玻耳兹曼等建立了说明热现象的气体分子动理论,库仑、奥斯特、安培、法拉第、麦克斯韦等建立了电磁学理论。至此,经典物理学理论体系的大厦巍然耸立。然而,正当大功甫成之际,一系列与经典物理的预言极不相容的实验事实相继出现,人们发现大厦的基础动摇了。在这些新实验事实的基础上,20世纪初,爱因斯坦独自创立了相对论;先后在普朗克、爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、玻恩等多人的努力下,创立了量子论和量子力学,奠定了现代物理学的基础。20世纪,随着科学的发展,从物理学中不断地分化出了诸如粒子物理、原子核物理、原子与分子物理学、凝聚态物理学、激光物理、电子物理、等离子体物理等名目繁多的新分支,以及从物理学和其他学科交叉产生的诸如天体物理、地球物理、化学物理、生物物理等众多交叉学科。 当今物理学的研究领域里有两个尖端,一个是高能物理,另一个是天体物理。前者在最小的尺度上探索物质更深层次的结构,后者在最大的尺度上追寻宇宙的演化和起源。可是近几十年的进展表明,这两个极端竟奇妙的衔接在一起,成为一队密不可分的姊妹学科。 现代物理学的发展,要求物理学家不应总把自己的目光和兴趣局限于狭窄的本门学科,而要放眼于更广阔的天地。人们公认,当今物理学最有生命力的是不同学科杂交的领域,有志的年轻物理学工作者在那里是大有作为的。

物理学哪些专业适合科研?发展前景如何?有何忠告?

南京大学欢迎你!南京大学的凝聚太世界领先~物理系全国第一~低调忠厚的学风和艰苦朴素的作风很适合学术~ 科研其实并不是那么难做,而且每一个分支也有各自的发展前景。不能像大物理学家那样做很宏观的工作也没关系,因为还有很多具体的东西搞一搞也很好滴~

粒子物理与原子核物理的相关学科

070201 理论物理  070202 粒子物理与原子核物理  070203 原子与分子物理  070204 等离子体物理  070205 凝聚态物理  070206 声学  070207 光学  070208 无线电物理  082701 核能科学与工程  082702 核燃料循环与材料  082703 核技术及应用  082704 辐射防护及环境保护

物理学主要分几大块?

可以多读些科普读物,提升自己学习物理的兴趣。重点推荐,鬼脸物理课,小说笔法讲述物理学发展史,记述物理学大牛们的成长历程,非常适合高中生阅读。

物理学专业学什么?

物理学专业本科生知识体系由知识体系和主要实践性教学环节两部分构成。其中,知识体系涉及通识类知识、学科基础知识和专业知识。专业知识又分为专业基本知识和特定专业方向知识。以下内容规定的学科基础知识和专业知识适用于所有高校的物理学专业本科生培养,而特定专业方向的知识体系则由各高校自主构建。物理学是一门普通高等学校本科专业,属物理学类专业,基本修业年限为四年,授予理学学位。物理学专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。专业培养目标物理学专业本科人才培养目标,主要是为从事物理学及相关学科前沿问题研究和教学的专业人才打下基础,同时也培养能够将物理学应用于现代高新技术和社会各领域的复合应用型人才。经过物理学本科阶段的专业学习和训练,学生应具备在物理学及相关学科进一步深造的基础,或满足教学、科研、技术开发以及管理等方面工作的要求。物理学专业所培养的本科人才应具备良好的数学基础和数值计算能力,掌握物理学的基本理论、基本知识和基本技能;接受科学思维和物理学研究方法的训练,具有良好的科学精神、科学素养、科学作风和创新意识;具备一定的独立获取知识的能力、实践能力、研究能力或新技术开发能力。

