发动机的原理

阅读 / 问答 / 标签

涡桨,涡喷,涡扇发动机的原理分别是什么?各有什么性能特点?

都是燃气轮机的不同变种。机械效率在内燃机中最高,烧航空煤油。

汽车发动机的原理是什么

四冲程汽油机 往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。 一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(compression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 (3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 (4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。四冲程柴油机 二. 四冲程柴油机工作原理 四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同. (1) 进气冲程 汽车发动机进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。 (4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。参考资料:http://baike.baidu.com/view/493293.htm 如果我的回答对你有帮助~ 请点击【我回答下】的【选为满意回答】按钮!不懂可追问~~~ 方便的话,顺手点个【赞同】吧~ 如果有其他问题请鼠标放在我账号上点击【求助知友】按钮【水酉不悦】 ,向我提问~ 〓来自知道团队【数理化梦之队】〓 祝学习进步

汽车发动机的原理是什么?请求讲解

汽车发动机电脑的工作原理是将热能转化为动能。汽车发动机电脑是现在电控汽车的核心部分,他的作用简单来讲有两个:1、接受各个传感器的信号,计算出相应的数据;2、根据计算出来的数据对汽车发动机的燃油喷射、点火、怠速进气等进行控制,保证发动机的正常运转,并保证发动机排放污染降到最低。如果对汽车行业感兴趣可以到专业的汽车培训院校进行系统化学习。

一般轿车发动机的原理

六个缸是呈“V”字型排列的

汽车发动机的原理讲解

四冲程汽油机的工作循环由4个活塞行程组成,即进气行程、压缩行程、作功行程和排气行程:1、进气行程;进气门开启,排气门关闭,活塞由上止点向下止点移动,活塞上方的气缸容积增大,产生真空度,气缸内压力降到进气压力以下,在真空吸力作用下,通过化油器或汽油喷射装置雾化的汽油,与空气混合形成可燃混合气,由进气道和进气门吸入气缸内。进气过程一直延续到活塞过了下止点进气门关闭为止。接着上行的活塞开始压缩气体;2、压缩行程;进排气门全部关闭,压缩缸内可燃混合气,混合气温度升高,压力上升。活塞临近上止点前,可燃混合气压力上升到0.6~1.2MPa左右,温度可达330℃~430℃;3、作功行程;在压缩行程接近上止点时,装在气缸盖上方的火花塞发出电火花,点燃所压缩的可燃混合气。可燃混合气燃烧后放出大量的热量,缸内燃气压力和温度迅速上升,最高燃烧压力可达3~6MPa,最高燃烧温度可达2200℃~2500℃。高温高压燃气推动活塞快速向下止点移动,通过曲柄连杆机构对外作功。作功行程开始时,进、排气门均关闭;4、排气行程;作功行程接近终了时,排气门开启,由于这时缸内压力高于大气压力,高温废气迅速排出气缸,这一阶段属于自由排气阶段,高温废气以当地音速通过排气门排出。随排气过程进行进入强制排气阶段,活塞越过下止点向上止点移动,强制将缸内废气排出,活塞到达上止点附近时,排气过程结束。排气终了时,气缸内气体压力稍高于大气压力,约为0.105~0.115MPa,废气温度约为600℃~900℃。由于燃烧室占有一定容积,因此在排气终了时,不可能将废气彻底排除干净,剩余部分废气称残余废气;5、四冲程汽油机经过进气、压缩、作功、排气四个行程完成一个工作循环,在这个过程中,活塞上下往复运动四个行程,相应的曲轴旋转两周。百万购车补贴

汽轮机的特点是什么?工作原理是什么?喷气式发动机的原理,特点及相关资料分别是什么?

http://v.youku.com/v_show/id_XMjA5NTc5NDg=.html

涡轮喷气发动机的原理

喷气发动机原理及若干工作方式 喷气推进原理 气推进是伊萨克·牛顿(Isaac Newton)爵士的第三运动定律的实际应用。该定律表述为:“作用在一物体上的每一个力都有一方向相反大小相等的反作用力。”就飞机推进而言,“物体”是通过发动机时受到加速的空气。产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。喷气发动机用类似于发动机/螺旋桨组合的方式产生推力。二者均靠将大量气体向后推来推进飞机,一种是以比较低速的大量空气滑流的形式,而另一种是以极高速的燃气喷气流形式。 这一同样的反作用原理出现于所有运动形式之中,通常有许多应用方式。喷气反作用最早的著名例子是公元前120年作为一种玩具生产的赫罗的发动机。这种玩具表明从喷嘴中喷出的水蒸气的能量能够把大小相等方向相反的反作用力传给喷嘴本身,从而引起发动机旋转。类似的旋转式花园喷灌器是这一原理更为实用的一个例子。这种喷灌器借助于作用于喷水嘴的反作用力旋转。现代灭火设备的高压喷头是“喷流反作用”的一个例子。由于水喷流的反作用力,一个消防员经常握不住或控制不了水管。也许,这一原理的最简单的表演是狂欢节的气球,当它放出空气或气体时,它便沿着与喷气相反的方向急速飞走。 喷气反作用绝对是一种内部现象。它不象人们经常想象的那样说成是由于喷气流作用在大气上的压力所造成的。实际上,喷气推进发动机,无论火箭、冲压喷气、或者涡轮喷气,都是设计成加速空气流或者燃气流并将其高速排出的一种装置。当然,这样做有不同的方式。但是,在所有例子中,作用在发动机上的最终的反作用力即推力是与发动机排出的气流的质量以及气流的速度成比例的。换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。实用中,人们喜欢前者,因为降低喷气速度能得到更高的推进效率。 喷气推进的几种方式 不同类型的喷气发动机,无论冲压喷气、脉冲喷气、燃气轮机、涡轮/冲压喷气或者涡轮-火箭,其差别仅在于“推力提供者”即发动机供应能量并将能量转换成飞行动力的方式。 冲压喷气发动机实际上是一种气动热力涵道。它没有任何主要旋转零件,只包含一个扩张形进气涵道和一个收敛形或者收敛-扩张形出口。当由外部能源强迫其向前运动时,空气被迫进入进气道。当它流过这一扩散形涵道时,其速度或动能降低,而压力能增加。尔后,靠燃油的燃烧来增加其总能量,膨胀的燃气通过出口涵道高速排入大气。冲压喷气发动机常作为导弹和靶机的动力装置,但单纯的冲压喷气发动机不适于作为普通飞机动力装置,因为在它产生推力前,要求向它施加向前的运动。 脉冲喷气发动机采用间歇燃烧原理。与冲压喷气发动机不同,它能在静止状态工作。这种发动机是由类似冲压喷气发动机的一种空气动力涵道构成。它的压力较高,结构比较坚实。进气涵道有许多进气“活门”,在弹簧拉力作用下处于打开位置,通过打开的活门空气进入燃烧室,并靠燃烧喷入燃烧室中去的燃油得到加热,由此引起的膨胀使压力升高,迫使活门关闭,然后膨胀的燃气向后喷出;排气造成降压,使活门重新开启。这种过程周而复始。脉冲喷气发动机曾经被设计成直升机旋翼的推进装置,有的还通过精心设计涵道来控制共振循环的压力变化而省去了进气活门。但脉冲喷气发动机不适于作为飞机动力装置,因为它的油耗高,又无法达到现代燃气涡轮发动机的性能。 火箭发动机虽然也属于喷气发动机,但它们有重大区别。即火箭发动机不用大气作为推进流体,而用它携带的液态燃料或化学分解而形成的燃料与氧气剂的燃烧来产生它自己的推进流体,从而能在地球大气层外工作,但因此它也只适用工作时间很短的情况.涡轮喷气式发动机应用于喷气推进避免了火箭和冲压喷气发动机固有的弱点,因为采用了涡轮驱动的压气机,因此在低速时发动机也有足够的压力来产生强大的推力。涡轮喷气发动机按照“工作循环”工作。它从大气中吸进空气,经压缩和加热这一过程之后,得到能量和动量的空气以高达2000英尺/秒(610米/秒)或者大约1400英里/小时(2253公里/小时)的速度从推进喷管中排出。在高速喷气流喷出发动机时,同时带动压气机和涡轮继续旋转,维持“工作循环”。涡轮发动机的机械布局比较简单,因为它只包含两个主要旋转部分,即压气机和涡轮,还有一个或者若干个燃烧室。然而,并非这种发动机的所有方面都具有这种简单性,因为热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流、以及排出燃气并形成推进喷气流的排气系统的设计工作造成的。 飞机速度低于大约450英里/小时(724公里/小时)时,纯喷气发动机的效率低于螺旋桨型发动机的效率,因为它的推进效率在很大程度上取决于它的飞行速度;因而,纯涡轮喷气发动机最适合较高的飞行速度。然而,由于螺旋桨的高叶尖速度造成的气流扰动,在350英里/小时(563公里/小时)以上时螺旋桨效率迅速降低。这些特性使得一些中等速度飞行的飞机不用纯涡轮喷气装置而采用螺旋桨和燃气涡轮发动机的组合 -- 涡轮螺旋桨式发动机。 螺旋桨/涡轮组合的优越性在一定程度上被内外涵发动机、涵道风扇发动机和桨扇发动机的引入所取代。这些发动机比纯喷气发动机流量大而喷气速度低,因而,其推进效率与涡轮螺旋桨发动机相当,超过了纯喷气发动机的推进效率。 涡轮/冲压喷气发动机将涡轮喷气发动机(它常用于马赫数低于3的各种速度)与冲压喷气发动机结合起来,在高马赫数时具有良好的性能。这种发动机的周围是一涵道,前部具有可调进气道,后部是带可调喷口的加力喷管。起飞和加速、以及马赫数3以下的飞行状态下,发动机用常规的涡轮喷气式发动机的工作方式;当飞机加速到马赫数3以上时,其涡轮喷气机构被关闭,气道空气借助于导向叶片绕过压气机,直接流入加力喷管,此时该加力喷管成为冲压喷气发动机的燃烧室。这种发动机适合要求高速飞行并且维持高马赫数巡航状态的飞机,在这些状态下,该发动机是以冲压喷气发动机方式工作的。 涡轮/火箭发动机与涡轮/冲压喷气发动机的结构相似,一个重要的差异在于它自备燃烧用的氧。这种发动机有一多级涡轮驱动的低压压气机,而驱动涡轮的功率是在火箭型燃烧室中燃烧燃料和液氧产生的。因为燃气温度可高达3500度,在燃气进入涡轮前,需要用额外的燃油喷入燃烧室以供冷却。然后这种富油混合气(燃气)用压气机流来的空气稀释,残余的燃油在常规加力系统中燃烧。虽然这种发动机比涡轮/冲压喷气发动机小且轻,但是,其油耗更高。这种趋势使它比较适合截击机或者航天器的发射载机。这些飞机要求具有高空高速性能,通常需要有很高的加速性能而无须长的续航时间。

