pcr

阅读 / 问答 / 标签

求救,马上开题了,想做基因表达差异这方面,我是做实时荧光定量PCR技术还是mRNA荧光差异显示技术?

显然用荧光定量PCR(qPCR)。mRNA荧光差异显示技术是在qPCR技术广泛应用之前,比较mRNA水平上基因表达差异的一种方法,可以说已经过时了,尤其是在你有条件做qPCR的情况下。mRNA荧光差异显示技术的前几步就是用Oligo dT做总mRNA逆转录,转成cDNA后,用特异性带荧光标记的引物扩增目标DNA,测定表达水平。其实qPCR的原理与之基本一致,只是在测量荧光表达时用机器定量测定,更加准确。

qpcr发文章需要做几个重复

提取三次,那个是生物学重复,甚至应该全程做三遍。提取一次检测三次那个叫技术重复 样本的采集可能是实验变异的第一个来源,特别是RNA实验,因为mRNA的特性易被样本的采集和处理而不稳定。建议新鲜组织可以保存在冰块中,这对RNA的质量和浓度没有多大的影响,但是虽然这种保存方法对一些mRNA和组织是有效的,它也不可能普遍应用。因此在样本采集时应当谨慎。由此应详细记录组织样本的采集以及是否及时处理等信息。如果样本没有及时处理,必须记录是如何保存的,以及在什么情况下保存了多长时间。样本的简要说明也是必不可少的。例如一个肿瘤样本的显微镜镜检可以发现样本由肿瘤细胞组成的比例,这些信息也需要报道。核酸的提取是第二个关键步骤。提取效率取决于足够的同质化,样本的类型(如原位组织和培养组织),样本密度,生理状态(如健康、癌症或者坏死),基因复杂性,以及处理量。因此必须记录核酸取方法的细节,以及检测核酸浓度和评估质量的方法。这些细节对从新鲜冰冻显微切割标本中提取RNA特别重要,因为组织提取过程对RNA的数量和质量影响很大。

第一代基因测序与qpcr有什么不同

原理都不一样,一代测序是双脱氧末端测序,qpcr是荧光探针或染料检测的,两者都会进行扩增但是前者是扩增出不同片段进行电泳的,同时两者都可以检测出突变,缺失

如何利用Bio-Rad CFX Manager 3.1分析QPCR数据

1、百度搜索下载免费的Bio-Rad CFX Manger3.1软件,下载完毕后安装到你电脑上。2、在电脑上点开Bio-rad-2软件,会出现一系列的文件夹和应用程序扩展以及应用程序之类的,专门找到应用程序里面的BioRadCFXManager。3、点击步骤二中的应用程序。程序开启的速度有点慢,请耐心等待。关掉弹出来的无关窗口,点击File,下拉选择Open,选择横向的Data File,点击Data File,弹出你要选择加进去的QPCR数据文件。4、完成步骤三后会弹出你的QPCR曲线结果图。开始对结果图进行分析。首先点击Quantification那栏,看看QPCR的特征曲线跑得怎么样。用鼠标随意点击上面的一条绿色曲线,就出现相对应的哪个孔的Cq值。5、开始对曲线进行分析。这里的曲线多数分为两大类,分别代表了两种不同的引物的扩增曲线。曲线中另外出现了两条水平的线,一条在0刻度线处,代表该孔未加染料(QPCRmix);而另一个孔在0-100之间,代表该孔未加模板cDNA,导致无法起峰进入平台期。这两条曲线去掉,不做数据分析。另外跟这两大群主峰的曲线分散比较大的杂曲线,也作为误差较大曲线,数据分析的时候弃掉不用。6、点击MeltCurve,一般有几个引物便会出现几个特征性的主峰。并且大部分曲线都会簇拥在它们的主峰里面。将数据导出来分析要返回到Quantification,在Cq值下面右击,出现Export to excel,点击,即可保存为Excel表格,分为07和03版本。

如何利用Bio-Rad CFX Manager 3.1分析QPCR数据

方法/步骤11、百度搜索下载免费的Bio-Rad CFX Manger3.1软件,下载完毕后安装到你电脑上。22、在电脑上点开Bio-rad-2软件,会出现一系列的文件夹和应用程序扩展以及应用程序之类的,专门找到应用程序里面的BioRadCFXManager。33、点击步骤二中的应用程序。程序开启的速度有点慢,请耐心等待。关掉弹出来的无关窗口,点击File,下拉选择Open,选择横向的Data File,点击Data File,弹出你要选择加进去的QPCR数据文件。44、完成步骤三后会弹出你的QPCR曲线结果图。开始对结果图进行分析。首先点击Quantification那栏,看看QPCR的特征曲线跑得怎么样。用鼠标随意点击上面的一条绿色曲线,就出现相对应的哪个孔的Cq值。55、开始对曲线进行分析。这里的曲线多数分为两大类,分别代表了两种不同的引物的扩增曲线。曲线中另外出现了两条水平的线,一条在0刻度线处,代表该孔未加染料(QPCR mix);而另一个孔在0-100之间,代表该孔未加模板cDNA,导致无法起峰进入平台期。这两条曲线去掉,不做数据分析。另外跟这两大群主峰的曲线分散比较大的杂曲线,也作为误差较大曲线,数据分析的时候弃掉不用。66、点击Melt Curve,一般有几个引物便会出现几个特征性的主峰。并且大部分曲线都会簇拥在它们的主峰里面。将数据导出来分析要返回到Quantification,在Cq值下面右击,出现Export to excel,点击,即可保存为Excel表格,分为07和03版本。