气态到等离子态是物理变化还是化学变化 物态变化是物理变化但它又有

物理变化。电子在高温下脱离原子。新粒子产生是指原子的离子态被激发

山东大学物理专业排名

山东大学物理学科为全球前0.3%,国内排名第8位。山东大学物理学院历史悠久、学术实力雄厚、办学特色明显,是国家“211工程”和“985工程”重点建设的学科单位之一,物理学科是山东大学双一流“化学与物质科学”学科群的重要支撑学科。1、人才培养体系完善学院现设有物理学、应用物理学、两个本科专业。其中,物理学被批准为国家理科基础科学研究与教学人才培养基地,应用物理专业被评为省级品牌专业。学院拥有一个国家物理实验教学示范中心,设有泰山学堂物理取向班、王淦昌物理基地班、严济慈物理学英才班等多种人才培养模式,致力于培养创新拔尖人才。学院拥有物理学一级学科博士学位授权点(涵盖凝聚态物理、粒子物理与原子核物理、原子分子物理、理论物理、无线电物理、等离子体物理、光学、声学8个二级学科博士点)和材料物理与化学工学专业博士点,各博士点均设有博士后流动站。2、师资力量雄厚全院现有教职工147人,其中教师90人,包含教授56人,研究员3人,副教授23人,副研究员1人,讲师1人,助理研究员6人。其中获教育部“长江学者奖励计划”特聘教授1人,国家杰出青年基金获得者3人,国家高层次青年人才10人,入选国家百千万人才3人,教育部跨世纪、新世纪优秀人才7人,中组部“万人计划”科技创业领军人才1人,享受国务院政府特殊津贴10人。山东省“泰山学者攀登计划专家1人、特聘教授4人、青年专家9人,山东省有突出贡献中青年专家4人,山东省杰出基金获得者10人;山东大学特聘教授6人,兼职特聘教授1人,杰出中青年学者11人,齐鲁青年学者26人,山东大学未来计划青年学者11人。3、学科基础厚重,特色鲜明经过几代人的努力,山东大学物理学科不断发展壮大,形成了比较完备的学科体系,具有良好的学科构架,成为山东大学最早进入全球ESI前1%排名的学科之一。物理学科成为入选山东大学“学科高峰计划”首批重点学科建设项目的主流特色学科之一。4、发展成果显著经过“十五”、“十一五”、“十二五”规划建设,在一级学科和重点学科建设等方面保持在全国高校先进行列,创建了国内有特色与影响的物理人才培养基地,在教学改革、办学模式与人才培养诸方面发挥了示范作用。近几年来,在科研、教学和人才培养等方面又取得了一批标志性的研究成果。2005年王克明教授获得国家自然科学二等奖,梁作堂教授获得国家杰出青年基金。

物理专业存在吗?

物理学当然是存在的,现在几乎所有的力学,光学,电磁学,电工学,微波,天文学和气象学都是物理学分出去的,严格来说他们还仍然属于物理。只不过是更工程化了一些。物理学专业现在主要的方向有理论物理、粒子物理与原子核物理、原子与分子物理、等离子体物理、凝聚态物理、光学、声学、无线电物理、天体物理等方向理论物理是大量计算的物理,特别是数学大量的应用,也包含很多方面,各个方面,只要涉及大量理论数学计算的都称为理论物理.凝聚态物理则是考虑固体,液体,和趋于固体和液体之间的一种凝聚态,晶体多数处于这种状态.有趣的是,所有的学科几乎都是物理学分细化了以后分出去的,各个学科尽管表面上繁花似锦,但是他们都要满足一定的数学规律,特别是物质守恒,动量守恒,能量守恒,电磁守恒这些规律以及他们的相似描述方法渗透到科学每一个分支。

宇宙流的物理解释是什么?

宇宙流是指在宇宙中广泛存在的大规模物质运动现象,包括星际物质的流动、星系之间的物质运动以及宇宙大尺度结构的形成等。这些物质流动是宇宙演化的重要组成部分,对于我们理解宇宙的结构、形成和演化过程具有重要的意义。宇宙流的物理解释主要涉及宇宙学和天体物理学领域的研究。在宇宙学中,宇宙流通常被解释为暗物质和气体的运动,它们被引导和牵引着形成了星系和星系团等宇宙大尺度结构。暗物质的引力作用是宇宙流动的主要驱动力之一,它通过对普通物质的引力作用来控制宇宙的演化。在天体物理学中,宇宙流动可以被解释为气体和等离子体在宇宙中的运动,包括星际介质中的气体流动和恒星大气层中的物质流动等。这些物质流动通常由星际介质和恒星活动产生的等离子体和磁场驱动,如恒星的恒星风、超新星爆发和星系团内的大规模等离子体流动等。宇宙流的物理解释涉及多个领域的研究,包括宇宙学、天体物理学、等离子体物理学等,需要通过对不同物理过程和观测数据的综合研究来得到更加深入的理解。