汽轮机的特点是什么?工作原理是什么?喷气式发动机的原理,特点及相关资料分别是什么

说特点得有个比较对象吧。。。就汽轮机和发动机而言。汽轮机的工质是高温高压蒸汽,发动机是燃气。汽轮机功率高,设备大;发动机“功率密度”高,体积小。汽轮机是地面设备;发动机是要上天的,所以在结构设计和计算校核上差别很大。汽轮机是有反动式和冲动式,工作原理有差别,不一定都是大风车!但冲动式也有一定的反动度;发动机依靠压气机加压空气,在燃烧室将空气和燃油混合燃烧,再在燃气透平中碰撞做功,不是吹动,别那么业余好不!喷气机的相当一部分推理其实来自空气对于压气机的发作用力!相对自然环境,汽轮机是闭循环,发动机是开循环。透平机械要想运转平稳,和轴承以及转子动力学设计有很大关系。但对振动和动平衡有一定的要求,可以参考API617。虽然两者都不依据那个标准。。。。。。资料遍地都是,不过wiki上的解释最生动,自己看去吧。

涡轮喷气发动机的原理

好强啊不是一般人

喷气式发动机的原理是怎样的?

喷气发动机原理及若干工作方式 喷气推进原理 气推进是伊萨克·牛顿(Isaac Newton)爵士的第三运动定律的实际应用。该定律表述为:“作用在一物体上的每一个力都有一方向相反大小相等的反作用力。”就飞机推进而言,“物体”是通过发动机时受到加速的空气。产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。喷气发动机用类似于发动机/螺旋桨组合的方式产生推力。二者均靠将大量气体向后推来推进飞机,一种是以比较低速的大量空气滑流的形式,而另一种是以极高速的燃气喷气流形式。 这一同样的反作用原理出现于所有运动形式之中,通常有许多应用方式。喷气反作用最早的著名例子是公元前120年作为一种玩具生产的赫罗的发动机。这种玩具表明从喷嘴中喷出的水蒸气的能量能够把大小相等方向相反的反作用力传给喷嘴本身,从而引起发动机旋转。类似的旋转式花园喷灌器是这一原理更为实用的一个例子。这种喷灌器借助于作用于喷水嘴的反作用力旋转。现代灭火设备的高压喷头是“喷流反作用”的一个例子。由于水喷流的反作用力,一个消防员经常握不住或控制不了水管。也许,这一原理的最简单的表演是狂欢节的气球,当它放出空气或气体时,它便沿着与喷气相反的方向急速飞走。 喷气反作用绝对是一种内部现象。它不象人们经常想象的那样说成是由于喷气流作用在大气上的压力所造成的。实际上,喷气推进发动机,无论火箭、冲压喷气、或者涡轮喷气,都是设计成加速空气流或者燃气流并将其高速排出的一种装置。当然,这样做有不同的方式。但是,在所有例子中,作用在发动机上的最终的反作用力即推力是与发动机排出的气流的质量以及气流的速度成比例的。换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。实用中,人们喜欢前者,因为降低喷气速度能得到更高的推进效率。 喷气推进的几种方式 不同类型的喷气发动机,无论冲压喷气、脉冲喷气、燃气轮机、涡轮/冲压喷气或者涡轮-火箭,其差别仅在于“推力提供者”即发动机供应能量并将能量转换成飞行动力的方式。 冲压喷气发动机实际上是一种气动热力涵道。它没有任何主要旋转零件,只包含一个扩张形进气涵道和一个收敛形或者收敛-扩张形出口。当由外部能源强迫其向前运动时,空气被迫进入进气道。当它流过这一扩散形涵道时,其速度或动能降低,而压力能增加。尔后,靠燃油的燃烧来增加其总能量,膨胀的燃气通过出口涵道高速排入大气。冲压喷气发动机常作为导弹和靶机的动力装置,但单纯的冲压喷气发动机不适于作为普通飞机动力装置,因为在它产生推力前,要求向它施加向前的运动。 脉冲喷气发动机采用间歇燃烧原理。与冲压喷气发动机不同,它能在静止状态工作。这种发动机是由类似冲压喷气发动机的一种空气动力涵道构成。它的压力较高,结构比较坚实。进气涵道有许多进气“活门”,在弹簧拉力作用下处于打开位置,通过打开的活门空气进入燃烧室,并靠燃烧喷入燃烧室中去的燃油得到加热,由此引起的膨胀使压力升高,迫使活门关闭,然后膨胀的燃气向后喷出;排气造成降压,使活门重新开启。这种过程周而复始。脉冲喷气发动机曾经被设计成直升机旋翼的推进装置,有的还通过精心设计涵道来控制共振循环的压力变化而省去了进气活门。但脉冲喷气发动机不适于作为飞机动力装置,因为它的油耗高,又无法达到现代燃气涡轮发动机的性能。 火箭发动机虽然也属于喷气发动机,但它们有重大区别。即火箭发动机不用大气作为推进流体,而用它携带的液态燃料或化学分解而形成的燃料与氧气剂的燃烧来产生它自己的推进流体,从而能在地球大气层外工作,但因此它也只适用工作时间很短的情况. 涡轮喷气式发动机应用于喷气推进避免了火箭和冲压喷气发动机固有的弱点,因为采用了涡轮驱动的压气机,因此在低速时发动机也有足够的压力来产生强大的推力。涡轮喷气发动机按照“工作循环”工作。它从大气中吸进空气,经压缩和加热这一过程之后,得到能量和动量的空气以高达2000英尺/秒(610米/秒)或者大约1400英里/小时(2253公里/小时)的速度从推进喷管中排出。在高速喷气流喷出发动机时,同时带动压气机和涡轮继续旋转,维持“工作循环”。涡轮发动机的机械布局比较简单,因为它只包含两个主要旋转部分,即压气机和涡轮,还有一个或者若干个燃烧室。然而,并非这种发动机的所有方面都具有这种简单性,因为热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流、以及排出燃气并形成推进喷气流的排气系统的设计工作造成的。 飞机速度低于大约450英里/小时(724公里/小时)时,纯喷气发动机的效率低于螺旋桨型发动机的效率,因为它的推进效率在很大程度上取决于它的飞行速度;因而,纯涡轮喷气发动机最适合较高的飞行速度。然而,由于螺旋桨的高叶尖速度造成的气流扰动,在350英里/小时(563公里/小时)以上时螺旋桨效率迅速降低。这些特性使得一些中等速度飞行的飞机不用纯涡轮喷气装置而采用螺旋桨和燃气涡轮发动机的组合 -- 涡轮螺旋桨式发动机。 螺旋桨/涡轮组合的优越性在一定程度上被内外涵发动机、涵道风扇发动机和桨扇发动机的引入所取代。这些发动机比纯喷气发动机流量大而喷气速度低,因而,其推进效率与涡轮螺旋桨发动机相当,超过了纯喷气发动机的推进效率。 涡轮/冲压喷气发动机将涡轮喷气发动机(它常用于马赫数低于3的各种速度)与冲压喷气发动机结合起来,在高马赫数时具有良好的性能。这种发动机的周围是一涵道,前部具有可调进气道,后部是带可调喷口的加力喷管。起飞和加速、以及马赫数3以下的飞行状态下,发动机用常规的涡轮喷气式发动机的工作方式;当飞机加速到马赫数3以上时,其涡轮喷气机构被关闭,气道空气借助于导向叶片绕过压气机,直接流入加力喷管,此时该加力喷管成为冲压喷气发动机的燃烧室。这种发动机适合要求高速飞行并且维持高马赫数巡航状态的飞机,在这些状态下,该发动机是以冲压喷气发动机方式工作的。 涡轮/火箭发动机与涡轮/冲压喷气发动机的结构相似,一个重要的差异在于它自备燃烧用的氧。这种发动机有一多级涡轮驱动的低压压气机,而驱动涡轮的功率是在火箭型燃烧室中燃烧燃料和液氧产生的。因为燃气温度可高达3500度,在燃气进入涡轮前,需要用额外的燃油喷入燃烧室以供冷却。然后这种富油混合气(燃气)用压气机流来的空气稀释,残余的燃油在常规加力系统中燃烧。虽然这种发动机比涡轮/冲压喷气发动机小且轻,但是,其油耗更高。这种趋势使它比较适合截击机或者航天器的发射载机。这些飞机要求具有高空高速性能,通常需要有很高的加速性能而无须长的续航时间。