如何通过qpcr看一个基因的表达丰度

一般来讲,进行real-time qPCR MasterMix都是2×的浓缩液,只需要加入模板和引物就可以。由于real-time qPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。通常来讲,反应体系的引 物终浓度为100-400mM;模板如果是总RNA一般是10ng-500,如果cDNA,通常情况下是1ul或者1ul的10倍稀释液,要根据目的基因 的表达丰度进行调整。当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。在反应体 系配置过程中,有下面几点需要注意:1. MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。2. 更多的配制Mix进行,减少加样误差。最好能在冰上操作。3. 每管或每孔都要换新枪头!不要连续用同一个枪头加样!4. 所有成分加完后,离心去除气泡。5. 每个样品至少3个平行孔。参比或者校正染料(reference dye,passive dye)常用的是ROXTM(现在已经是ABI的注册商标了!)或者其他染料,只要不影响检测PCR产物的荧光值就可以。参比染料的作用是标准化荧光定量 反应中的非PCR震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。现在很多公司已经把ROXTM配制在MasterMix或者 Premixture里。如果反应曲线良好或已经优化好反应体系,也可以不加ROXTM染料校正。通常来讲,real-time qPCR的反应程序不需要像常规的PCR那样,要变性、退火、延伸3步。由于其产物长度在80-150bp 之间,所以只需要变性和退火就可以了。SYBR@Green等染料法,最好在PCR扩增程序结束后,加一个溶解程序,来形成溶解曲线,判断PCR产物的特 异性扩增。而溶解程序,仪器都有默认设置,或稍有不同,但都是一个在产物进行溶解时候,进行荧光信号的收集。 3. 仪器设置所有仪器的操作都基本一致。设置的时候包括反应板设置(plate setup)和程序设置(program setup)。我们以 ABI StepOne为例,详细看一下反应设置:A. 首先是实验目的选择:定量还是其他。我们命名为“BioTeke”,进行“定量”实验。B. 实验方法的选择:我们选用的比较Ct的SYBR Green方法, Fast程序,以cDNA为模板进行。C. 目的基因的设置:有几个目的基因和目的基因的名称。D. 样品的设置:包括哪个是实验组,哪个是对照组。以及负对照的设置和生物重复的设置。E. 对照组和内参基因的设置:这个是为后面的定量做准备F. 反应程序的设置:PCR反应程序的设置要根据不同公司的MasterMix。比如BioTeke的95℃ 2分钟就可以激活DNA聚合酶(ABI的需要10 分钟)。循环反应是95℃15秒,60℃15秒的40个循环。溶解曲线程序采用仪器默认设置就可以。或者是仪器说明书上建议的程序。G. 反应体系的设置:A-G这五个步骤简单设置好,可以保存,修改反应程序或者立刻进行反应。 需要注意一点ABI仪器需要加ROX参比染料,默认的是ROX。有些公司是把ROX或者其他染料配制在MasteMix里面;也有的是单独分开。要根据不 同公司的MasterMix进行这一个步骤的选择。BioTeke的MasterMix里没有参比染料,所以选择“none”。设置好之后,就可以把配置好的PCR管放进仪器,点击RUN!五、Real-time qPCR数据分析1. Real-time qPCR常见参数基线(baseline)通常是3-15个循环的荧光信号 同一次反应中针对不同的基因需单独设置基线 阈值(threshold)自动设置是3-15个循环的荧光信号的标准偏差的10倍 手动设置:置于指数扩增期,刚好可以清楚地看到荧光信号明显增强。 同一次反应中针对不同的基因可单独设置阈值,但对于同一个基因扩增一定要用同一个阈值。 Ct值:与起始浓度的对数成线性关系。分析定量时候一般取Ct:15-35。太大或者太小都会导致定量的不准确。Rn(Normalized reporter)是荧光报告基团的荧光发射强度与参比染料的荧光发射强度的比值。△Rn:△Rn是Rn扣除基线后得到的标准化结果(△Rn=Rn-基线)。 2.影响Ct值的关键因素模板浓度模板浓度是决定Ct的最主要因素。控制在一个合适范围内,使Ct在15-35之间。反应液成分的影响任何分子的荧光发射都受环境因素影响----比如溶液的pH值和盐浓度。 PCR反应的效率PCR反应的效率也会影响Ct值。在PCR扩增效率低的条件下进行连续梯度稀释扩增,与PCR扩增效率高的条件下相比,可能会所产生斜率不同的标准曲线。PCR效率取决于实验、反应混合液性能和样品质量。一般说来,反应效率在90-110%之间都是可以接受的。 3. 如何评估实时定量PCR反应的效果PCR扩增效率:为了正确地评估PCR扩增效率,至少需要做3次平行重复,至少做5个数量级倍数(5logs)连续梯度稀释模板浓度。常见问题1. 无Ct值出现检测荧光信号的步骤有误: 一般SG法采用72℃延伸时采集,Taqman法则一般在退火结束时或延伸结束采集信号。引物或探针降解: 可通过PAGE电泳检测其完整性。模板量不足: 对未知浓度的样品应从系列稀释样本的最高浓度做起。模板降解: 避免样品制备中杂质的引入及反复冻融的情况。2. Ct值出现过晚(Ct>38)扩增效率低: 反应条件不够优化。设计更好的引物或探针;改用三步法进行反应;适当降低退火温度;增加镁离子浓度等。PCR各种反应成分的降解或加样量的不足。PCR产物太长: 一般采用80-150bp的产物长度。 3. 标准曲线线性关系不佳 加样存在误差: 使得标准品不呈梯度。标准品出现降解: 应避免标准品反复冻融,或重新制备并稀释标准品。引物或探针不佳: 重新设计更好的引物和探针。模板中存在抑制物,或模板浓度过高4. 负对照有信号引物设计不够优化:应避免引物二聚体和发夹结构的出现。引物浓度不佳:适当降低引物的浓度,并注意上下游引物的浓度配比。镁离子浓度过高:适当降低镁离子浓度,或选择更合适的mix试剂盒。模板有基因组的污染:RNA提取过程中避免基因组DNA的引入,或通过引物设计避免非特异扩增。5. 溶解曲线不止一个主峰引物设计不够优化:应避免引物二聚体和发夹结构的出现。引物浓度不佳:适当降低引物的浓度,并注意上下游引物的浓度配比。镁离子浓度过高:适当降低镁离子浓度,或选择更合适的 mix 试剂盒。模板有基因组的污染:RNA提取过程中避免基因组DNA的引入,或通过引物设计避免非特异扩增。6. 扩增效率低反应试剂中部分成分特别是荧光染料降解。反应条件不够优化:可适当降低退火温度或改为三步扩增法。反应体系中有PCR反应抑制物:一般是加入模板时所引入,应先把模板适度稀释,再加入反应体系中,减少抑制物的影响。7. 同一试剂在不同仪器上产生不同的曲线,如何判断?判断标准:扩增效率,灵敏度,特异性 如果扩增效率在90%-110%,都是特异性扩增,都可以把数据用于分析。8. 扩增曲线的异常?比如“S”型曲线? 参比染料设定不正确(MasterMix不加参比染料时,选NONE)模板的浓度太高或者降解荧光染料的降解 荧光定量PCR问题汇总1. 定量PCR仪的开关机顺序是怎样的?  按照正确的开关机顺序操作,有助于延长仪器的使用寿命,减少仪器出故障的频率。  开机顺序:先开电脑,待电脑完全启动后再开启定量PCR仪主机,等主机面板上的绿灯亮后即可打开定量PCR的收集软件,进行实验。  关机顺序:确认实验已经结束后,首先关闭信号收集软件,然后关掉定量PCR仪主机的电源,最后关闭电脑。2. 哪些种类的反应管和盖子适合定量PCR实验使用?有何需要注意的地方?     定量PCR实验可以使用以下耗材:96孔光学反应板配合光学膜,0.2 ml光学八联反应管配合光学膜,0.2 ml光学八联反应管配合平盖的光学八联管盖。ABI公司生产的定量PCR耗材的具体使用方法和货号见下表:3. 为什么要定期对电脑进行磁盘碎片整理?怎样整理?   当运行实时定量PCR仪及使用软件分析实验结果时,计算机会删除并创建若干文件,计算机硬盘的空闲空间会被分割成越来越多的小块。当硬盘驱动器上文件以 分解的碎片存储时,程序需要更长的时间才能存取文件,因为必须多次寻找文件碎片以存取不同的片断。碎片整理实用程序将一个文件分解开的多个碎片合并在一 起,并存储到硬盘的同一个位置,从而清除文件碎片,进而优化系统性能。碎片整理的方法如下:  · 在Windows桌面上,选择开始(start),我的电脑(My computer)。  · 在(我的电脑)窗口中,用鼠标右键单击硬盘驱动器,并选择(属性)property。  · 在(属性)对话框中选择工具(Tools)选项卡,单击开始整理(Defragment now)。  · 单击碎片整理(Defragment)。  · 当显示“碎片整理完毕”对话框时,单击(确定)。  · 在“本地磁盘属性”对话框中,单击(确定)。  · 为计算机机中剩余的驱动器重复如上步骤。4. 何时执行windows service pack更新?   不要执行该操作。除非美国应用生物系统公司代表通知您更新操作系统,否则请不要更新控制定量PCR 仪的计算机的操作系统。新版本的Microsoft Windows操作系统有可能与SDS 软件存在冲突,并导致仪器不能正常运行。如果您希望安装service pack(更新包)以更新操作系统,应查看随SDS 软件提供的版本说明,避免兼容性问题。5. 应该备份哪些数据?  应该定期备份您的实验数据,备份频率推荐每周一次,用光盘刻录。同时您也应该备份定量PCR仪的各种纯荧光光谱校正文件、背景文件和安装验证实验数据,这些文件所在的目录是C:/Appliedbiosystems/SDS Document。下图是校正文件的样本。6.怎么样的实验室环境才能保证仪器设备正常运行?  良好的实验室环境有助于延长仪器的使用寿命,减少仪器出故障的频率。推荐做到以下几个方面:  电源:推荐配备合适的UPS或稳压器。  通风:仪器的通风应该没有阻挡。  温度:推荐实验室配备空调,温度应该控制在10-30°C之间。  湿度:20-80%;对于潮湿的省份,推荐实验室配备除湿机。  空间:易于操作,安全。7. 怎样判断定量pcr仪的样本加热块是否被污染?怎样清除污染?  一个办法是运行背景校正反应板,当一个或多个反应孔连续显示出不正常的高信号,则表明该孔可能被荧光污染物。  另外一种办法是在不放任何物品到样本块上的前提下,执行ROI的校正,当某个孔的信号明显高出其他孔时,则表明该孔被污染。清除样本加热块污染的步骤如下:  用移液器吸取少量乙醇并滴入每个污染的反应孔中。  吹打数次。  将废液吸入废液杯中。  重复以上步骤:乙醇三次,去离子水三次。   确认反应孔中的残留液体蒸发完。8. 什么是背景校正?多长时间执行一次背景校正?    背景校正程序测量定量PCR仪所使用的反应管和水的空白荧光强度。在运行校正程序期间,定量PCR仪在10分钟内连续读取背景校正板的荧光强度,信号收 集的温度为60°C。随后,SDS软件计算所收集到的荧光强度的平均值,提取结果并保存到校正文件中。软件在今后的分析中将自动调用此校正文件,从实验数 据中扣除背景信号。   因为背景荧光的信号强度随着许多外界因素(比如外来的污染、反应板/反应管的生产厂商不同、水的纯度等)而变化,所以推荐定期进行背景校正,一般每三个月到半年校正一次。9. 什么是纯荧光校正?多长时间校正一次? 纯荧光校正是测定各种纯荧光染料标准品的波长和信号强度,通俗地说是让仪器“认识”各种荧光染料。软件收集并储存各种纯荧光染料标准品的荧光信息。以后 每次定量实验运行过程中,SDS软件收集样品的原始光谱信号,并将此原始光谱与纯荧光文件中的数据进行比较,精确扣除不同染料的信号重叠部分,从而确定样 品中的荧光染料种类和信号强度。  推荐每半年进行一次纯荧光校正。在运行光谱校正之前,请先进行背景校正和ROI校正。10.96孔板怎样封膜?  当使用96孔板做实验的时候,推荐使用光学膜代替盖子来密封反应孔。正确的封膜方法是:先沿着96孔板的纵向压膜,然后横向,最后沿着板的边缘按压使之密封。11.使用单管或8连管做实验时,在样品加热块上应该怎样安排放置?   使用单管或8连管做实验,并且样本数量不多的时候,建议在样品加热块(TRAY)上对称地安放样品,最好是纵向放置,并且优先放在第6列或第7列,然后 逐渐向两边放置。这样做的好处是热盖压下来的时候不至于发生倾斜,各个反应管的受力和受热都比较均匀,提高孔与孔之间的数据精密性.12. 绝对定量与相对定量有什么区别?  绝对定量的目的是测定目的基因在样本中的分子数目,即通常所说的拷贝数。相对定量的目的是测定目的基因在两个或多个样本中的含量的相对比例,而不需要知道它们在每个样本中的拷贝数。  举例来说,如果研究项目中包括处理过的和未经处理的对照样本,通常可以将未经处理的样本指定为基准,规定其目的基因浓度为100%,将经处理的样本的定量结果除以对照样品的定量结果,就可以计算各个处理样本的基因含量相对于未处理样品的百分比。   绝对定量实验必须使用已知拷贝数的绝对标准品,必须做标准曲线。相对定量可以做标准曲线,也可以不做标准曲线。    相对定量实验有两种方法:标准曲线法和CT值比较法。如果使用标准曲线法,可以使用绝对标准品,也可以使用相对标准品,而且相对标准品在实验操作上更为 简便易行。相对标准品是只知道样品中DNA或RNA的稀释比例而不需要知道其分子数目的标准品,典型的做法是将一个已知pg数的样品做一系列梯度稀释。    CT值比较法是利用CT值与起始DNA浓度的对数成反比的数学关系,来计算不同样本之间的相对百分比,其计算公式是。   绝对定量的数据易于理解,但是绝对标准品的制备和测定其DNA含量比较困难。有许多商业性的标准品试剂盒供选购,可以解决这种困难。  相对定量的标准品容易在实验室里自己制备,但是数据处理比较麻烦,对实验数据的解释有一定难度。13. 定量PCR基因表达的实验数据应该如何处理?   总的来说,有三个层次的校正是必须要做的。    首先,参比信号校正。试剂中必须包含固定浓度的ROX,这样由于反应总体积的差异、所在孔的位置不同、试管壁的厚度差异、管盖透光性能的差异等所引起的 荧光信号波动都能够被扣除,使数据真正反映PCR进程。ROX校正能够极大地改进定量的精确度,提高重复管之间的数据重现性。    其次,内对照校正。实验中加入样品基本上都是以体积为单位的,但是同样体积的不同样品很可能来自不同数目的细胞,所以将实验结果校正到每个细胞的含量是 必要的。方法是在定量目的基因(如IL-2)的同时定量一个内对照基因(如18S RNA基因),然后IL-2/18S。内对照校正使不同样品的实验数据可以相互比较。   第三,计算相对于基准样品(Calibrator)的相对基因含量。比如研究处理和未处理的、0小时和6小时的、正常和患病的之间的基因表达的差别,则需要计算处理/未处理、6小时/0小时、患病/正常。14. 标准曲线法相对定量的数据应该怎么处理?   假设实验的目标是研究药物处理后0、24、48小时IL-2基因在某种组织中的表达量的变化,所用的内对照是18S RNA基因。IL-2和18S RNA的测定结果都是总RNA的pg数,数据的处理方法见下表:15.什么是CT值比较法?数据怎么处理?  CT值与起始DNA浓度的对数成反比:   如果(1)不同管之间的PCR反应效率相同;(2)这些PCR的反应效率接近100%,可以从上面的公式推出相对含量(X01/X02) = 2 -ΔΔCT。假设实验的目标是研究药物处理后0、24、48小时IL-2基因在某种组织中的表达量的变化,所用内对照是18S RNA基因。IL-2和18S RNA的测定结果都是CT值,而没有通过标准曲线测定总RNA的pg数。     16. 每个反应管中可以加入多少种探针?   每个反应管中可以加入的探针数目,取决于仪器、软件、试剂和实验设计等几个方面。   首先是仪器的硬件构成和软件的解析能力。在软件解析能力足够的前提下,全波长检测的定量PCR仪如激光管-CCD类型对于探针的数量实际上是没有限制 的。如果信号的采集要通过滤色片,那么探针的数量取决于滤色片的数目,增加探针需要增加或改变滤色片。改动仪器的结构通常很困难。以AB公司的仪器为 例,7900和7700是激光-全波长检测的,7000、7300是4色滤色片的,7500是5色滤色片的。   其次是化学上的可能性。不同的荧光基团要组合到一起,在同一反应管内使用,必须其激发波长既相对靠近又不能靠得太近,既保证信号激发的效率又保证信号不 重叠干扰,能够区分清楚。现已发现的荧光基团种类有限,满足这样条件的分子组合更少。目前的最佳组合只能达到每组4到5种荧光的水平。   第三是实验方案的设计和选用的探针类型。定量PCR实验必须使用ROX校正荧光,占去一种荧光;TaqMan探针的淬灭基团(TAMRA)也要占用一种 荧光,对于4色检测的仪器来说,只剩下2种荧光可以标记探针,对于5色检测的仪器还有3种荧光可以使用。如果将探针改用TaqMan MGB探针,由于它的淬灭基团是不发荧光的,比之TaqMan探针就可以多1种荧光用于标记探针。如果实验要求不高,不做ROX校正(AB公司不推荐这样 做),还可以再多一种荧光用于标记探针。  第四是研究应用本身的要求。如果研究SNP和基因突变,因为绝大多数人类基因是2态的,只存在两种等位基因,2条探针已经足够。如果研究基因表达,通常是两两比较居多,比如处理比未处理,正常比异常等,加上一个内对照,3色也就足够了。   最后是成本控制方面的要求。多重定量的目的一是提高数据精确度,二是节省反应成本。同时测定的基因越多,成本也越低。但是加入4-5种探针,就要同时加 入8-10条引物。在引物设计的时候要考虑到尽量减少这些引物之间的竞争和抑制等多种干扰,平衡各对引物之间的PCR效率。虽然这是可以做到的,但是要花 费大量时间、人力和物力来筛选最佳引物组合、优化反应条件。如果实验规模不大,在总体上可能反而不合算。   在实际应用中,不是单纯追求加入的探针越多越好,而是追求总体效益的最优化。比较切合实际的是2到3重反应,引物和探针的设计不太困难,反应条件的优化也不太麻烦,同时降低了成本。17. 等位基因鉴定实验(比如SNP分型)是定性的研究,是否可以不进行ROX荧光校正?不,等位基因鉴定实验也要进行ROX荧光归一,以保证实验结果的精密可靠。  由于试剂加样操作的误差、离心管热量传递的误差、离心管盖透光性能的误差等偶然因素是不可避免的,必然导致荧光激发效率的差异,因此仪器收集到的原始信号必须进行归一化校正,相互之间才可以比较并保证重现性。   这种校正是通过在反应缓冲液中添加ROX校正荧光来实现的。ROX在反应缓冲液中的浓度是固定的,因此其信号的高低变化只与上述物理方面变化的总体效应有关。将报告荧光的信号除以ROX荧光的信号,就能够消除所有这些物理因素所引起的数据波动。18. 内标法和外标法哪种数据更精密?是同样可靠的。内标的优点在于目标基因与管家基因的反应条件最接近一致,缺点在于目标基因与管家基因的引物和探针相互之间会发生竞争与抑制,导致它们的 PCR效率有差异。外标的优点在于目标基因与管家基因的引物和探针之间没有发生竞争与抑制的机会,但是不同管之间的反应条件差异比同管的要大,也会导致它 们的PCR效率有差异。两相比较,内标法与外标法的数据精确度是一样的。