物理学除了光学,电学,力学,还包括什么啊

●牛顿力学(Mechanics)研究物体机械运动的基本规律及关于时空相对性的规律●电磁学(Electromagnetism)研究电磁现象,物质的电磁运动规律及电磁辐射等规律●热力学(Thermodynamics)研究物质热运动的统计规律及其宏观表现●相对论(Relativity)研究物体的高速运动效应以及相关的动力学规律●量子力学(Quantummechanics)研究微观物质运动现象以及基本运动规律此外,还有:粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等等。

浅谈小学音乐课堂中音乐游戏的运用 浅谈实验在物理课堂中的运用

  物理学科本身是以观察和实验为基础的自然科学,因而在物理实验教学中充分发挥实验魅力是激发学生学习兴趣的重要手段。一个设计完美、充满悬念的实验,常常会诱发学生的好奇心、激起学生强烈的求知欲,而使学生在课堂学习中情绪饱满,保持良好的兴奋状态。这样一来,课堂效果又怎么会不好呢?那么,如何运用物理实验教学来培养学生的兴趣呢?   一、运用演示实验,创设物理情境   在演示实验中,可通过形象真实、生动有趣的实验,为学生营造出活生生的物理情景,使学生感到新鲜、好奇,就会对物理课感兴趣。例如,在讲授流体压强与流速的关系时,我们可以用一只漏斗、一只乒乓球给同学们演示一个有趣的现象。老师先把漏斗的尖部咬在嘴里,漏斗口朝下,当把乒乓球放在漏斗里,向漏斗里吹气的同时把手松开,奇妙的现象出现了,虽然手离开了乒乓球,但乒乓球并不落下来,却在漏斗口附近跳动着,同学们被这一现象惊呆了,“为什么乒乓球不落下来呢?难道重力就不存在了吗?” 再将漏斗和乒乓球交给某个同学,让他仿照老师的动作表演,他会吸足了气,集中力量对准漏斗尖部吹气,想把乒乓球吹下去,结果乒乓球照样在漏斗口附近跳动着,并没有落下去,你吹得越厉害,它跳动得越快。这一场面,会激发每一个同学都在努力思考,这是为什么?这时候,老师再解释这一奇妙的现象,这一堂压强课的效果可想而知。   二、运用分组实验,培养动手能力   在分组实验中,教师可利用学生比较好动、喜欢做实验的特点,通过正确引导和严格规范,让学生积极主动地自己动手,亲自操作、观察、记录、分析和总结物理现象,对物理知识再认识、再学习和再提高,它能够加强学生对学习物理的兴趣。如“练习使用电流表”,先让学生动手操作,熟悉电流表的使用规则,然后引导学生通过测量数据探索串联电路和并联电路中电流的规律。由于给了学生自由的探究空间和时间,学生积极性很高,课堂气氛活跃,学生连接电路的方法,常常是我们在 教学设计 中无法预料到的,最后将学生连接的电路进行汇总分析,加深了学生对这部分知识的理解,提高了学生学习物理的兴趣。   三、巧用课外实验,滋养物理情感   在课外实验中,教师一定要以极大的热情对学生做好指导,使学生在课外实验的成功中享受到快乐,即让学生把实验当作是一种享受,从而激发学习物理的兴趣。因此,对课本中布置的小制作、小实验等课外实验,教师都必须认真指导学生做好,并次次都要对其作品进行评比,引入“竞争”机制,为学生创造“自我表现”的机会,有效地调动学生学习的积极性。对此,学生定感兴趣无穷,对实验百做不厌,并乐在其中。例如,在学完“物体的浮沉条件”后,安排学生回家寻找身边的器材自制“潜水艇”,并要求学生一周后把自制的“潜水艇”带回学校进行评比,作业布置后学生的热情非常高,一周后,每一个学生都能把精心制作的“潜水艇” 带回学校,并自发地在同学之间进行交流,谈制作的过程、体会,比作品的优劣、性能的好坏。最后通过全班同学对“小制作”进行评分,作为平时的实验成绩,还挑选好的作品留下来,参加展评。这样极大地调动了学生的积极性,既拓宽了学生的知识面,提高了学生的动手能力,同时也激发了学生的学习兴趣。   四、提升实验能力,培养创新意识   目前教育改革的目标是将应试教育变为素质教育,培养学生的创新精神和创新能力,物理实验教学能以其生动的魅力和丰富的内涵为学生发挥创造潜能提供独特的创造性环境。因此,物理实验教学环节应成为培养学生创新精神的重要教育资源,如何开发利用好这块资源开展创新教育,笔者认为,可从以下几方面努力:   1.增加实验教学的探究性   探究性实验的优点是不仅能激发学生的学习兴趣、培养学生的性格品质,而且还能提高学生的科学素养和创新精神。苏科版初中物理教材中探究实验已明显增加,且演示实验、小实验等都可挖掘一些探究的要素,以增加实验内容的探究性。所以教师应想方设法将实验设计为探索性实验,有意识地创设一种探究的氛围,扩大探究空间和思维空间,并能在学生探究过程中寻找创新的突破口。   2.注重实验结论的应用与延伸   掌握知识的最终目的是应用知识解决实际问题,从而进一步巩固和延伸所获取的知识并向知识与技能的深度、广度作更进一步的探索。如通过实验探究获得了凸透镜成像的规律后,及时向学生介绍了“放大镜”、“照相机”、“投影仪”的原理、制作技术及其在生活中的应用等,同时我又启发学生进行创新联想“你能否同时使用两个凸透镜成像吗?” 同学们听后热情高涨,都想试一试,从而使同学们的创新欲望得到了提高。   3.营造开放的实验环境   根据学生的实际情况,组织开展形式多样、内容丰富的课外活动,营造有利于各层次学生开展实验的开放性学习氛围,这是发展学生个性特长,养成用实验探究未知,培养大胆质疑的创新精神的有效举措。如:学习了安全用电的常识后,给他们一些基本的实物,像电线、螺旋式灯泡和灯头、卡口式灯泡和灯头、开关、电工刀、胶带等。让学生直接在木板或在墙上进行分组安装,老师在检查无误后通电进行评比。“灯泡亮了!我也可以当电工了!”成功的喜悦感油然而生。   总之,物理实验不仅是帮助学生观察现象、掌握规律的手段,也是激发学生学习兴趣、培养学生创新能力的重要途径。加强初中物理实验教学,督促学生重视和学好物理,提高各方面的素质,是当前初中物理教学研究的重要课题,也是新课改对初中物理教学的重要要求。   (作者单位:江苏省金湖县白马湖中心初中)