V2火箭发动机的原理

当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。开始时您可能很难理解“抛射物质,获得反作用力”这个概念,因为这好像 和真实情况不大一样。火箭发动机似乎只会发出火焰和噪音,制造压力,而与“抛射物质”没什么关系。 我们来看几个例子,以便更好地了解真实情况:如果您曾经使用过猎枪,特别是那种12铅径的大猎枪,那么您就知道它会产生巨大的“撞击力”。也就是说,当您开枪时,猎枪会狠狠地向后“撞击”您的肩膀。这种撞击力就是反作用力。猎枪将31.1克的金属以大约1120公里/小时的速度沿某个方向发射出去,同时您的肩膀会受到反作用力的撞击。如果您开枪时穿着轮滑鞋或站在滑雪板上,枪会起到类似于火箭发动机的作用,反作用力会使您向相反的方向滑动。如果您见过粗大的消防水管喷水的场景,可能会注意到消防员要花很大的力气才能抓住它(有时您会看到有两名或三名消防员手持同一根消防水管)。水管发生的情况与火箭发动机类似。水管向一个方向喷水,消防员们则运用自身的力量和重量来克服反作用力。如果他们放开水管,那么水管会劲头十足地四处乱撞。如果消防员全都站在滑雪板上,水管将推动他们以极快的速度向后移动。如果您吹起一个气球,然后放开它,那么它会满屋子乱飞,直到里面的空气漏光为止,这就是您制造的火箭发动机。在这种情况下,被抛射出去的是气球中的空气分子。与许多人的想法不同,空气分子其实是有质量的(请查看有关氦的页面,以便更好地了解空气质量的问题)。如果您让空气从气球的喷口中喷出来,气球的其余部分则会向相反的方向运动。 想像下面的情景:您穿着一套太空服,飘浮在航天飞机外的太空中,您的手中恰好有一个棒球。如果您把棒球扔出去,反作用力会使您的身体朝与棒球相反的方向移动。身体离开的速度,是由您扔出的棒球的质量和您使它获得的加速度决定的。质量与加速度相乘即为作用力的大小(f=m*a)。无论您向棒球施加的力有多大,它和作用在您身体上的反作用力总是大小相等(m*a=m*a)。所以,我们不妨假设棒球的质量为1磅,而您的身体与太空服的总质量为100磅。您以9.75米/秒(33.8公里/小时)的速度将棒球扔出去。也就是说,您用手臂加速质量为1磅的棒球,使它获得33.8公里/小时的速度。您的身体将受到反作用力,但身体的质量是棒球的100倍。因此,它向相反方向运动的速度是棒球的百分之一,即0.098米/秒(0.338公里/小时)。如果想让棒球产生更大的推力,您有两个选择:增大棒球的质量或提高它的加速度。您可以扔出一个质量更大的棒球,或接连不断地扔出多个棒球(增大质量),也可以用更快的速度将棒球扔出去(提高它的加速度)。不过,您能采取的方法也仅此而已。 这是在美国密西西比州的汉考克郡进行的一次发射测试中,由一台远程照相机拍摄的航天飞机主发动机的特写照片。火箭发动机通常抛射的是高压气体形式的物质。发动机向某个方向喷出气体物质,以获得相反方向的反作用力。这些物质来自火箭发动机燃烧的燃料。燃烧过程使燃料物质得以加速,使之以极高的速度从火箭喷口喷出。燃料在燃烧过程中由固态或液态转化为气体,但并不会使其质量发生变化。如果您燃烧一斤火箭燃料,那么就有一斤排出物以高温高速的气体形式从喷口喷出。形态发生了改变,但质量则保持不变。而燃烧过程会加快物质的速度。

火箭核能发动机的原理是什么?

目前还没有实用化的火箭核能发动机,研制进展情况见http://zhidao.baidu.com/question/12148546.html原理与化学火箭发动机一样也要靠核裂变产生的热量将少量物质高速从喷口喷出,通过反冲作用推进火箭向相反方向前进。

斯特林发动机的原理以及相关介绍

斯特林发动机的原理是利用温差带来的能量变换。热胀冷缩,再及时将已经加热的地方快速散热。该循环由两个等温过程和两个定容回热过程组成,属于概括性卡诺循环的一种。实现斯特林循环的关键在于实现回热。斯特林构想的热机由两个气缸-活塞夹一个蓄热式回热器组成。制约斯特林循环实际应用的因素有:高低温热源的等温吸热和等温放热难以实现、回热器回热难以实现、蓄热式回热器内部工质气体残留、蓄热式回热器阻力损失、活塞行程控制。玩具级的斯特林循环发动机和斯特林制冷机有很多产品出现, 但是对实用级的斯特林机器上述制约因素的影响迅速变大,导致其竞争力快速下降。扩展资料斯特林机推广中的3个方向包括:(1)小型分布式热电联产系统:斯特林发动机基于其特点可应用于热电联产系统。热电联产系统从规模上分为小型分布式热电联产系统和大型的以热电厂为基础的热电联产系统。其中小型分布式热电联产系统具有设备小型化和燃料多元化等特征。小型分布式热电联产系统主要由动力装置、供热装置和其他辅助装置组成,其中动力装置是整个系统的核心部件。天然气首先进人燃烧器进行燃烧,产生的高温烟气先用来加热发动机的高温热腔(区),然后与换热器进行换热,得到热水流入储槽作为生活热水,低温废气则从尾气管排出。同时,冷水冷却发动机的低温冷腔(区)也被加热得到热水。工质则在高温热腔与低温冷腔之间循环流动,推动活塞往复运动对外做功,带动发动机发电。(2)低能级的余热回收:斯特林机也特别适合用来回收利用低能级的余热,如工厂余热、地热、太阳能等,以取得良好的节能效益。(3)移动式动力源:对斯特林发动机进行小型化和轻量化改造,并改善其控制性能后,亦可作为推士机、压路机,甚至是潜水艇的动力来源。参考资料来源:百度百科-斯特林发动机

斯特林发动机的原理是什么?