如何利用Bio-Rad CFX Manager 3.1分析QPCR数据

1、百度搜索下载的Bio-Rad CFX Manger3.1软件,下载完毕后安装到你电脑上。2、在电脑上点开Bio-rad-2软件,会出现一系列的文件夹和应用程序扩展以及应用程序之类的,专门找到应用程序里面的BioRadCFXManager。3、点击步骤二中的应用程序。程序开启的速度有点慢,请耐心等待。关掉弹出来的无关窗口,点击File,下拉选择Open,选择横向的Data File,点击Data File,弹出你要选择加进去的QPCR数据文件。4、完成步骤三后会弹出你的QPCR曲线结果图。开始对结果图进行分析。首先点击Quantification那栏,看看QPCR的特征曲线跑得怎么样。用鼠标随意点击上面的一条绿色曲线,就出现相对应的哪个孔的Cq值。5、开始对曲线进行分析。这里的曲线多数分为两大类,分别代表了两种不同的引物的扩增曲线。曲线中另外出现了两条水平的线,一条在0刻度线处,代表该孔未加染料(QPCRmix);而另一个孔在0-100之间,代表该孔未加模板cDNA,导致无法起峰进入平台期。这两条曲线去掉,不做数据分析。另外跟这两大群主峰的曲线分散比较大的杂曲线,也作为误差较大曲线,数据分析的时候弃掉不用。6、点击MeltCurve,一般有几个引物便会出现几个特征性的主峰。并且大部分曲线都会簇拥在它们的主峰里面。将数据导出来分析要返回到Quantification,在Cq值下面右击,出现Export to excel,点击,即可保存为Excel表格,分为07和03版本。

qPCR 溶解曲线的基线特别高是什么原因

溶解曲线的意思是:当温度高于扩增产物的TM值时,双链产物变单链,荧光值因为这样的变化而产生变化,根据这一原理,你推算你的体系是是否会在温度变化时产生荧光值的变化,比如你用的是TAQMAN探针,taqman探针产生荧光变化的原理是探针被外

qpcr扩增效率计算时x轴怎么计算

qpcr扩增效率如何计算qpcr扩增效率如何计算的热门新闻荧光定量PCR标准曲线有几个梯度相对定量 相对定量得到的结果为特定样本中目的基因相对于另一参照样本的量的变化。 在某些不需要对基因进行绝对定量,只需要确定基因相对表达差异的情况下,如某样品在经过某种处理后目的基因表达量是增加了还是减少了,用相对定量的方法就可以得到结果,......完整阅读>>实质等同性(转录组学)实验(五)3.13 实时 RT- PCR 验证转录组数据有两种常用的基因(扩增子)定量检测方法:基因特异荧光探针(如 TaqMan chemistry) 或者特异双链 DNA 结合试剂(SYBR green chemistry ) [22......完整阅读>>分子生物学相关实验步骤及注意事项(三)qPCR篇——荧光定量PCR篇——实时荧光定量PCR (Quantitative Real-time PCR)是在常规PCR基础上加入荧光标记探针或相应的荧光染料,每经过一个循环,收集一个荧光强度信号,随着PCR反应的进行,PCR反应产物不断累计,荧......完整阅读>>如何进行qpcr结果分析?这篇文章或许能帮到你实质等同性(转录组学)实验数字PCR技术的发展与应用简介实时定量PCR探针概述基于数字PCR的单分子DNA定量技术研究进展(二)

rt-pcr中没有溶解曲线的原因是什么?(Ct值有的)

溶解曲线的意思是:当温度高于扩增产物的TM值时,双链产物变单链,荧光值因为这样的变化而产生变化,根据这一原理,你推算你的体系是是否会在温度变化时产生荧光值的变化,比如你用的是TAQMAN探针,taqman探针产生荧光变化的原理是探针被外切酶活性的TAQ酶剪切断而产生的,那么在只有温度变化的情况下,是没有荧光值变化的,自然就没有溶解曲线了。但是假如你用的分子信标探针或者sybgreen燃料,情况就不同了。