世界物理学专业大学排名

世界物理学专业大学排名第一的是麻省理工学院,其次是斯坦福大学、哈佛大学等。1、麻省理工学院Department of Physics麻省理工学院创立于1861年,1865年物理系创立,1900年,美国的第一个物理化学实验室首先在MIT建立。物理系的历史伴随着麻省理工院校的发展而快速发展,其取得的傲人成绩也造就了今日的麻省。MIT的物理学专业课程主要包括四个维度,天体物理,原子、凝聚态及等离子体物理,实验原子核物理与粒子物理,理论原子核物理与粒子物理。其拥有的设施优势和人员优势非常可人。MIT物理系已经发展成为拥有75名教师、280个本科专业245名研究生、美国排名最高的物理系之一。麻省理论物理中心(CPT)是基础物理学的统一研究和教学中心,其中有14名麻省理工学院教师,还有大约十几名博士后研究员,以及长期访问者。2、斯坦福大学斯坦福于1885年成立,1891年开始正式招生。1948年11月6日,物理学教授Felix Bloch成为斯坦福大学第一位诺贝尔奖获得者。斯坦福大学物理系主要有几个研究领域:天体物理,宇宙学,粒子物理学,原子和激光物理学以及凝聚态物理学等。需要注意的是,斯坦福大学物理系研究生只招收PHD与MS学生,要求申请者递交GRE成绩,但并无最低GRE分数要求。每年斯坦佛会有600多名申请者申请物理系,但大约只发布60个左右的offer。3、哈佛大学哈佛大学物理系是哈佛比较大的一个系,有十八个专业方向共96门课程。开设的研究领域有:天体物理与天文学,实验原子、分子与光学物理,实验生物物理,实验凝聚态物理等。研究生只招收PhD学生,要求申请者递交GRE和GRE物理成绩,无最低GRE分数要求。物理系有超过50名教员,100多个博士后和约200名研究生。