斯特林发动机是通过气体受热膨胀、遇冷压缩而产生动力的。气体在热置换气缸内,受移气器的推动,在冷端和热端来回流动,空气流动到热端时,受热膨胀,推动动力活塞向外运动。空气流动到冷端时,受冷收缩,吸引动力活塞向内运动。动力活塞就向外输出了动力,带动曲轴转动。因为空气受冷受热都做功,所以斯特林发动机的理论效率比内燃机高,因为内燃机工作时,高温的尾气中的能量都浪费了。1、适用于各种能源。无论是液态的、气态的或固态的燃料,当采用载热系统(如热管)间接加热时,几乎可以使用任何高温热源。如:生物质能(柴火等),而发动机本身(除加热器外)不需要作任何更改同时热气机无需压缩机增压,使用一般风机即可满足要求,并允许燃料具有较高的杂质含量;太阳能,这是斯特林发动机较为常见的用途之一;放射性同位素,常见于用于潜艇、深空的AIP系统。2、噪音小。热气机在运行时,由于燃料的燃烧是连续的,因此避免了类似内燃机的爆震做功和间歇燃烧过程,从而实现了低噪音的优势。这使得它可以用在潜艇上以得到较好的隐蔽性。热气机单机容量小,机组容量从20-50kw,可以因地制宜的增减系统容量。结构简单,零件数比内燃机少40%,降价空间大,同时维护成本也较低。

怎么理解离子发动机的原理?

存在,不一定,在星际运动中,有很大一部分力来自引力离子发动机主要是用的是洛伦茨力的原理,运用氙气等工质得等离子体,提供动力,以等离子体为介质,为施力对象,靠等离子体地向后运动,来产生反作用力原理与一般的火箭一样啊,没什么不好理解的,本身发动机的电磁场是不后影响到宇宙的,之后推动等离子体,产生反作用力离子发动机分两种,一种是利用静电加速,原理就是将氙气电离,在电场的影响下,分成带着点的原子核,和负电的电子,院子和质量大,可以用于提供反作用力,而电子收集前来后,在为喷口,使氙离子还原还有一种是电离后,直接利用等离子体的电到性,在推进器两端放置一对电极,在垂直方向防止一对磁场,利用电磁感应的力向前推进。

等离子发动机的原理

  提到离子发动机,在很多人的看来显得十分神秘的,其实它就是我们通常所说的“电火箭”。下面一起分享关于什么是等离子发动机及工作原理。  它是电推进系统的一种,并已经在国内外应用相当成熟,其应用的主要介质就是等离子体,使用洛伦兹力让带电原子或离子加速通过磁场,来反向驱动航天器。离子发动机及工作原理  离子发动机原理:  等离子发动机的能量来自电力,可以来自太阳能电池板,或者核电池,通过从发动机尾部喷射出阳离子来推动飞船前进,所以离子发动机的驱动方式也被叫做电力驱动方式。从发展趋势来看,美国的研究范围几乎覆盖了所有类型的电推力器,但以等离子发动机的研制为主,美国航宇局在其中扮演了最活跃的角色。最近它有一项规模很大的计划,即“太阳电推进技术应用及准备计划”。  虽然离子发动机过去在卫星上经常使用,但都是作为辅助发动机,用于姿态调整或者轨道维持。而深空1号第一次将离子发动机作为主发动机使用,深空1号的离子发动机也是迄今为止将电能向推力转化效率最高的,在太空中运行寿命最长的,也是比冲量最高的,比冲量超过3000秒。

“可变压缩比”发动机的原理及实现方式是什么呢?

其实就是通过控制进气量和喷油量来精确控制压缩比的一种技术。

发动机的原理是什么呀?

试问是哪种发动机?航空发动机,还是柴油机,汽轮机,蒸汽发动机?

喷气式飞机的发动机的原理是怎样的

简单点儿,就是空气进入压缩气道,和气化的航空汽油混合,在燃烧室充分燃烧,产生可让铝皮和钛合金的飞机飞起来的动力.这多简单?还要复制粘贴那么多字?

空气喷气发动机的原理

它是利用气体从尾部高速喷出时所产生反冲的推力来推动机身前进的机械。由于活塞式内燃机的螺旋桨叶转得越快,它所受到的阻力也就越大,效率就低。所以它的速度不能超过211米/秒。而且这种飞机只能在空气中飞行,因此飞行的高度及速度都受到限制。 喷气式发动机的燃料在燃烧室内燃烧后,产生高温和高压的气体,这种气体从尾部以极高的速度喷出,同时产生反作用力,推动机身向前运动。喷气机的作用是直接产生反冲推力,把燃料的内能转变为燃气的动能和飞机前进的机械能,而不需要通过能量转变的中间结构活塞、螺旋桨等,减少了能量的损失,从而提高飞机的飞行速度。 喷气式发动机可分为两大类,即空气喷气发动机和火箭喷气发动机。空气喷气发动机本身携带燃料,它需要利用外界的空气来帮助燃烧。因此它不适宜在空气稀薄的高空飞行。由于发动机的种类很多,常见的有冲压式和气轮式等。

法拉第圆盘发动机的原理,求详解

你说的应该是法拉第圆盘发电机,这是现代发电机的鼻祖。法拉第发现了电磁感应现象之后不久,他又利用电磁感应发明了世界上第一台发电机──法拉第圆盘发电机。这台发电机制构造跟现代的发电机不同,在磁场所中转动的不是线圈,而是一个紫铜做的圆盘。圆心处固定一个摇柄,圆盘的边缘和圆心处各与一个黄铜电刷紧贴,用导线把电刷与电流表连接起来;紫铜圆盘放置在蹄形磁铁的磁场中。当法拉第转动摇柄,使紫铜圆盘旋转起来时,电流表的指针偏向一边,这说明电路中产生了持续的电流。法拉第圆盘发电机是怎样产生电流的呢?我们可以把圆盘看作是由无数根长度等于半径的紫铜辐条组成的,在转动圆盘时,每根辐条都做切割磁力线的运动。辐条和外电路中的电流表恰好构成闭合电路,电路中便有电流产生了。随着圆盘的不断旋转,总有某根辐条到达切割磁感线的位置,因此外电路中便有了持续不断的电流。法拉第圆盘发电机虽然简单,有人说它像一只简陋可笑的儿童玩具,产生的电流甚至不能让一只小灯泡发光。但这是世界上第一台发电机,是它首先向人类揭开了机械能转化为电能的序幕。后来,人们在此基础上,将蹄形永久磁铁改为能产生强大磁场的电磁铁,用多股导线绕制的线框代替紫铜圆盘,电刷也进行了改进,就制成了功率较大的可供实用的发电机。

法拉第圆盘发动机的原理,求详解

法拉第需要一个能不断切割磁感线的导体,所以用金属圆盘代替导体,进行不间断切割磁感线,产生连续电流。

汽车发动机的原理是什么?