qpcr怎么转换成热点图

一般来讲,进行real-time qPCR MasterMix都是2×的浓缩液,只需要加入模板和引物就可以。由于real-time qPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。通常来讲,反应体系的引 物终浓度为100-400mM;模板如果是总RNA一般是10ng-500,如果cDNA,通常情况下是1ul或者1ul的10倍稀释液,要根据目的基因 的表达丰度进行调整。当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。在反应体 系配置过程中,有下面几点需要注意:1. MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。2. 更多的配制Mix进行,减少加样误差。最好能在冰上操作。3. 每管或每孔都要换新枪头!不要连续用同一个枪头加样!4. 所有成分加完后,离心去除气泡。5. 每个样品至少3个平行孔。参比或者校正染料(reference dye,passive dye)常用的是ROXTM(现在已经是ABI的注册商标了!)或者其他染料,只要不影响检测PCR产物的荧光值就可以。参比染料的作用是标准化荧光定量 反应中的非PCR震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。现在很多公司已经把ROXTM配制在MasterMix或者 Premixture里。如果反应曲线良好或已经优化好反应体系,也可以不加ROXTM染料校正。通常来讲,real-time qPCR的反应程序不需要像常规的PCR那样,要变性、退火、延伸3步。由于其产物长度在80-150bp 之间,所以只需要变性和退火就可以了。SYBR@Green等染料法,最好在PCR扩增程序结束后,加一个溶解程序,来形成溶解曲线,判断PCR产物的特 异性扩增。而溶解程序,仪器都有默认设置,或稍有不同,但都是一个在产物进行溶解时候,进行荧光信号的收集。 3. 仪器设置所有仪器的操作都基本一致。设置的时候包括反应板设置(plate setup)和程序设置(program setup)。我们以 ABI StepOne为例,详细看一下反应设置:A. 首先是实验目的选择:定量还是其他。我们命名为逗BioTeke地,进行逗定量地实验。B. 实验方法的选择:我们选用的比较Ct的SYBR Green方法, Fast程序,以cDNA为模板进行。C. 目的基因的设置:有几个目的基因和目的基因的名称。D. 样品的设置:包括哪个是实验组,哪个是对照组。以及负对照的设置和生物重复的设置。E. 对照组和内参基因的设置:这个是为后面的定量做准备F. 反应程序的设置:PCR反应程序的设置要根据不同公司的MasterMix。比如BioTeke的95℃ 2分钟就可以激活DNA聚合酶(ABI的需要10 分钟)。循环反应是95℃15秒,60℃15秒的40个循环。溶解曲线程序采用仪器默认设置就可以。或者是仪器说明书上建议的程序。G. 反应体系的设置:A-G这五个步骤简单设置好,可以保存,修改反应程序或者立刻进行反应。 需要注意一点ABI仪器需要加ROX参比染料,默认的是ROX。有些公司是把ROX或者其他染料配制在MasteMix里面;也有的是单独分开。要根据不 同公司的MasterMix进行这一个步骤的选择。BioTeke的MasterMix里没有参比染料,所以选择逗none地。设置好之后,就可以把配置好的PCR管放进仪器,点击RUN!五、Real-time qPCR数据分析1. Real-time qPCR常见参数基线(baseline)通常是3-15个循环的荧光信号 同一次反应中针对不同的基因需单独设置基线 阈值(threshold)自动设置是3-15个循环的荧光信号的标准偏差的10倍 手动设置:置于指数扩增期,刚好可以清楚地看到荧光信号明显增强。 同一次反应中针对不同的基因可单独设置阈值,但对于同一个基因扩增一定要用同一个阈值。 Ct值:与起始浓度的对数成线性关系。分析定量时候一般取Ct:15-35。太大或者太小都会导致定量的不准确。Rn(Normalized reporter)是荧光报告基团的荧光发射强度与参比染料的荧光发射强度的比值。△Rn:△Rn是Rn扣除基线后得到的标准化结果(△Rn=Rn-基线)。 2.影响Ct值的关键因素模板浓度模板浓度是决定Ct的最主要因素。控制在一个合适范围内,使Ct在15-35之间。反应液成分的影响任何分子的荧光发射都受环境因素影响----比如溶液的pH值和盐浓度。 PCR反应的效率PCR反应的效率也会影响Ct值。在PCR扩增效率低的条件下进行连续梯度稀释扩增,与PCR扩增效率高的条件下相比,可能会所产生斜率不同的标准曲线。PCR效率取决于实验、反应混合液性能和样品质量。一般说来,反应效率在90-110%之间都是可以接受的。 3. 如何评估实时定量PCR反应的效果PCR扩增效率:为了正确地评估PCR扩增效率,至少需要做3次平行重复,至少做5个数量级倍数(5logs)连续梯度稀释模板浓度。常见问题1. 无Ct值出现检测荧光信号的步骤有误: 一般SG法采用72℃延伸时采集,Taqman法则一般在退火结束时或延伸结束采集信号。引物或探针降解: 可通过PAGE电泳检测其完整性。模板量不足: 对未知浓度的样品应从系列稀释样本的最高浓度做起。模板降解: 避免样品制备中杂质的引入及反复冻融的情况。2. Ct值出现过晚(Ct>38)扩增效率低: 反应条件不够优化。设计更好的引物或探针;改用三步法进行反应;适当降低退火温度;增加镁离子浓度等。PCR各种反应成分的降解或加样量的不足。PCR产物太长: 一般采用80-150bp的产物长度。 3. 标准曲线线性关系不佳 加样存在误差: 使得标准品不呈梯度。标准品出现降解: 应避免标准品反复冻融,或重新制备并稀释标准品。引物或探针不佳: 重新设计更好的引物和探针。模板中存在抑制物,或模板浓度过高4. 负对照有信号引物设计不够优化:应避免引物二聚体和发夹结构的出现。引物浓度不佳:适当降低引物的浓度,并注意上下游引物的浓度配比。镁离子浓度过高:适当降低镁离子浓度,或选择更合适的mix试剂盒。模板有基因组的污染:RNA提取过程中避免基因组DNA的引入,或通过引物设计避免非特异扩增。5. 溶解曲线不止一个主峰引物设计不够优化:应避免引物二聚体和发夹结构的出现。引物浓度不佳:适当降低引物的浓度,并注意上下游引物的浓度配比。镁离子浓度过高:适当降低镁离子浓度,或选择更合适的 mix 试剂盒。模板有基因组的污染:RNA提取过程中避免基因组DNA的引入,或通过引物设计避免非特异扩增。6. 扩增效率低反应试剂中部分成分特别是荧光染料降解。反应条件不够优化:可适当降低退火温度或改为三步扩增法。反应体系中有PCR反应抑制物:一般是加入模板时所引入,应先把模板适度稀释,再加入反应体系中,减少抑制物的影响。7. 同一试剂在不同仪器上产生不同的曲线,如何判断看判断标准:扩增效率,灵敏度,特异性 如果扩增效率在90%-110%,都是特异性扩增,都可以把数据用于分析。8. 扩增曲线的异常看比如逗S地型曲线看 参比染料设定不正确(MasterMix不加参比染料时,选NONE)模板的浓度太高或者降解荧光染料的降解 荧光定量PCR问题汇总1. 定量PCR仪的开关机顺序是怎样的看  按照正确的开关机顺序操作,有助于延长仪器的使用寿命,减少仪器出故障的频率。  开机顺序:先开电脑,待电脑完全启动后再开启定量PCR仪主机,等主机面板上的绿灯亮后即可打开定量PCR的收集软件,进行实验。  关机顺序:确认实验已经结束后,首先关闭信号收集软件,然后关掉定量PCR仪主机的电源,最后关闭电脑。2. 哪些种类的反应管和盖子适合定量PCR实验使用看有何需要注意的地方看     定量PCR实验可以使用以下耗材:96孔光学反应板配合光学膜,0.2 ml光学八联反应管配合光学膜,0.2 ml光学八联反应管配合平盖的光学八联管盖。ABI公司生产的定量PCR耗材的具体使用方法和货号见下表:3. 为什么要定期对电脑进行磁盘碎片整理看怎样整理看   当运行实时定量PCR仪及使用软件分析实验结果时,计算机会删除并创建若干文件,计算机硬盘的空闲空间会被分割成越来越多的小块。当硬盘驱动器上文件以 分解的碎片存储时,程序需要更长的时间才能存取文件,因为必须多次寻找文件碎片以存取不同的片断。碎片整理实用程序将一个文件分解开的多个碎片合并在一 起,并存储到硬盘的同一个位置,从而清除文件碎片,进而优化系统性能。碎片整理的方法如下:  · 在Windows桌面上,选择开始(start),我的电脑(My computer)。  · 在(我的电脑)窗口中,用鼠标右键单击硬盘驱动器,并选择(属性)property。  · 在(属性)对话框中选择工具(Tools)选项卡,单击开始整理(Defragment now)。  · 单击碎片整理(Defragment)。  · 当显示逗碎片整理完毕地对话框时,单击(确定)。  · 在逗本地磁盘属性地对话框中,单击(确定)。  · 为计算机机中剩余的驱动器重复如上步骤。4. 何时执行windows service pack更新看   不要执行该操作。除非美国应用生物系统公司代表通知您更新操作系统,否则请不要更新控制定量PCR 仪的计算机的操作系统。新版本的Microsoft Windows操作系统有可能与SDS 软件存在冲突,并导致仪器不能正常运行。如果您希望安装service pack(更新包)以更新操作系统,应查看随SDS 软件提供的版本说明,避免兼容性问题。5. 应该备份哪些数据看  应该定期备份您的实验数据,备份频率推荐每周一次,用光盘刻录。同时您也应该备份定量PCR仪的各种纯荧光光谱校正文件、背景文件和安装验证实验数据,这些文件所在的目录是C:/Appliedbiosystems/SDS Document。下图是校正文件的样本。6.怎么样的实验室环境才能保证仪器设备正常运行看  良好的实验室环境有助于延长仪器的使用寿命,减少仪器出故障的频率。推荐做到以下几个方面:  电源:推荐配备合适的UPS或稳压器。  通风:仪器的通风应该没有阻挡。  温度:推荐实验室配备空调,温度应该控制在10-30°C之间。  湿度:20-80%;对于潮湿的省份,推荐实验室配备除湿机。  空间:易于操作,安全。7. 怎样判断定量pcr仪的样本加热块是否被污染看怎样清除污染看  一个办法是运行背景校正反应板,当一个或多个反应孔连续显示出不正常的高信号,则表明该孔可能被荧光污染物。  另外一种办法是在不放任何物品到样本块上的前提下,执行ROI的校正,当某个孔的信号明显高出其他孔时,则表明该孔被污染。清除样本加热块污染的步骤如下:  用移液器吸取少量乙醇并滴入每个污染的反应孔中。  吹打数次。  将废液吸入废液杯中。  重复以上步骤:乙醇三次,去离子水三次。   确认反应孔中的残留液体蒸发完。8. 什么是背景校正看多长时间执行一次背景校正看    背景校正程序测量定量PCR仪所使用的反应管和水的空白荧光强度。在运行校正程序期间,定量PCR仪在10分钟内连续读取背景校正板的荧光强度,信号收 集的温度为60°C。随后,SDS软件计算所收集到的荧光强度的平均值,提取结果并保存到校正文件中。软件在今后的分析中将自动调用此校正文件,从实验数 据中扣除背景信号。   因为背景荧光的信号强度随着许多外界因素(比如外来的污染、反应板/反应管的生产厂商不同、水的纯度等)而变化,所以推荐定期进行背景校正,一般每三个月到半年校正一次。9. 什么是纯荧光校正看多长时间校正一次看 纯荧光校正是测定各种纯荧光染料标准品的波长和信号强度,通俗地说是让仪器逗认识地各种荧光染料。软件收集并储存各种纯荧光染料标准品的荧光信息。以后 每次定量实验运行过程中,SDS软件收集样品的原始光谱信号,并将此原始光谱与纯荧光文件中的数据进行比较,精确扣除不同染料的信号重叠部分,从而确定样 品中的荧光染料种类和信号强度。  推荐每半年进行一次纯荧光校正。在运行光谱校正之前,请先进行背景校正和ROI校正。10.96孔板怎样封膜看  当使用96孔板做实验的时候,推荐使用光学膜代替盖子来密封反应孔。正确的封膜方法是:先沿着96孔板的纵向压膜,然后横向,最后沿着板的边缘按压使之密封。11.使用单管或8连管做实验时,在样品加热块上应该怎样安排放置看   使用单管或8连管做实验,并且样本数量不多的时候,建议在样品加热块(TRAY)上对称地安放样品,最好是纵向放置,并且优先放在第6列或第7列,然后 逐渐向两边放置。这样做的好处是热盖压下来的时候不至于发生倾斜,各个反应管的受力和受热都比较均匀,提高孔与孔之间的数据精密性.12. 绝对定量与相对定量有什么区别看  绝对定量的目的是测定目的基因在样本中的分子数目,即通常所说的拷贝数。相对定量的目的是测定目的基因在两个或多个样本中的含量的相对比例,而不需要知道它们在每个样本中的拷贝数。  举例来说,如果研究项目中包括处理过的和未经处理的对照样本,通常可以将未经处理的样本指定为基准,规定其目的基因浓度为100%,将经处理的样本的定量结果除以对照样品的定量结果,就可以计算各个处理样本的基因含量相对于未处理样品的百分比。   绝对定量实验必须使用已知拷贝数的绝对标准品,必须做标准曲线。相对定量可以做标准曲线,也可以不做标准曲线。    相对定量实验有两种方法:标准曲线法和CT值比较法。如果使用标准曲线法,可以使用绝对标准品,也可以使用相对标准品,而且相对标准品在实验操作上更为 简便易行。相对标准品是只知道样品中DNA或RNA的稀释比例而不需要知道其分子数目的标准品,典型的做法是将一个已知pg数的样品做一系列梯度稀释。    CT值比较法是利用CT值与起始DNA浓度的对数成反比的数学关系,来计算不同样本之间的相对百分比,其计算公式是。   绝对定量的数据易于理解,但是绝对标准品的制备和测定其DNA含量比较困难。有许多商业性的标准品试剂盒供选购,可以解决这种困难。  相对定量的标准品容易在实验室里自己制备,但是数据处理比较麻烦,对实验数据的解释有一定难度。13. 定量PCR基因表达的实验数据应该如何处理看   总的来说,有三个层次的校正是必须要做的。    首先,参比信号校正。试剂中必须包含固定浓度的ROX,这样由于反应总体积的差异、所在孔的位置不同、试管壁的厚度差异、管盖透光性能的差异等所引起的 荧光信号波动都能够被扣除,使数据真正反映PCR进程。ROX校正能够极大地改进定量的精确度,提高重复管之间的数据重现性。    其次,内对照校正。实验中加入样品基本上都是以体积为单位的,但是同样体积的不同样品很可能来自不同数目的细胞,所以将实验结果校正到每个细胞的含量是 必要的。方法是在定量目的基因(如IL-2)的同时定量一个内对照基因(如18S RNA基因),然后IL-2/18S。内对照校正使不同样品的实验数据可以相互比较。   第三,计算相对于基准样品(Calibrator)的相对基因含量。比如研究处理和未处理的、0小时和6小时的、正常和患病的之间的基因表达的差别,则需要计算处理/未处理、6小时/0小时、患病/正常。14. 标准曲线法相对定量的数据应该怎么处理看   假设实验的目标是研究药物处理后0、24、48小时IL-2基因在某种组织中的表达量的变化,所用的内对照是18S RNA基因。IL-2和18S RNA的测定结果都是总RNA的pg数,数据的处理方法见下表:15.什么是CT值比较法看数据怎么处理看  CT值与起始DNA浓度的对数成反比:   如果(1)不同管之间的PCR反应效率相同;(2)这些PCR的反应效率接近100%,可以从上面的公式推出相对含量(X01/X02) = 2 -ΔΔCT。假设实验的目标是研究药物处理后0、24、48小时IL-2基因在某种组织中的表达量的变化,所用内对照是18S RNA基因。IL-2和18S RNA的测定结果都是CT值,而没有通过标准曲线测定总RNA的pg数。     16. 每个反应管中可以加入多少种探针看   每个反应管中可以加入的探针数目,取决于仪器、软件、试剂和实验设计等几个方面。   首先是仪器的硬件构成和软件的解析能力。在软件解析能力足够的前提下,全波长检测的定量PCR仪如激光管-CCD类型对于探针的数量实际上是没有限制 的。如果信号的采集要通过滤色片,那么探针的数量取决于滤色片的数目,增加探针需要增加或改变滤色片。改动仪器的结构通常很困难。以AB公司的仪器为 例,7900和7700是激光-全波长检测的,7000、7300是4色滤色片的,7500是5色滤色片的。   其次是化学上的可能性。不同的荧光基团要组合到一起,在同一反应管内使用,必须其激发波长既相对靠近又不能靠得太近,既保证信号激发的效率又保证信号不 重叠干扰,能够区分清楚。现已发现的荧光基团种类有限,满足这样条件的分子组合更少。目前的最佳组合只能达到每组4到5种荧光的水平。   第三是实验方案的设计和选用的探针类型。定量PCR实验必须使用ROX校正荧光,占去一种荧光;TaqMan探针的淬灭基团(TAMRA)也要占用一种 荧光,对于4色检测的仪器来说,只剩下2种荧光可以标记探针,对于5色检测的仪器还有3种荧光可以使用。如果将探针改用TaqMan MGB探针,由于它的淬灭基团是不发荧光的,比之TaqMan探针就可以多1种荧光用于标记探针。如果实验要求不高,不做ROX校正(AB公司不推荐这样 做),还可以再多一种荧光用于标记探针。  第四是研究应用本身的要求。如果研究SNP和基因突变,因为绝大多数人类基因是2态的,只存在两种等位基因,2条探针已经足够。如果研究基因表达,通常是两两比较居多,比如处理比未处理,正常比异常等,加上一个内对照,3色也就足够了。   最后是成本控制方面的要求。多重定量的目的一是提高数据精确度,二是节省反应成本。同时测定的基因越多,成本也越低。但是加入4-5种探针,就要同时加 入8-10条引物。在引物设计的时候要考虑到尽量减少这些引物之间的竞争和抑制等多种干扰,平衡各对引物之间的PCR效率。虽然这是可以做到的,但是要花 费大量时间、人力和物力来筛选最佳引物组合、优化反应条件。如果实验规模不大,在总体上可能反而不合算。   在实际应用中,不是单纯追求加入的探针越多越好,而是追求总体效益的最优化。比较切合实际的是2到3重反应,引物和探针的设计不太困难,反应条件的优化也不太麻烦,同时降低了成本。17. 等位基因鉴定实验(比如SNP分型)是定性的研究,是否可以不进行ROX荧光校正看不,等位基因鉴定实验也要进行ROX荧光归一,以保证实验结果的精密可靠。  由于试剂加样操作的误差、离心管热量传递的误差、离心管盖透光性能的误差等偶然因素是不可避免的,必然导致荧光激发效率的差异,因此仪器收集到的原始信号必须进行归一化校正,相互之间才可以比较并保证重现性。   这种校正是通过在反应缓冲液中添加ROX校正荧光来实现的。ROX在反应缓冲液中的浓度是固定的,因此其信号的高低变化只与上述物理方面变化的总体效应有关。将报告荧光的信号除以ROX荧光的信号,就能够消除所有这些物理因素所引起的数据波动。18. 内标法和外标法哪种数据更精密看是同样可靠的。内标的优点在于目标基因与管家基因的反应条件最接近一致,缺点在于目标基因与管家基因的引物和探针相互之间会发生竞争与抑制,导致它们的 PCR效率有差异。外标的优点在于目标基因与管家基因的引物和探针之间没有发生竞争与抑制的机会,但是不同管之间的反应条件差异比同管的要大,也会导致它 们的PCR效率有差异。两相比较,内标法与外标法的数据精确度是一样的。