理论物理、凝聚态物理、光学、原子分子物理、粒子物理核物理、声学、等离子体物理以及天体物理

YUN

物理学的专业介绍及就业情景

物理学的专业介绍及就业情景    天文物理,等离子体物理,高能(粒子)物理,量子物理   这几个方向的物理工作者由于本身研究内容非常先进或理论,有些研究目前只是为了满足人类的好奇心而从事的研究,离应用还很长的距离。因此学习这些方向的学生毕业以后绝大多数是留在学校和在相应的研究机构从事研究工作。值得一提的是,由于最近位于日内瓦的大型电子对撞机开始运作,相信接下来的十多年,高能(粒子)物理的研究依然比较活跃。对于这几个方向而言,继续从事研究工作是最好的选择。    原子核物理   原子核物理的工作者也是从事教育和研究工作居多,不过这里把他们和以上的几个方向区别开来是因为原子核物理的研究偏重于如何应用核技术。现在核技术已经在越来越多的领域得到了应用。最重要的是国防事业,核能源的开发,另外同位素药剂应用于某些疾病的诊断或治疗;同位素仪表在各工业部门用作生产自动线监测或质量控制装置。加速器及同位素辐射源已应用于工业的辐照加工、食品的保藏和医药的消毒、辐照育种、辐照探伤以及放射医疗等方面。为了研究辐射与物质的相互作用以及辐照技术,已经建立了辐射物理、辐射化学等边缘学科以及辐照工艺等技术部门,但是核物理专家是研究出这些仪器,使用这些仪器并不需要核物理学家。因此对于核物理而言,继续从事研究工作依然最合适,不过从事核电站的工程师也是越来越多人的选择。    凝聚态物理   凝聚态由于其研究的范围太广,就业情况也要分开看是研究的具体内容是什么。做半导体,超导体,纳米材料的"由于和EE,材料比较相关,可以在IT、电子行业做新材料研发,测试工程师。不过现在的物理系比较偏重理论研究,因此事实上大部分人还是继续做研究工作。凝聚态毕业生找工作时,去一些典型的工业重地为佳:例如加州,德州,滨州等。例如美国国家半导体公司就设立在加州,德州石油工业发达,美孚等石油公司的总部都在德州,滨州煤炭,钢铁工业发达,匹兹堡是美国最大的钢铁中心。凝聚态的同学想要在工业界找到工作的话,务必提前准备,补充所缺的知识如计算机编程,统计等,才能在工业界顺利找到工作。因此,凝聚态的就业面比起以上提到的各个方向都宽了不少。    光学   光学作为21世纪物理的一个最热门方向。它是物理学中最接近应用的一个方向,和EE(电子电器工程)结合得也最紧密。特别是如果出身于三大光学中心(University of Rochester,University of Central Florida,University of Arizona)的光学院的话,由于它们得到工业界的广泛认可,联系又紧密,就业不成问题。此外光学研究者可以在光纤通讯,光学(光电子)器件公司,太阳能产业,激光,液晶材料等领域工作。太阳能方面,虽然经济低迷,不过美国的太阳能产业仍取得长足进步。去年,美国太阳能设备市场比2008年扩大近一倍;安装太阳能设备的美国民房与日俱增,屋顶式太阳能设备的发电量增加了约两倍。在其他行业纷纷裁员之际,太阳能行业的就业人数却在扩大。在美国利用最多的五个州是加州,佛罗里达州,新泽西州,科罗拉多州,亚利桑那州。   跟EE结合比较多的是关于光电子,光通讯方面的了。这方面的就业就更广了,一般的网络公司,我们熟悉的中国移动,中国电信,联通,铁通等等,以及仪器设备商,例如华为,中兴,TPLink等等。   至于光子晶体,由于其特殊的结构和对于光的特殊性质,对于发明新的光学仪器有很大的帮助,例如太阳能电池就可以通过光子晶体而提高太阳能的利用效率,又例如可以利用光子晶体制造新的光开关,光放大器,光聚焦器等等。光子晶体极有可能取代传统的光学产品,对经济社会发展起到不可估量的作用。就业方面以光学仪器公司,太阳能相关的产业居多。   在美国,光学毕业生在工业界工作已经是很平常的事,并且薪水是众多方向中最高的,最适合想往工业界发展的物理申请者。 ;

中科院等离子体物理研究所待遇怎么样

正副研究员(博士)来说,除了自己的项目,每月最少1W+内容:申请和做项目,有时候非常忙。研究生来说,每个月可能2000左右,研一研二可能不到2000。内容:跟老师做项目,上课。

等离子体物理学是什么?