简单的说就是油、气混合气在汽缸里点火爆燃,汽缸内压力增大,推动活塞上下运动,再由曲轴连杆机构将活塞的直线运动转变为圆周运动而输出动力。

发动机的原理是什么

该发动机的原理是四冲程汽油机将空气体和汽油按一定比例混合形成良好的混合气,在进气冲程时被吸入气缸,混合气被压缩点燃产生热能。高温高压气体作用在活塞顶部推动活塞直线往复运动,机械能通过连杆和曲轴飞轮机构输出到外部。发动机由曲柄连杆机构和配气机构组成,包括冷却、润滑、点火、供油和起动系统五大系统。主要部件有缸体、缸盖、活塞、活塞销、连杆、曲轴、飞轮等。往复式内燃机的工作腔称为气缸,气缸内表面为圆柱形。在气缸内往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端与曲轴连接,曲轴由气缸体上的轴承支撑,可在轴承内转动,形成曲柄连杆机构。当活塞在气缸内往复运动时,连杆带动曲轴转动。相反,曲轴转动时,连杆轴颈在曲轴箱内循环运动,通过连杆带动活塞在气缸内上下运动。曲轴每转动一次,活塞就上下运行一次,气缸的容积不断由小变大,再由大变小,以此类推。气缸的顶部用气缸盖封闭。气缸盖配有进气门和排气门。通过打开和关闭进气门和排气门来实现向气缸内充气和向气缸外排气。进气门和排气门的打开和关闭由凸轮轴驱动。凸轮轴由曲轴通过齿形带或齿轮驱动。百万购车补贴

四冲程汽油发动机的原理

我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混合气便经进气管道和进气门被吸入气缸。 压缩行程 为使吸入气缸内可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程称为压缩行程。 压缩终了时,活塞到达上止点,活塞上方形成很小空间,称为燃烧室。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示: 压缩比愈大,在压缩终了时混合气的压力和温度便愈高,,燃烧速度也愈快,因而发动机发出的功率愈大,经济性愈好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃造成的一种不正常燃烧。爆燃时火焰以极高的速率向外传播,甚至在气体来不及膨胀的情况下,温度和压力急剧升高。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。表面点火是由于燃烧室内炽热表面与炽热处(如排气门头,火花塞电极,积炭处)点燃混合气产生的另一种不正常燃烧(也称为炽热点火或早燃)。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机件负荷增加,寿命降低。 作功行程 在这个行程中,进、排气门仍旧关闭。当活塞接近上止点时,装在气缸盖上的火花塞即发出电火花,点燃被压缩的可燃混合气。可燃混合气被燃烧后,放出大量的热能,因此,燃气的压力和温度迅速增加,所能达到的最高压力约为3-5Mpa,相应的温度则为2200-2800K。高温高压的燃气推动活塞从上止点向下止点运动,通过连杆使曲轴旋转并输出机械能,除了用于维持发动机本身继续运转而外,其余即用于对外作功。 排气行程 可燃混合气燃烧后生成的废气,必须从气缸中排除,以便进行下一个进气行程。 当膨胀接近终了时,排气门开启,靠废气的压力进行自由排气,活塞到达下止点后再向上止点移动时,继续将废气强制排到大气中。活塞到上止点附近时,排气行程结束。在排气行程中气缸内压力稍高于大气压力,约为0.105-0.115Mpa。排气终了时,废气温度约为900-1200K。 由于燃烧室占有一定容积,因此在排气终了时,不可能将废气排尽,留下的这一部分废气称为残余废气。 综上所述,四冲程汽油发动机经过进气、压缩、燃烧作功、排气四个行程,完成一个工作循环。这期间活塞在上、下止点间往复移动了四个行程,相应地曲轴旋转了两周

电动机和发动机的原理是什么

电动机:通电线圈在磁场里受力发生旋转发电机:电磁感应

请问斯特林发动机的原理是什么?

液氧汽化后与燃料混合燃烧作功。废气经增压驱动作功后由专用吸附装置吸收。一句话就是闭式循环内燃机。

斯特林发动机的原理以及相关介绍

斯特林发动机是一种闭循环活塞式热机。闭循环的意思是工作燃气一直保存在气缸内,而开循环则如内燃机和一些蒸汽机需要与大气交换气体。斯特林发动机一般被归为外燃机。这种发动机是伦敦的牧师罗巴特 斯特林(Robert Stirling)于1816年发明的,所以命名为“斯特林发动机”(Stirling engine)。斯特林发动机是独特的热机,因为他们理论上的效率几乎等于理论最大效率,称为卡诺循环效率。斯特林发动机是通过气体受热膨胀、遇冷压缩而产生动力的。这是一种外燃发动机,使燃料连续地燃烧,蒸发的膨胀氢气(或氦)作为动力气体使活塞运动,膨胀气体在冷气室冷却,反复地进行这样的循环过程热气机工作原理  热气机是一种外燃的、闭式循环往复活塞式热力发动机。   热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。   已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。   按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。   热力循环可以分为定温压缩过程、定容回热过程、定温膨胀过程、定容储热过程四个过程。碟式太阳热发电技术是利用抛物面碟式聚光器将太阳光汇聚,通过吸热器将汇聚的太阳能吸收并传输给热机,热机将太阳热转化为机械能,再经过发电机将机械能转化为电能。热机采用斯特林发动机。斯特林发动机能量转换率可达到 42% ,无噪声污染,冷却水消耗少,对周围环境无任何影响。碟式斯特林太阳热发电技术是当今太阳能热发电领域的热点目前,世界上成为发展主流的是碟式-斯特林(Stirling)系统。该技术以低成本、高效率为主要特征,电站容量可大可小,可以独立运行,也可以并网运行太阳能热发电又可分为塔式聚焦、槽式聚焦和碟式聚焦等三种方式。以下是三种太阳能热发电方式的比较。 碟式系统规模较小,且具有高效、模块化和组成混合发电系统的能力(2)系统初投资低;系统能量转换效率高,运行可靠,维护简单,维护工作量小,太阳能—天然气混合化,不需要蓄电池储能,可以并网发电,模块化组合,电站容量可以从 KW 级到 MW 级等特点。在所有太阳能发电技术中,碟式太阳能热动力发电系统具有最高的太阳能-电能转换效率(29.4%),因此有潜力成为最便宜的可再生能源之一与光伏发电相比,光热发电没有生产太阳能电池带来的高能耗、高污染等问题,设备生产过程更清洁,发电的规模效益也更好。此外,由于光热发电采用储热装置,能够提供稳定的电力输出,与光伏发电相比,更容易解决并网问题。此外,现在技术较成熟的槽式光热发电,需要消耗大量的水,因此在沙漠中的应用是个问题,光热发电所需的建设面积较大,不如光伏发电灵活。但光热发电对日照条件要求较高,并且需要通过建设大规模电站来降低成本,需要大片的土地、巨额的投资,如果希望提高转换效率,更需要大量的水资源。根据美国太阳能产业协会的统计,全球已经运行的太阳能发电项目,太阳能热发电占92.37%,太阳能光伏发电(单晶硅、多晶硅、薄膜电池)占7.2%。优点:振动小、噪音、排放低因为进气压力较小,循环压力比低(一般为1.5-1.8,而内燃机的至少在7以上),因此压力变化平缓,因而运行平稳、安定。U00100084 结构简单、单机容量小无需燃气压缩机, 无需排气装置,比内燃机少50%的零部件;机组容量从20-50kw,维护成本较低。U00100084 燃料选材广泛可用任何种类的燃料如天然气、丙烷、氢气、柴油、燃料油、垃圾填埋气、煤层气(甲烷)、工业废气、太阳能等;U00100084 热能效率高且出力和效率不受海拔高度影响由于吸热和放热均是在等温下进行的,即等温压缩和等温膨胀,因而满足了热力学第二定律对最高效率的要求。在理论上斯特林发动机的循环效率与卡诺循环的效率是相等的。一般回热器的效率ε=0.98~0.99,所以斯特林发动机有较高的热效率。斯特林发动机高的扫气容积功率是普通的活塞式内燃机所望尘莫及的。上述特点也就决定了斯特林发动机在动力工程和能源利用等领域有着广阔的应用前景碟式斯特林太阳能发电系统具有规模优势、转换效率最高、最具商业前途。U00100084 但是碟式斯特林太阳能热发电系统在国内的推广的瓶颈在于斯特林发动机的开发。碟式斯特林系统与光伏的转换效率比较图示太阳能热发电与其他可再生能源的能源平均成本(LEC)比较太阳能热电(CSP)三种方式:碟式效率最高效率高的原因:U00100084 使用全部光谱U00100084 带有跟踪系统U00100084 配聚光镜,聚光效率高U00100084 所用斯特林发动机效率远高于汽轮机效率和燃气轮机