如何利用Bio-Rad CFX Manager 3.1分析QPCR数据

1、百度搜索下载免费的Bio-Rad CFX Manger3.1软件,下载完毕后安装到你电脑上。2、在电脑上点开Bio-rad-2软件,会出现一系列的文件夹和应用程序扩展以及应用程序之类的,专门找到应用程序里面的BioRadCFXManager。3、点击步骤二中的应用程序。程序开启的速度有点慢,请耐心等待。关掉弹出来的无关窗口,点击File,下拉选择Open,选择横向的Data File,点击Data File,弹出你要选择加进去的QPCR数据文件。4、完成步骤三后会弹出你的QPCR曲线结果图。开始对结果图进行分析。首先点击Quantification那栏,看看QPCR的特征曲线跑得怎么样。用鼠标随意点击上面的一条绿色曲线,就出现相对应的哪个孔的Cq值。5、开始对曲线进行分析。这里的曲线多数分为两大类,分别代表了两种不同的引物的扩增曲线。曲线中另外出现了两条水平的线,一条在0刻度线处,代表该孔未加染料(QPCRmix);而另一个孔在0-100之间,代表该孔未加模板cDNA,导致无法起峰进入平台期。这两条曲线去掉,不做数据分析。另外跟这两大群主峰的曲线分散比较大的杂曲线,也作为误差较大曲线,数据分析的时候弃掉不用。6、点击MeltCurve,一般有几个引物便会出现几个特征性的主峰。并且大部分曲线都会簇拥在它们的主峰里面。将数据导出来分析要返回到Quantification,在Cq值下面右击,出现Exportto excel,点击,即可保存为Excel表格,分为07和03版本。