等离子体物理是研究等离子体的形成及其各种性质和运动规律的学科。宇宙间的大部分物质处于等离子体状态。例如:太阳中心区的温度超过一千万度,太阳中的绝大部分物质处于等离子体状态。地球高空的电离层也处于等离子体状态。19世纪以来对于气体放电的研究、20世纪初以来对于高空电离层的研究,推动了等离子体的研究工作。从20世纪50年代起,为了利用轻核聚变反应解决能源问题,促使等离子体物理学研究蓬勃发展。

中国科技大学物理系有哪几个专业?

【1】物理系(2系)有两个专业 凝聚态物理 微电子学与固体电子学 【2】如果你指的是物理学院的话,有物理系(2系)近代物理系(4系)光学与光学工程系、天文学系(22系),具体专业详见http://yz.ustc.edu.cn/deplist_214.htm

中国科学院等离子体物理研究所的历任领导

中国科学院等离子体物理研究所历届所领导组成人员2005年-2009年期间的所领导:(2005年3月16日-2009年8月18日)所长:李建刚副所长:万宝年、武松涛、傅鹏党委书记:匡光力 张晓东2000-2005年期间的所领导:(2000年5月26日-2005年3月16日)所长:王绍虎副所长:虞清泉、李建刚、匡光力、孙世洪党委书记:王绍虎党委副书记:匡光力1995-2000年期间的所领导:(1995年12月29日起任期四年)所 长:万元熙副所长:翁佩德、谢纪康、任兆杏党委书记:王绍虎党委副书记:孙世洪1991年-1995年的所领导:(1991年1月26日-1995年12月29日)所长:霍裕平副所长:万元熙、王绍虎(兼)、翁佩德、邱励俭(任期至1993年12月8日止)、胡懋廉(任期至1993年12月8日止)、谢纪康(1993年12月8日起任期至届满)、任兆杏(1993年12月8日起任期至届满)党委副书记:王绍虎 (1990年12月21日-1991年7月17日)党委书记:王绍虎 (1991年7月17日-1996年7月18日)1986年-1991年期间的所领导:(1986年10月15日起任期三年)所长:霍裕平副所长:邱励俭、万元熙、唐功先、王绍虎(1987年12月26日起任期至届满)党委副书记:邵世举 (1984年4月27日-1989年12月)、王绍虎(1987年1月4日-1990年12月21日)1981年-1985年期间的所领导副所长:霍裕平(1981年10月21日任命)所长:霍裕平(1983年10月21日起任期三年)副所长:唐功先 (1984年2月22日至1986年10月15日)邱励俭(1984年10月4日至1986年10月15日)万元熙(1985年12月3日至1986年10月15日)党委书记:刘曙 (1981年11月16日-1982年5月9日)党委副书记:邵世举 (1981年11月16日-1984年2月27日)1978年-1981年期间所领导1978年5月11日任命的所负责人:李吉士、陈春先1979年7月7日任命的所领导:副所长:李吉士(1979年7月7日-1981年5月15日)李凤楼(1979年7月7日-1989年7月28日)陈春先(1979年7月7日-1981年11月16日)邱励俭(1979年7月7日-1984年19月4目)王宇(1979年7月7日-1979年7月31日)姚民军(1979年7月7日-1981年1月19日)党委书记:施炳智 (1978年7月1日-1980年12月12日)党委副书记:邵世举 (1981年3月24日-1981年11月16日)

中国科学院等离子体物理研究所的科室师资

等离子体所设有12个研究室、2个中心、2个职能管理部门和4个高科技公司。截至2012年底,在职职工627人。拥有4个博士点,11个硕士点和1个博士后流动站,已培养研究生近千人,目前在读研究生400多人。
 首页 上一页  45 46 47 48 49 50 51 52 53 54 55  下一页  尾页