喷气式飞机的发动机的原理是怎样的

喷气推进原理 气推进是伊萨克·牛顿(Isaac Newton)爵士的第三运动定律的实际应用。该定律表述为:“作用在一物体上的每一个力都有一方向相反大小相等的反作用力。”就飞机推进而言,“物体”是通过发动机时受到加速的空气。产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。喷气发动机用类似于发动机/螺旋桨组合的方式产生推力。二者均靠将大量气体向后推来推进飞机,一 种是以比较低速的大量空气滑流的形式,而另一种是以极高速的燃气喷气流形式。   这一同样的反作用原理出现于所有运动形式之中,通常有许多应用方式。喷气反作用最早的著名例子是公元前120年作为一种玩具生产的赫罗的发动机。这种玩具表明从喷嘴中喷出的水蒸气的能量能够把大小相等方向相反的反作用力传给喷嘴本身,从而引起发动机旋转。类似的旋转式花园喷灌器是这一原理更为实用的一个例子。这种喷灌器借助于作用于喷水嘴的反作用力旋转。现代灭火设备的高压喷头是“喷流反作用”的一个例子。由于水喷流的反作用力,一个消防员经常握不住或控制不了水管。也许,这一原理的最简单的表演是狂欢节的气球,当它放出空气或气体时,它便沿着与喷气相反的方向急速飞走。   喷气反作用绝对是一种内部现象。它不象人们经常想象的那样说成是由于喷气流作用在大气上的压力所造成的。实际上,喷气推进发动机,无论火箭、冲压喷气、或者涡轮喷气,都是设计成加速空气流或者燃气流并将其高速排出的一种装置。当然,这样做有不同的方式。但是,在所有例子中,作用在发动机上的最终的反作用力即推力是与发动机排出的气流的质量以及气流的速度成比例的。换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。实用中,人们喜欢前者,因为降低喷气速度能得到更高的推进效率。 喷气推进的几种方式   不同类型的喷气发动机,无论冲压喷气、脉冲喷气、燃气轮机、涡轮/冲压喷气或者涡轮-火箭,其差别仅在于“推力提供者”即发动机供应能量并将能量转换成飞行动力的方式。   冲压喷气发动机实际上是一种气动热力涵道。它没有任何主要旋转零件,只包含一个扩张形进气涵道和一个收敛形或者收敛-扩张形出口。当由外部能源强迫其向前运动时,空气被迫进入进气道。当它流过这一扩散形涵道时,其速度或动能降低,而压力能增加。尔后,靠燃油的燃烧来增加其总能量,膨胀的燃气通过出口涵道高速排入大气。冲压喷气发动机常作为导弹和靶机的动力装置,但单纯的冲压喷气发动机不适于作为普通飞机动力装置,因为在它产生推力前,要求向它施加向前的运动。   脉冲喷气发动机采用间歇燃烧原理。与冲压喷气发动机不同,它能在静止状态工作。这种发动机是由类似冲压喷气发动机的一种空气动力涵道构成。它的压力较高,结构比较坚实。进气涵道有许多进气“活门”,在弹簧拉力作用下处于打开位置,通过打开的活门空气进入燃烧室,并靠燃烧喷入燃烧室中去的燃油得到加热,由此引起的膨胀使压力升高,迫使活门关闭,然后膨胀的燃气向后喷出;排气造成降压,使活门重新开启。这种过程周而复始。脉冲喷气发动机曾经被设计成直升机旋翼的推进装置,有的还通过精心设计涵道来控制共振循环的压力变化而省去了进气活门。但脉冲喷气发动机不适于作为飞机动力装置,因为它的油耗高,又无法达到现代燃气涡轮发动机的性能。   火箭发动机虽然也属于喷气发动机,但它们有重大区别。即火箭发动机不用大气作为推进流体,而用它携带的液态燃料或化学分解而形成的燃料与氧气剂的燃烧来产生它自己的推进流体,从而能在地球大气层外工作,但因此它也只适用工作时间很短的情况。   涡轮喷气式发动机应用于喷气推进避免了火箭和冲压喷气发动机固有的弱点,因为采用了涡轮驱动的压气机,因此在低速时发动机也有足够的压力来产生强大的推力。涡轮喷气发动机按照“工作循环”工作。它从大气中吸进空气,经压缩和加热这一过程之后,得到能量和动量的空气以高达2000英尺/秒(610米/秒)或者大约1400英里/小时(2253公里/小时)的速度从推进喷管中排出。在高速喷气流喷出发动机时,同时带动压气机和涡轮继续旋转,维持“工作循环”。涡轮发动机的机械布局比较简单,因为它只包含两个主要旋转部分,即压气机和涡轮,还有一个或者若干个燃烧室。然而,并非这种发动机的所有方面都具有这种简单性,因为热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流、以及排出燃气并形成推进喷气流的排气系统的设计工作造成的。   飞机速度低于大约450英里/小时(724公里/小时)时,纯喷气发动机的效率低于螺旋桨型发动机的效率,因为它的推进效率在很大程度上取决于它的飞行速度;因而,纯涡轮喷气发动机最适合较高的飞行速度。然而,由于螺旋桨的高叶尖速度造成的气流扰动,在350英里/小时(563公里/小时)以上时螺旋桨效率迅速降低。这些特性使得一些中等速度飞行的飞机不用纯涡轮喷气装置而采用螺旋桨和燃气涡轮发动机的组合 -- 涡轮螺旋桨式发动机。   螺旋桨/涡轮组合的优越性在一定程度上被内外涵发动机、涵道风扇发动机和桨扇发动机的引入所取代。这些发动机比纯喷气发动机流量大而喷气速度低,因而,其推进效率与涡轮螺旋桨发动机相当,超过了纯喷气发动机的推进效率。   涡轮/冲压喷气发动机将涡轮喷气发动机(它常用于马赫数低于3的各种速度)与冲压喷气发动机结合起来,在高马赫数时具有良好的性能。这种发动机的周围是一涵道,前部具有可调进气道,后部是带可调喷口的加力喷管。起飞和加速、以及马赫数3以下的飞行状态下,发动机用常规的涡轮喷气式发动机的工作方式;当飞机加速到马赫数3以上时,其涡轮喷气机构被关闭,气道空气借助于导向叶片绕过压气机,直接流入加力喷管,此时该加力喷管成为冲压喷气发动机的燃烧室。这种发动机适合要求高速飞行并且维持高马赫数巡航状态的飞机,在这些状态下,该发动机是以冲压喷气发动机方式工作的。   涡轮/火箭发动机与涡轮/冲压喷气发动机的结构相似,一个重要的差异在于它自备燃烧用的氧。这种发动机有一多级涡轮驱动的低压压气机,而驱动涡轮的功率是在火箭型燃烧室中燃烧燃料和液氧产生的。因为燃气温度可高达3500度,在燃气进入涡轮前,需要用额外的燃油喷入燃烧室以供冷却。然后这种富油混合气(燃气)用压气机流来的空气稀释,残余的燃油在常规加力系统中燃烧。虽然这种发动机比涡轮/冲压喷气发动机小且轻,但是,其油耗更高。这种趋势使它比较适合截击机或者航天器的发射载机。这些飞机要求具有高空高速性能,通常需要有很高的加速性能而无须长的续航时间。

四行程汽油发动机的原理?

进气 压缩 做功 排气

汽油发动机的原理是什么?