如何作QPCR的标准曲线

一般来讲,进行real-timeqPCRMasterMix都是2×的浓缩液,只需要加入模板和引物就可以。由于real-timeqPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。通常来讲,反应体系的引物终浓度为100-400mM;模板如果是总RNA一般是10ng-500,如果cDNA,通常情况下是1ul或者1ul的10倍稀释液,要根据目的基因的表达丰度进行调整。当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。在反应体系配置过程中,有下面几点需要注意:1.MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。2.的配制Mix进行,减少加样误差。最好能在冰上操作。3.每管或每孔都要换新枪头!不要连续用同一个枪头加样!4.所有成分加完后,离心去除气泡。5.每个样品至少3个平行孔。参比或者校正染料(referencedye,passivedye)常用的是ROXTM(现在已经是ABI的注册商标了!)或者其他染料,只要不影响检测PCR产物的荧光值就可以。参比染料的作用是标准化荧光定量反应中的非PCR震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。现在很多公司已经把ROXTM配制在MasterMix或者Premixture里。如果反应曲线良好或已经优化好反应体系,也可以不加ROXTM染料校正。通常来讲,real-timeqPCR的反应程序不需要像常规的PCR那样,要变性、退火、延伸3步。由于其产物长度在80-150bp之间,所以只需要变性和退火就可以了。SYBR@Green等染料法,最好在PCR扩增程序结束后,加一个溶解程序,来形成溶解曲线,判断PCR产物的特异性扩增。而溶解程序,仪器都有默认设置,或稍有不同,但都是一个在产物进行溶解时候,进行荧光信号的收集。3.仪器设置所有仪器的操作都基本一致。设置的时候包括反应板设置(platesetup)和程序设置(programsetup)。我们以ABIStepOne为例,详细看一下反应设置:A.首先是实验目的选择:定量还是其他。我们命名为“BioTeke”,进行“定量”实验。B.实验方法的选择:我们选用的比较Ct的SYBRGreen方法,Fast程序,以cDNA为模板进行。C.目的基因的设置:有几个目的基因和目的基因的名称。D.样品的设置:包括哪个是实验组,哪个是对照组。以及负对照的设置和生物重复的设置。E.对照组和内参基因的设置:这个是为后面的定量做准备F.反应程序的设置:PCR反应程序的设置要根据不同公司的MasterMix。比如BioTeke的95℃2分钟就可以激活DNA聚合酶(ABI的需要10分钟)。循环反应是95℃15秒,60℃15秒的40个循环。溶解曲线程序采用仪器默认设置就可以。或者是仪器说明书上建议的程序。G.反应体系的设置:A-G这五个步骤简单设置好,可以保存,修改反应程序或者立刻进行反应。需要注意一点ABI仪器需要加ROX参比染料,默认的是ROX。有些公司是把ROX或者其他染料配制在MasteMix里面;也有的是单独分开。要根据不同公司的MasterMix进行这一个步骤的选择。BioTeke的MasterMix里没有参比染料,所以选择“none”。设置好之后,就可以把配置好的PCR管放进仪器,点击RUN!五、Real-timeqPCR数据分析1.Real-timeqPCR常见参数基线(baseline)通常是3-15个循环的荧光信号同一次反应中针对不同的基因需单独设置基线阈值(threshold)自动设置是3-15个循环的荧光信号的标准偏差的10倍手动设置:置于指数扩增期,刚好可以清楚地看到荧光信号明显增强。同一次反应中针对不同的基因可单独设置阈值,但对于同一个基因扩增一定要用同一个阈值。Ct值:与起始浓度的对数成线性关系。分析定量时候一般取Ct:15-35。太大或者太小都会导致定量的不准确。Rn(Normalizedreporter)是荧光报告基团的荧光发射强度与参比染料的荧光发射强度的比值。△Rn:△Rn是Rn扣除基线后得到的标准化结果(△Rn=Rn-基线)。2.影响Ct值的关键因素模板浓度模板浓度是决定Ct的最主要因素。控制在一个合适范围内,使Ct在15-35之间。反应液成分的影响任何分子的荧光发射都受环境因素影响----比如溶液的pH值和盐浓度。PCR反应的效率PCR反应的效率也会影响Ct值。在PCR扩增效率低的条件下进行连续梯度稀释扩增,与PCR扩增效率高的条件下相比,可能会所产生斜率不同的标准曲线。PCR效率取决于实验、反应混合液性能和样品质量。一般说来,反应效率在90-110%之间都是可以接受的。3.如何评估实时定量PCR反应的效果PCR扩增效率:为了正确地评估PCR扩增效率,至少需要做3次平行重复,至少做5个数量级倍数(5logs)连续梯度稀释模板浓度。常见问题1.无Ct值出现检测荧光信号的步骤有误:一般SG法采用72℃延伸时采集,Taqman法则一般在退火结束时或延伸结束采集信号。引物或探针降解:可通过PAGE电泳检测其完整性。模板量不足:对未知浓度的样品应从系列稀释样本的最高浓度做起。模板降解:避免样品制备中杂质的引入及反复冻融的情况。2.Ct值出现过晚(Ct>38)扩增效率低:反应条件不够优化。设计更好的引物或探针;改用三步法进行反应;适当降低退火温度;增加镁离子浓度等。PCR各种反应成分的降解或加样量的不足。PCR产物太长:一般采用80-150bp的产物长度。3.标准曲线线性关系不佳加样存在误差:使得标准品不呈梯度。标准品出现降解:应避免标准品反复冻融,或重新制备并稀释标准品。引物或探针不佳:重新设计更好的引物和探针。模板中存在抑制物,或模板浓度过高4.负对照有信号引物设计不够优化:应避免引物二聚体和发夹结构的出现。引物浓度不佳:适当降低引物的浓度,并注意上下游引物的浓度配比。镁离子浓度过高:适当降低镁离子浓度,或选择更合适的mix试剂盒。模板有基因组的污染:RNA提取过程中避免基因组DNA的引入,或通过引物设计避免非特异扩增。5.溶解曲线不止一个主峰引物设计不够优化:应避免引物二聚体和发夹结构的出现。引物浓度不佳:适当降低引物的浓度,并注意上下游引物的浓度配比。镁离子浓度过高:适当降低镁离子浓度,或选择更合适的mix试剂盒。模板有基因组的污染:RNA提取过程中避免基因组DNA的引入,或通过引物设计避免非特异扩增。6.扩增效率低反应试剂中部分成分特别是荧光染料降解。反应条件不够优化:可适当降低退火温度或改为三步扩增法。反应体系中有PCR反应抑制物:一般是加入模板时所引入,应先把模板适度稀释,再加入反应体系中,减少抑制物的影响。7.同一试剂在不同仪器上产生不同的曲线,如何判断?判断标准:扩增效率,灵敏度,特异性如果扩增效率在90%-110%,都是特异性扩增,都可以把数据用于分析。8.扩增曲线的异常?比如“S”型曲线?参比染料设定不正确(MasterMix不加参比染料时,选NONE)模板的浓度太高或者降解荧光染料的降解荧光定量PCR问题汇总1.定量PCR仪的开关机顺序是怎样的?  按照正确的开关机顺序操作,有助于延长仪器的使用寿命,减少仪器出故障的频率。  开机顺序:先开电脑,待电脑完全启动后再开启定量PCR仪主机,等主机面板上的绿灯亮后即可打开定量PCR的收集软件,进行实验。  关机顺序:确认实验已经结束后,首先关闭信号收集软件,然后关掉定量PCR仪主机的电源,最后关闭电脑。2.哪些种类的反应管和盖子适合定量PCR实验使用?有何需要注意的地方?    定量PCR实验可以使用以下耗材:96孔光学反应板配合光学膜,0.2ml光学八联反应管配合光学膜,0.2ml光学八联反应管配合平盖的光学八联管盖。ABI公司生产的定量PCR耗材的具体使用方法和货号见下表:3.为什么要定期对电脑进行磁盘碎片整理?怎样整理?  当运行实时定量PCR仪及使用软件分析实验结果时,计算机会删除并创建若干文件,计算机硬盘的空闲空间会被分割成越来越多的小块。当硬盘驱动器上文件以分解的碎片存储时,程序需要更长的时间才能存取文件,因为必须多次寻找文件碎片以存取不同的片断。碎片整理实用程序将一个文件分解开的多个碎片合并在一起,并存储到硬盘的同一个位置,从而清除文件碎片,进而优化系统性能。碎片整理的方法如下:  ·在Windows桌面上,选择开始(start),我的电脑(Mycomputer)。  ·在(我的电脑)窗口中,用鼠标右键单击硬盘驱动器,并选择(属性)property。  ·在(属性)对话框中选择工具(Tools)选项卡,单击开始整理(Defragmentnow)。  ·单击碎片整理(Defragment)。  ·当显示“碎片整理完毕”对话框时,单击(确定)。  ·在“本地磁盘属性”对话框中,单击(确定)。  ·为计算机机中剩余的驱动器重复如上步骤。4.何时执行windowsservicepack更新?  不要执行该操作。除非美国应用生物系统公司代表通知您更新操作系统,否则请不要更新控制定量PCR仪的计算机的操作系统。新版本的MicrosoftWindows操作系统有可能与SDS软件存在冲突,并导致仪器不能正常运行。如果您希望安装servicepack(更新包)以更新操作系统,应查看随SDS软件提供的版本说明,避免兼容性问题。5.应该备份哪些数据?  应该定期备份您的实验数据,备份频率推荐每周一次,用光盘刻录。同时您也应该备份定量PCR仪的各种纯荧光光谱校正文件、背景文件和安装验证实验数据,这些文件所在的目录是C:/Appliedbiosystems/SDSDocument。下图是校正文件的样本。6.怎么样的实验室环境才能保证仪器设备正常运行?  良好的实验室环境有助于延长仪器的使用寿命,减少仪器出故障的频率。推荐做到以下几个方面:  电源:推荐配备合适的UPS或稳压器。  通风:仪器的通风应该没有阻挡。  温度:推荐实验室配备空调,温度应该控制在10-30°C之间。  湿度:20-80%;对于潮湿的省份,推荐实验室配备除湿机。  空间:易于操作,安全。7.怎样判断定量pcr仪的样本加热块是否被污染?怎样清除污染?  一个法是运行背景校正反应板,当一个或多个反应孔连续显示出不正常的高信号,则表明该孔可能被荧光污染物。  另外一种法是在不放任何物品到样本块上的前提下,执行ROI的校正,当某个孔的信号明显高出其他孔时,则表明该孔被污染。清除样本加热块污染的步骤如下:  用移液器吸取少量乙醇并滴入每个污染的反应孔中。  吹打数次。  将废液吸入废液杯中。  重复以上步骤:乙醇三次,去离子水三次。  确认反应孔中的残留液体蒸发完。8.什么是背景校正?多长时间执行一次背景校正?  背景校正程序测量定量PCR仪所使用的反应管和水的空白荧光强度。在运行校正程序期间,定量PCR仪在10分钟内连续读取背景校正板的荧光强度,信号收集的温度为60°C。随后,SDS软件计算所收集到的荧光强度的平均值,提取结果并保存到校正文件中。软件在今后的分析中将自动调用此校正文件,从实验数据中扣除背景信号。  因为背景荧光的信号强度随着许多外界因素(比如外来的污染、反应板/反应管的生产厂商不同、水的纯度等)而变化,所以推荐定期进行背景校正,一般每三个月到半年校正一次。9.什么是纯荧光校正?多长时间校正一次? 纯荧光校正是测定各种纯荧光染料标准品的波长和信号强度,通俗地说是让仪器“认识”各种荧光染料。软件收集并储存各种纯荧光染料标准品的荧光信息。以后每次定量实验运行过程中,SDS软件收集样品的原始光谱信号,并将此原始光谱与纯荧光文件中的数据进行比较,精确扣除不同染料的信号重叠部分,从而确定样品中的荧光染料种类和信号强度。  推荐每半年进行一次纯荧光校正。在运行光谱校正之前,请先进行背景校正和ROI校正。10.96孔板怎样封膜?  当使用96孔板做实验的时候,推荐使用光学膜代替盖子来密封反应孔。正确的封膜方法是:先沿着96孔板的纵向压膜,然后横向,最后沿着板的边缘按压使之密封。11.使用单管或8连管做实验时,在样品加热块上应该怎样安排放置?  使用单管或8连管做实验,并且样本数量不多的时候,建议在样品加热块(TRAY)上对称地安放样品,最好是纵向放置,并且优先放在第6列或第7列,然后逐渐向两边放置。这样做的好处是热盖压下来的时候不至于发生倾斜,各个反应管的受力和受热都比较均匀,提高孔与孔之间的数据精密性.12.绝对定量与相对定量有什么区别?  绝对定量的目的是测定目的基因在样本中的分子数目,即通常所说的拷贝数。相对定量的目的是测定目的基因在两个或多个样本中的含量的相对比例,而不需要知道它们在每个样本中的拷贝数。  举例来说,如果研究项目中包括处理过的和未经处理的对照样本,通常可以将未经处理的样本指定为基准,规定其目的基因浓度为100%,将经处理的样本的定量结果除以对照样品的定量结果,就可以计算各个处理样本的基因含量相对于未处理样品的百分比。  绝对定量实验必须使用已知拷贝数的绝对标准品,必须做标准曲线。相对定量可以做标准曲线,也可以不做标准曲线。  相对定量实验有两种方法:标准曲线法和CT值比较法。如果使用标准曲线法,可以使用绝对标准品,也可以使用相对标准品,而且相对标准品在实验操作上更为简便易行。相对标准品是只知道样品中DNA或RNA的稀释比例而不需要知道其分子数目的标准品,典型的做法是将一个已知pg数的样品做一系列梯度稀释。  CT值比较法是利用CT值与起始DNA浓度的对数成反比的数学关系,来计算不同样本之间的相对百分比,其计算公式是。  绝对定量的数据易于理解,但是绝对标准品的制备和测定其DNA含量比较困难。有许多商业性的标准品试剂盒供选购,可以解决这种困难。  相对定量的标准品容易在实验室里自己制备,但是数据处理比较麻烦,对实验数据的解释有一定难度。13.定量PCR基因表达的实验数据应该如何处理?  总的来说,有三个层次的校正是必须要做的。  首先,参比信号校正。试剂中必须包含固定浓度的ROX,这样由于反应总体积的差异、所在孔的位置不同、试管壁的厚度差异、管盖透光性能的差异等所引起的荧光信号波动都能够被扣除,使数据真正反映PCR进程。ROX校正能够极大地改进定量的精确度,提高重复管之间的数据重现性。  其次,内对照校正。实验中加入样品基本上都是以体积为单位的,但是同样体积的不同样品很可能来自不同数目的细胞,所以将实验结果校正到每个细胞的含量是必要的。方法是在定量目的基因(如IL-2)的同时定量一个内对照基因(如18SRNA基因),然后IL-2/18S。内对照校正使不同样品的实验数据可以相互比较。  第三,计算相对于基准样品(Calibrator)的相对基因含量。比如研究处理和未处理的、0小时和6小时的、正常和患病的之间的基因表达的差别,则需要计算处理/未处理、6小时/0小时、患病/正常。14.标准曲线法相对定量的数据应该怎么处理?  假设实验的目标是研究药物处理后0、24、48小时IL-2基因在某种组织中的表达量的变化,所用的内对照是18SRNA基因。IL-2和18SRNA的测定结果都是总RNA的pg数,数据的处理方法见下表:15.什么是CT值比较法?数据怎么处理?  CT值与起始DNA浓度的对数成反比:  如果(1)不同管之间的PCR反应效率相同;(2)这些PCR的反应效率接近100%,可以从上面的公式推出相对含量(X01/X02)=2-ΔΔCT。假设实验的目标是研究药物处理后0、24、48小时IL-2基因在某种组织中的表达量的变化,所用内对照是18SRNA基因。IL-2和18SRNA的测定结果都是CT值,而没有通过标准曲线测定总RNA的pg数。     16.每个反应管中可以加入多少种探针? 每个反应管中可以加入的探针数目,取决于仪器、软件、试剂和实验设计等几个方面。  首先是仪器的硬件构成和软件的解析能力。在软件解析能力足够的前提下,全波长检测的定量PCR仪如激光管-CCD类型对于探针的数量实际上是没有限制的。如果信号的采集要通过滤色片,那么探针的数量取决于滤色片的数目,增加探针需要增加或改变滤色片。改动仪器的结构通常很困难。以AB公司的仪器为例,7900和7700是激光-全波长检测的,7000、7300是4色滤色片的,7500是5色滤色片的。  其次是化学上的可能性。不同的荧光基团要组合到一起,在同一反应管内使用,必须其激发波长既相对靠近又不能靠得太近,既保证信号激发的效率又保证信号不重叠干扰,能够区分清楚。现已发现的荧光基团种类有限,满足这样条件的分子组合更少。目前的最佳组合只能达到每组4到5种荧光的水平。  第三是实验方案的设计和选用的探针类型。定量PCR实验必须使用ROX校正荧光,占去一种荧光;TaqMan探针的淬灭基团(TAMRA)也要占用一种荧光,对于4色检测的仪器来说,只剩下2种荧光可以标记探针,对于5色检测的仪器还有3种荧光可以使用。如果将探针改用TaqManMGB探针,由于它的淬灭基团是不发荧光的,比之TaqMan探针就可以多1种荧光用于标记探针。如果实验要求不高,不做ROX校正(AB公司不推荐这样做),还可以再多一种荧光用于标记探针。  第四是研究应用本身的要求。如果研究SNP和基因突变,因为绝大多数人类基因是2态的,只存在两种等位基因,2条探针已经足够。如果研究基因表达,通常是两两比较居多,比如处理比未处理,正常比异常等,加上一个内对照,3色也就足够了。  最后是成本控制方面的要求。多重定量的目的一是提高数据精确度,二是节省反应成本。同时测定的基因越多,成本也越低。但是加入4-5种探针,就要同时加入8-10条引物。在引物设计的时候要考虑到尽量减少这些引物之间的竞争和抑制等多种干扰,平衡各对引物之间的PCR效率。虽然这是可以做到的,但是要花费大量时间、人力和物力来筛选最佳引物组合、优化反应条件。如果实验规模不大,在总体上可能反而不合算。  在实际应用中,不是单纯追求加入的探针越多越好,而是追求总体效益的最优化。比较切合实际的是2到3重反应,引物和探针的设计不太困难,反应条件的优化也不太麻烦,同时降低了成本。17.等位基因鉴定实验(比如SNP分型)是定性的研究,是否可以不进行ROX荧光校正?不,等位基因鉴定实验也要进行ROX荧光归一,以保证实验结果的精密可靠。  由于试剂加样操作的误差、离心管热量传递的误差、离心管盖透光性能的误差等偶然因素是不可避免的,必然导致荧光激发效率的差异,因此仪器收集到的原始信号必须进行归一化校正,相互之间才可以比较并保证重现性。  这种校正是通过在反应缓冲液中添加ROX校正荧光来实现的。ROX在反应缓冲液中的浓度是固定的,因此其信号的高低变化只与上述物理方面变化的总体效应有关。将报告荧光的信号除以ROX荧光的信号,就能够消除所有这些物理因素所引起的数据波动。18.内标法和外标法哪种数据更精密?是同样可靠的。内标的优点在于目标基因与管家基因的反应条件最接近一致,缺点在于目标基因与管家基因的引物和探针相互之间会发生竞争与抑制,导致它们的PCR效率有差异。外标的优点在于目标基因与管家基因的引物和探针之间没有发生竞争与抑制的机会,但是不同管之间的反应条件差异比同管的要大,也会导致它们的PCR效率有差异。两相比较,内标法与外标法的数据精确度是一样的。