汽车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。根据动力来源不同,汽车发动机可分为柴油发动机、汽油发动机、电动汽车电动机以及混合动力等。汽车发动机的原理是什么汽车发动机绝大部分是四冲程发动机。而四冲程发动机的工作循环由4个活塞行程组成,即进气行程、压缩行程、作功行程和排气行程。四冲程汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。汽车发动机注意事项汽车发动机有一些注意事项需要我们了解,首先是汽车发动机需要定期保养维修,定期更换机油和机油滤芯;保持曲轴箱通风良好;定期清洗曲轴箱、燃油系统;定期保养水箱。接着是当汽车在水中熄火后,我们千万不能二次启动,否则会对汽车发动机造成无法挽回的损失。然后是如果汽车发动机出现温度过高的现象,车主可以进行一些相关检查。

离心发动机的原理和特点

http://v.youku.com/v_playlist/f4403432o1p1.html

汽车发动机的原理是什么

汽车的发动机工作原理:汽车发动机是依靠油气混合物爆燃产生的力量推动活塞,然后驱动曲轴旋转进行工作的。一共可以分为四个行程。吸气,压缩,做功,排气。在吸气行程,活塞下移,进气门打开,排气门关闭,油气混合物(柴油机就是空气)在负压作用下进入气缸。在压缩行程,进气门,排气门均关闭,活塞上移,油气混合物被压缩升温。做功行程,进气门,排气门均关闭,火花塞点火(柴油机是喷油嘴喷油),混合气被点燃(柴油机是雾状柴油被高温空气引燃),产生爆燃,推动活塞下行,继而通过连杆把推力传递给曲轴。排气行程,进气门关闭,排气门打开,活塞上行,排除缸内废气。然后就是一直重复这个过程。其中,凸轮轴转一圈,曲轴转两圈,做一次功。

汽车发动机的原理讲解

以下就是汽车发动机的原理讲解:1、汽车发动机是依靠油气混合物爆燃产生的力量推动活塞,然后驱动曲轴旋转进行工作的;2、一共可以分为四个行程。吸气,压缩,做功,排气。在吸气行程,活塞下移,进气门打开,排气门关闭,油气混合物(柴油机就是空气)在负压作用下进入气缸;3、在压缩行程,进气门,排气门均关闭,活塞上移,油气混合物被压缩升温。做功行程,进气门,排气门均关闭,火花塞点火(柴油机是喷油嘴喷油),混合气被点燃(柴油机是雾状柴油被高温空气引燃),产生爆燃,推动活塞下行,继而通过连杆把推力传递给曲轴。排气行程,进气门关闭,排气门打开,活塞上行,排除缸内废气;4、然后就是一直重复这个过程。其中,凸轮轴转一圈,曲轴转两圈,做一次功。

汽车发动机的原理?

汽车发动机工作原理是通过燃烧气缸内的燃料,产生动能,驱动发动机气缸内的活塞往复的运动,由此带动连在活塞上的连杆和与连杆相连的曲柄,围绕曲轴中心作往复的圆周运动,而输出动力的。

发动机的原理是什么

发动机的原理是:四冲程汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。发动机是由曲柄连杆机构和配气机构两大机构,以及冷却、润滑、点火、燃料供给、启动系统等五大系统组成。主要部件有气缸体、气缸盖、活塞、活塞销、连杆、曲轴、飞轮等。往复活塞式内燃机的工作腔称作汽缸,汽缸内表面为圆柱形。在汽缸内作往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端则与曲轴相连,曲轴由气缸体上的轴承支承,可在轴承内转动,构成曲柄连杆机构。活塞在汽缸内作往复运动时,连杆推动曲轴旋转。反之,曲轴转动时,连杆轴颈在曲轴箱内作圆周运动,并通过连杆带动活塞在气缸内上下移动。曲轴每转一周,活塞上、下各运行一次,汽缸的容积在不断的由小变大,再由大变小,如此循环不已。汽缸的顶端用汽缸盖封闭。汽缸盖上装有进气门和排气门。通过进、排气门的开闭实现向汽缸内充气和向汽缸外排气。进、排气门的开闭由凸轮轴驱动。凸轮轴由曲轴通过齿形带或齿轮驱动。

发动机的原理是什么?