q PCR内参做几个

q PCR内参做3个。QPCR的英文全名是Real-time Quantitative PCR Detecting System,即实时荧光定量核酸扩增检测系统,也叫实时定量基因扩增荧光检测系统,简称QPCR。聚合酶链式反应(Polymerase Chain Reaction简称PCR)原理凭借敏感、特异、快速的特点荣获93年诺贝尔化学奖。因其在病原体检测方面的独特优势,因而发达国家在相关方法和仪器方面的研发非常快,成为分子生物学诊断的主流,至今仍处于学术和应用前沿。

qpcr数据分析及作图方法

qPCR数据处理方法为△△Ct法原理【△△Ct法原理】其特点是只依靠Ct值来计算结果,因此跑完qPCR之后的结果中除了Ct值外,其他数据几乎在后续分析和计算中是用不到的。但前提是目的基因和内参基因的扩增效率应基本一致。1、先来了解一下什么是Ct值?阈值循环数 Threshold cycle (Ct) 也写作Cq值,荧光信号达到荧光阈值时PCR循环数。仪器软件通常将第3-15个循环的荧光值设为基线(baseline)。阈值(threshold)一般是基线的标准偏差的10倍。模板的Ct值与该模板的起始拷贝数的对数存在一定线性关系,起始模板量浓度越高,Ct值越小;起始模板量浓度越低,Ct值越大。PCR循环在到达Ct值所在的循环数时,刚刚进入真正的指数扩增期(对数期),此时微小误差尚未放大,Ct值的重现性较好,即相同含量的初始模板,得到的Ct值是相对稳定的。

RT-qPCR知识点

RT-qPCR简介 定量逆转录PCR(quantitative reverse transcription PCR, RT-qPCR)是应用于以RNA作为起始材料的PCR实验中的一种实验方法。在该方法中,总RNA或信使RNA(mRNA)首先通过逆转录酶转录成互补DNA(cDNA)。随后,以cDNA为模板进行qPCR反应。RT-qPCR已被用于多种分子生物学的应用中,其中包括基因表达分析、RNA干扰验证、微阵列验证、病原体检测、基因测试和疾病研究。 RT-qPCR可通过一步法或两步法来完成(图1、表1)。一步法RT-qPCR把逆转录与PCR扩增结合在一起,使逆转录酶与DNA聚合酶在同一管内同样缓冲液条件下完成反应。一步法RT-qPCR只需要利用序列特异性引物。在两步法RT-qPCR中,逆转录和PCR扩增过程是在两个管中完成,使用不同的优化的缓冲液、反应条件、以及引物设计策略。 RT-qPCR逆转录过程 在设计RT-qPCR实验过程中,决定是否要使用总RNA或纯化的mRNA作为模板进行逆转录十分重要。尽管mRNA可能能够提供略高的灵敏度,但总RNA仍经常使用。其原因是总RNA作为起始材料具有较mRNA更重要的优势。首先,其过程需要较少的纯化步骤,这确保了更好的定量回收模板和更好的把结果标准化为起始的细胞数。其次,其避免了mRNA富集步骤,这能够避免由于不同mRNA的回收率不同而带来的结果偏移的可能性。总的来说,由于在大多数的应用中,目标基因的相对定量比检测的绝对灵敏度更为重要,因此在大多数情况下,总RNA更适用 1 。 在两步法中,有三种不同的方法可用于引发cDNA反应:oligo(dT) 引物、随机引物、或序列特异性引物(图2,表2)。通常情况下,是将 oligo(dT) 引物和随机引物进行混合使用。这些引物退火至模板 mRNA 链,并提供给逆转录酶一个用于合成的起点位置。 逆转录酶是利用 RNA 合成 DNA 的一种酶。一部分逆转录酶具有 RNA 酶活性,能够在转录后降解 RNA-DNA 杂交链中的 RNA 链。如果其不具有 Rnase 酶活性,可加入 RNaseH 以获得更高的 qPCR 效率。常用的酶包括莫洛尼鼠白血病病毒逆转录酶和禽成髓细胞瘤病毒逆转录酶。对于 RT-qPCR 来说,理想的情况下是选择具有较高热稳定性的逆转录酶,这样 cDNA 的合成能够在较高的温度下进行,确保成功转录具有较高二级结构的 RNA,同时保持其在整个反应过程中的全部活性,从而得到更高的 cDNA 产量。 RNase H 能够从 RNA-DNA 双链中降解 RNA 链,从而允许双链 DNA 的有效合成。然而,当使用长 mRNA 作为模板,RNA 可能被过早的降解,从而导致截短的 cDNA。因此,在 cDNA 克隆过程中,如果需要合成长的转录物时,尽量减小 RNase H 的活性通常是有益的。与此相反,拥有 RNase H 活性的逆转录酶通常有利于 qPCR 的应用,因为它们能够在 PCR 的第一个循环中提高 RNA-DNA 双链的熔解(图3)。 step1:如果 RNA 模板具有较高的二级结构建议操作该步骤。 step2:该步骤建议用于引物的延伸。 step3:逆转录酶以 mRNA 为模板合成 cDNA 链。 step4:该步骤可阻止活性逆转录酶带来的 qPCR 抑制。 用于 RT-qPCR 中 qPCR 步骤的 PCR 引物最好应设计成跨越一个外显子-外显子连接,其中一条扩增引物可以潜在地跨越实际外显子-内含子边界(图4)。由于含内含子的基因组 DNA 序列不会被扩增,因此这种设计可以减少从污染的基因组DNA中扩增得到的假阳性的风险。 如果引物不能被设计成能够分离外显子或外显子-外显子边界,则有必要利用无 RNA 酶的 DNA 酶I或 dsDNA 酶处理 RNA 样品以除去基因组 DNA 污染。 一个逆转录阴性对照(-RT对照)应该包括在所有的 RT-qPCR 的实验中,以检测 DNA 污染(如基因组 DNA 或来自之前反应的 PCR 产物)。这一对照包含除逆转录酶之外的所有反应组分。由于该对照不会发生逆转录,因此如果观察到 PCR 扩增,则极有可能来自 DNA 的污染。 图 4.RT-qPCR 中 qPCR 步骤的引物设计。1)如果一个引物被设计为跨越外显子-内含子边界,则可能造成污染的基因组 DNA 将不会被扩增,其原因是引物不能退火至该基因组 DNA 模板。相反,cDNA 不含任何内含子,能够有效被引物识别并扩增。2)当引物侧接一个长的内含子(例如1 kb),扩增反应将不会发生,因为短的延伸时间仅够用于扩增短的 cDNA,却不足以扩增基因组靶基因

qpcr原理

qpcr原理介绍如下:qPCR原理是将标记有荧光素的Taqman探针与模板DNA混合后,完成高温变性,低温复性,适温延伸的热循环,并遵守聚合酶链反应规律,与模板DNA互补配对的Taqman探针被切断,荧光素游离于反应体系中,在特定光激发下发出荧光。随着循环次数的增加,被扩增的目的基因片段呈指数规律增长,通过实时检测与之对应的随扩增而变化荧光信号强度,求得Ct值,同时利用数个已知模板浓度的标准品作对照,即可得出待测标本目的基因的拷贝数。qPCR技术广泛应用于生物医药食品等行业,运用于疾病的早期诊断、遗传病的早期诊断、药物研究、肿瘤的诊断与研究、食品病原微生物的检测、转基因食品检测、动物疫病检测等。具体的应用环境:1、动物疾病检测禽流感、新城疫、口蹄疫、猪瘟、沙门菌、大肠埃希菌、胸膜肺炎放线杆菌、寄生虫病等、炭疽芽孢杆菌。2、食品安全食原微生物、食品过敏原、转基因、乳品企业阪崎肠杆菌等检测。3、科学研究医学、农牧、生物相关分子生物学定量研究。

qpcr原理及应用(qpcr原理及应用ppt)

qpcr原理:通过凝胶电泳、毛细管电泳等方法对产物进行检测。qpcr应用于大学及研究所、CDC、检验检疫局、兽医站、食品企业及乳品厂等。1、qpcr是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应循环后产物总量的方法。DNA由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶。2、Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。逆转录PCR,或者称反转录PCR,是聚合酶链式反应的一种广泛应用的变形。在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板透过PCR进行DNA复制。由一条RNA单链转录为互补DNA称作“逆转录”,由依赖RNA的DNA聚合酶来完成。3、由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。数字PCR即DigitalPCR,它是一种核酸分子绝对定量技术。相较于qPCR,数字PCR可让你能够直接输出DNA分子的个数,是对起始样品的绝对定量。