汽车发动机的基本工作原理是什么? 发动机的基本工作原理是将热能转化为动能: 1、首先在外力的作用下(起动机的带动)通过曲轴带动活塞作往复运动,一旦气缸作功,便可以脱离外力自行工作 2、活塞由上止点向下止点运动时,进气门打开,开始实现进气(汽油车进的是混合气,柴油机进的是纯空气)------进气 3、活塞由下止点向上止点运动时,进排气门关闭,将刚才的进气进行压缩,并产生高温------压缩4、在压缩终了时,汽油车的混和气在火花塞的作用下进行点火燃烧、柴油车的高温气体在喷油器的作用下进行喷油而自行燃烧,气缸内的气体在燃烧的作用下急剧膨胀,促使活塞下行------作功 5、活塞再由下止点向上止点运动时,排气门打开进行排气,并准备下一个循环。 发动机的原理是什么? 发动机有很多种。 柴油发动机是一种,燃气轮机是另外一种。每种发动机都有自己的优缺点。 汽车发动机是一种“内燃发动机”——燃烧偿生在内部。 介绍一下内燃发动机的原理: 目前几乎所有汽车都使用四冲程燃烧循环来将汽油转化为运动。 四冲程方式又称作“奥托循环”,以此纪念1867年发明它的尼克劳斯u2022奥托 (Nikolaus Otto)。这四个冲程如图1所示。 它们分别是: 进气冲程 压缩冲程 燃烧冲程 排气冲程 循环过程 在图中,可以看到称作“活塞”的装置,活塞通过连杆连接到曲轴。 当曲轴旋转时,它的作用相当于复位。 在发动机的循环过程中会发生如下事情: 典型汽车发动机的内部构造 1. 活塞开始时位于顶部,排气门打开,然后活塞向下运动,在发动机的气缸中充满空气和汽油的混合物。 这便是吸气冲程。 此时,只需要在空气中混合最少量的汽油即可。 (图中部分1) 2. 然后,活塞向上返回以压缩燃油/空气混合物。 压缩过程使得爆炸更具威力。 (图中部分2) 3. 当活塞到达其冲程的顶部时,火花塞发出一个火花,点燃汽油。 气缸中的汽油爆炸,推动活塞向下运动。 (图中部分3) 4. 在活塞到达其冲程的底部后,排气门开启,废气被排出气缸并进入排气尾管。 (图中部分4) 现在,发动机准备进行下一次循环,再次吸入空气和汽油。 注意,内燃发动机输出的运动是旋转运动,而土豆加农炮产生的运动是线性运动(直线)。 在发动机中,活塞的线性运动转化为曲轴的旋转运动。 而旋转运动非常好,因为我们正好打算通过它让车轮转起来。 发动机的工作原理 发动机的工作原理是什么 发动机的工作原理: 发动机分为活塞发动机,冲压发动机,火箭发动机,涡轮发动机。 工作过程:进气-压缩-喷油-燃烧-膨胀做功-排气。 (1) 进气冲程   进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程   由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程   当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。 (4) 排气冲程   柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。 飞机发动机工作原理是什么? 补充一下。楼上只是说的喷气式飞机。 对于螺旋桨飞机,其实只要发动机功率足够大,重量足够轻,就可以给飞机用。 历史上就是因为发明了较轻的内燃机代替了蒸汽机,飞机才有可能成功。 以前螺旋桨飞机主要用汽油活塞发动机。跟汽车的基本原理差不多。 现在除了活塞动机外,螺旋桨飞机还有另外一个选择,可以用涡轮螺旋桨发动机。相当于吧涡轮风扇发动机的风扇外面的整流罩去掉,把风扇做得很大。 汽车发动机熄火的原理是什么? 应该是发动机熄火的原因是什么? 上面几位回答都有道理,只是没有叙述全面。发耿机熄火的主要原因就是汽车运行负载转矩(扭矩)大于了发动机输出的转矩,不管是在行驶中还是起步时。正如上面的某位先生所说,发动机工作包括四个冲程:吸气、压缩、爆发(做功)和排气,其中只有一个是输出转矩的(做功),其余三个冲程是依靠飞轮矩的惯性来运动的。当输出转矩小于负载转矩时,发动机被制动,无法进行四个冲程的循环工作,制动时间过长,没有了输出转矩,运动惯性消失,发动机自然就熄火了。 汽车发动机的工作原理是什么? 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。 四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(pression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 发动机制动工作原理是什么? 发动机制动是指擡起油门踏板,但不脱离开发动机,利用发动机的压缩行程产生的压缩阻力,内摩擦力和进排气阻力对驱动轮形成制动作用。 在实际操作中,利用发动机制动  1、 在渣油路面、泥泞冰雪路面等滑溜路面时,应尽可能地利用发动机制动,灵活地运用驻车制动,尽量减少脚制动。如果使用脚制动,最好用间歇制动,且不可一脚踩死,以防侧滑。 2、 在下长坡、崎岖山路等陡峭路面时,必须利用发动机制动,结合间歇制动来控制车速。由于长时间使用制动器会影响制动效能,甚至失去制动作用。因此,遇到这种情况,应适当停车休息,待制动毂和制动蹄片冷却后再继续行驶。 3、 利用发动机制动时,需根据路况和车辆负荷等情况选择合适的挡位,并根据车速大小给以适当的车轮制动。挡位太低,车速太慢;挡位太高,车轮制动器作用太频繁。 4、 如果发动机上没有特殊装置,在利用发动机制动时,不应熄火。否则,被吸入汽缸的可燃混合气中的汽油可能凝结在汽缸壁上稀释机油,影响其润滑效能,加速发动机磨损;此外,一部分汽油还可能凝结在排气管和消声器中,在重新点火时会引起“放炮”现象。 发动机制动就是拖档走,挂著档不给油,发动机对车没有牵引力。相反由于车轮转动带动了发动机,发动机对车有一个反作用的阻力,档位越高发动机对车的作用越小,反之越大。 先说说车速的降低我们就要相应的降挡才能有效的发动机制动,这里新手特别要注意,就是换挡的时候容易发生事故。再说发动机制动刹车灯不会点亮对后车没有提示更易发生事故。 在说说发动机制动是不是保护发动机省油呢,发动机制动就海车轮克服发动机阻力的制动,发动机只要运转都会磨损费油就不存在什么保护发动机和省油了。不过发动机制动倒是可以增加刹车片的寿命。 当然不能说发动机制动就没有用了,在长距离的下坡路段为了减速采用这种制动是最好的方式。不过这些都要建立在你能熟练的应用发动机制动的基础之上。 发动机点火顺序的原理是什么 汽车发动机都是多缸发动机,常见的轿车发动机是4缸和6缸。多缸发动机由若干个相同的气缸排列在一个机体上共用一根曲轴。4冲程发动机一个工作循环曲轴转两圈,即720度。为了保持工作平衡,各缸点火间隔角要求都相等,4缸各缸点火间隔角为180度,6缸为120度。 多缸发动机各缸作功都有一个顺序,称为发动机的点火顺序。点火顺序取决于发动机的结构、曲轴的设计和曲轴负荷等因素。这里有两处提及曲轴,实际上发动机的平稳性很大程度决定于曲轴,曲轴旋转质量的不均匀而产的离心的惯性力,会使发动机振动。所以,曲轴曲拐(轴颈及它两端的曲柄)要尽可能对称均匀,连续作功的两缸相隔尽量远些,V型发动机左右两排气缸尽量交替作功等。因此,发动机就必须要有一个能够平衡曲轴运转的点火顺序。 直列式4缸发动机的点火顺序是:1-4-2-3或1-3-4-2; 直列式5缸发劫机的点火顺序是:1-2-4-5-3 直列式6缸发动机的点火顺序是:1-5-3-6-2-4或1-4-2-6-3-5; V型6缸发动机,首先要弄清楚气缸顺序,因为V型发动机气缸序号的排列方法是不统一的。一般而言,人坐在驾驶室内,如果气缸顺序是右边自前往后为:1、3、5,左边自前往后为2、4、6。点火顺序一般是:1-4-5-2-3-6。如果右边自前往后为:2、4、6,左边自前往后为1、3、5。点顺次序一般是:1-6-5-4-3-2。 轿车发动机气缸排列常见有直列式和V型排列。直列式发动机各缸排列成一排,各气缸呈直立状,排列在一个机体上共用一根曲轴和一个缸盖。直列式发动机结构相对简单,易于制造和维修。但由于气缸直立使汽车前部比较高,影响轿车的空气动力学设计,因而直列式发动机多用于4缸等小型发动机,防止尺寸过大。 V型发动机的气缸分两排排列,两排气缸夹角60度-90度,呈现V型而得名。两排气缸排列在一个机体上共用一根曲轴,各用一个缸盖(即有两个缸盖)。V型发动机的优点是高度比直列式小,汽车前部可以做得低一些,改善轿车的空气动力学性质,同时缩短了发动机的长度,缩短了曲轴长度,不但减少了发动机的占用空间,使得发动机紧凑化,还可以减少发动机的扭转振动,令发动机运转更加平稳。当然构造相对复杂,零件增加,成本增大。现在V型发动机主要用于6缸及6缸以上发动机

发动机的原理是什么?

发动机的原理是:四冲程汽油机是将空气与汽油以一定的比例混合成良好的混合气在吸气冲程被吸入汽缸混合气经压缩点火燃烧而产生热能高温高压的气体作用于活塞顶部推动活塞作往复直线运动通过连杆、曲轴飞轮机构对外输出机械能。相关资料如下:1、构成:发动机是由曲柄连杆机构和配气机构两大机构以及冷却、润滑、点火、燃料供给、启动系统等五大系统组成。主要部件有气缸体、气缸盖、活塞、活塞销、连杆、曲轴、飞轮等。2、气缸:往复活塞式内燃机的工作腔称作汽缸汽缸内表面为圆柱形。在汽缸内作往复运动的活塞通过活塞销与连杆的一端铰接连杆的另一端则与曲轴相连曲轴由气缸体上的轴承支承可在轴承内转动构成曲柄连杆机构。活塞在汽缸内作往复运动时连杆推动曲轴旋转。

航母发动机的原理

找不到就对了,证明先进技术的隐蔽性

发动机的原理是什麽

据边肖了解,很多朋友对一些汽车知识了解不多。为了让大家更容易了解这方面的知识,今天边肖就给大家讲讲发动机的原理。这个问题,感兴趣的朋友可以了解一下,可能对你有帮助。发动机的原理是:四冲程汽油机将空气和汽油以必要的比例混合成良好的混合气,在进气冲程时被吸入气缸。混合物被压缩、点燃和燃烧,产生热能。高温高压气体作用在活塞顶部,推动活塞做直线往复运动,机械能通过连杆、曲轴、飞轮机构向外输出。发动机由曲柄连杆机构和配气机构两大机构和冷却、润滑、点火、供油、起动系统等五大系统组成。关键部件有缸体、缸盖、活塞、活塞销、连杆、曲轴、飞轮等。往复式内燃机的工作腔称为气缸,气缸的内表面为圆柱形。在气缸内往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端与曲轴连接,曲轴由气缸体上的轴承支撑,并可在轴承内运行,形成曲柄连杆机构。当活塞在气缸内往复运动时,连杆推动曲轴转动。反之,曲轴运转时,连杆轴颈在曲轴箱内做圆周运动,连杆带动活塞在气缸内上下运动。曲轴每转一圈,活塞就上下运动,气缸的容积不断由小变大,由大变小,以此类推。气缸的顶部用气缸盖封闭。气缸盖上装有进气门和排气门。通过进气门和排气门的打开和关闭,气缸可以充气和排气。进气门和排气门的打开和关闭由凸轮轴驱动。凸轮轴由曲轴通过齿形带或齿轮驱动。

soap怎么读

soap 英[su0259u028ap]美[sop]n. 肥皂;肥皂剧;[化]皂,脂肪酸盐vt. 抹肥皂;用肥皂擦洗;<俚>拍…的马屁,吹捧(某人)vi. 用肥皂擦洗[例句]The soap opera has a long way to run.这场肥皂剧还长得很啊。