PCR, qPCR, dPCR的区别

上世纪八十年代的化学家发明了PCR,如今DNA扩增俨然已经成为了生物学研究的基础。三十多年以来,人们为了解决研究中出现的新问题新需求,不断对这一经典技术进行改良。从经典PCR、实时定量PCR再到现在的数字PCR。qPCR和dPCR,它们之间都有什么区别呢? 目前的PCR方法主要可以分为三类: PCR、qPCR和dPCR 。 PCR是最原始、最简单的PCR方法,如今仍在被我们广泛使用。使用者只能在PCR反应结束之后,通过凝胶电泳、毛细管电泳等方法对产物进行检测。PCR本身是无法定量的,因为我们只能获得反应结束的样品。通过凝胶电泳只能看出扩增质量、不同样品目的片段分子量的相对大小(通过电泳移动的距离,产生不同距离的原因可能是不同片段的扩增速度有别使得单一片段有长短,也可能与碱基含量有关)。无法根据条带颜色深浅得到量值。 qPCR主要是利用插入性染料或荧光探针(比如TaqMan),人们可以通过监控PCR过程中的荧光强度比较多个样品的DNA水平。该方法主要通过样品的Ct值(Cycle Threshold,即扩增产物的荧光信号达到设定的荧光阈值时的所对应的扩增循环数)与该样品起始拷贝数的对数存在线性关系配合标准曲线来计算样品反应前目标序列的含量的。 dPCR的原理并不复杂。首先,dPCR把反应体系均匀分配到大量反应单元中,每个反应单元中不包含或包含一个到多个目的核酸序列,目的核酸序列的数量符合泊松分布。然后在每个反应单元中独立地进行PCR扩增。扩增结束后,检测每个反应单元的荧光信号,最终根据泊松分布和荧光信号阳性的反应单元占所有反应单元的比例来计算目的核酸序列的拷贝数。 主要参考文献: [1] 詹成,燕丽,王琳,金玉麟,陈力,时雨,王群.数字PCR技术的发展和应用[J].复旦学报(医学版),2015,42(06):786-789.

qpcr反转录与普通反转录的区别

二者系统组成不同 荧光定量PCR仪比普通的PCR仪多了荧光信号采集系统和计算机分析处理系统。所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行“定量分析”的方法。记住,实时荧光定量是定量分析。二者系统组成不同,荧光定量PCR仪比普通的PCR仪多了荧光信号采集系统和计算机分析处理系统。二者原理不同,荧光定量PCR实时监测与DNA结合的荧光染料激发的荧光,普通OCR通过检测插入DNA中核算染料的量来测定PCR最终产物量。二者反应要求不同,荧光定量PCR对扩增片段有较高的要求,一般为100-300bp,普通PCR可以扩增长点的片段。二者应用不同,荧光定量PCR主要是用来定量分析和确定基因转录水平的,普通的PCR仪是做定性分析和扩增基因片段,定量PCR仪可以做普通PCR仪的工作,反之不行。二者测量成本不同,定量PCR仪价格较为昂贵,普通的基因扩增仪(PCR仪)只能够定性地分析是否存在目标片段。但是价格要低很多,而且运行成本也要低很多。实时荧光定量PCR技术有效地解决了传统定量只能终点检测的局限,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。

谁能具体解释一下荧光定量PCR中溶解曲线的意思以及作用

溶解曲线分析可以用来确定不同的反应产物,包括非特异性产物。溶解曲线分析可以用来确定不同的反应产物,包括非特异性产物。扩增反应完成后,通过逐渐增加温度同时监测每一步的荧光信号来产生溶解曲线,随着反应中双链DNA变性,荧光染料又回复到游离状态导致荧光信号降低,用荧光信号改变的负的一次导数与温度作图,在扩增产物的溶解温度上有一特征峰(Tm,DNA双链解链50%的温度),用这个特征峰就可以将特异产物与其它产物如引物二聚体区分开,因为它们在不同的温度溶解.这个一般是用SYBY Green作为荧光染料的时候需要做的工作!我们实验室用BIOGHC Elitefast SYBR Kit检测DNA,熔解曲线是为了验证扩增产物特异性的,要是熔解曲线是单峰说明产物只有一条,结果较好;要是双峰说明产物不特异,可能存在引物二聚体或非特异性扩增,有可能你的引物设计有问题。

RT-PCR与时时PCR的原理及引物有什么区别?

一楼的~real-time PCR不就是RT-PCR吗?!实时定量PCR

rt-qpcr全称

rt-qpcr全称为实时荧光定量(Real Time Quantitative)RT-qPCR属于第二代PCR技术,与常规的PCR技术相比,RT-qPCR技术可对DNA起始模板进行定量,同时可以对整个扩增反应进行实时监控。该方法中,总RNA或者信使RNA首先通过逆转录酶转录互补DNA,随后cDNA为模板进行qPCR反应,RT-qPCR已被用于多种分子生物学的应用中,其中包括基因表达分析、RNA干扰验证、病原体检测和疾病研究。以上就是对于rt-qpcr的一些基本情况,希望能够帮助到你!加油!

pcr的技术的主要步骤及pcr引物设计的一般原则有哪些

PCR的技术的主要步骤及PCR引物设计的一般原则分述如下:PCR的技术的主要步骤:1、DNA变性:(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA。2、退火:(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。3、延伸:(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′→3′端的方向延伸,合成与模板互补的DNA链。每一循环经过变性、退火和延伸,DNA含量即增加一倍。现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。2、引物设计的基本原则1、引物长度:15-30bp,常用为20bp左右。2、引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C 过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列参照。3、引物内部不应出现互补序列。4、两个引物之间不应存在互补序列,尤其是避免3 ′端的互补重叠。5、引物与非特异扩增区的序列的同源性不要超过70%,引物3′末端连续8个碱基在待扩增区以外不能有完全互补序列,否则易导致非特异性扩增。6、引物3‘端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,最佳选择是G和C。7、引物的5 ′端可以修饰。如附加限制酶位点,引入突变位点,用生物素、荧光物质、地高辛标记,加入其它短序列,包括起始密码子、终止密码子等。扩展资料PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR是一种体外DNA 扩增技术,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性——低温退火——引物延伸”三步反应的多次循环,使DNA片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段。在环境检测中,靶核酸序列往往存在于—个复杂的混合物如细胞提取液中,且含量很低,对于探测这种复杂群体中的特异微生物或某个基因,杂交就显得不敏感。使用PCR技术可将靶序列放大几个数量级,再用探针杂交探测对被扩增序列作定性或定量研究分析微生物群体结构。PCR技术常与其他技术结合起来使用, 如RT-PCR、竞争PCR、巢式PCR、RAPf)、ARDRA等。第一代PCR就是常见的定性PCR技术,它采用普通PCR仪来对靶基因进行扩增,采用琼脂糖凝胶电泳来对产物进行分析。第二代PCR就是荧光定量PCR技术(Real-Time PCR,qPCR),它通过在反应体系中加入能指示反应进程的荧光试剂来实时监测扩增产物的积累,借助荧光曲线的Cq值来定量起始靶基因的浓度。第三代PCR技术--数字PCR(Digital PCR,dPCR,Dig-PCR),是一种全新的对核酸进行检测和定量的方法。它采用直接计数目标分子而不再依赖任何校准物或外标,即可确定低至单拷贝的待检靶分子的绝对数目。PCR芯片技术PCR仪器发展的趋势之一变得更加微型化,PCR芯片就是在这种趋势下诞生的。PCR芯片就是在微型的载体上进行PCR反应,是微型化的PCR仪。芯片PCR不仅节省了大量反应试剂因此降低了实验成本,还有助于提高反应速度。参考资料:百度百科-PCR技术

数据分析:RT-qPCR分析

做完转录组分析之后,一般都要求做qRT-PCR来验证二代测序得到的转录本表达是否可靠。荧光定量PCR是一种相对表达定量的方法,他的计算方法有很多,常用的相对定量数据分析方法有双标曲线法,ΔCt法,2 -ΔΔCt法(Livak法),用参照基因的2 -ΔΔCt法(Livak法): 该部分引用自下方参考链接1 qRT-PCR原理 以基因的cDNA为模板进行PCR扩增,在PCR扩增过程中,通过收集荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以可以定量。 Ct值 计算 -ΔΔCt :内参基因分为对照组和处理组内参基因 单个样本三个技术重复,检验不同的目的基因扩增效率 结果 : IL-1B 和INOS基因相比NC组而言,其含量越多

RT-PCR,QRT-PCR,real-timePCR之间什么区别

你好啊,他们之间的区别基本上不大没有什么区别。

pcr扩增的原理和步骤

荧光定量PCR原理:随着PCR反应的进行,PCR反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。 荧光定量检测根据所使用的标记物不同可分为荧光探针(BIOGHC Elitefast SYBR Kit)和荧光染料(BIOGHSC Super Probe Kit)

qPCR数据处理

qPCR这项技术,被广泛用于生物学的研究,只有有以下用途: qPCR作为一种DNA定量手段,一般情况下, 还可以分为 绝对定量 和 相对定量 。 好的, 那么一般情况下, 我见过比较多的qPCR,都是以RNA相对定量为目的的,也是本文讨论的焦点。 qPCR和PCR一看名字就知道很像, q 就是quantitative的意思,quantitative就是定量的意思。。。(为我的废话鼓掌) 其实,说到底,qPCR就是通过荧光染料或者荧光探针来表征PCR产物的量,进而推断出PCR前,样本的初始核酸量。 具体原理是,对于不同的样本和基因,比较到达一定荧光强度所需要的循环数, 如果你的样本中DNA1的量 大于 DNA2的量,那么理论上, DNA1比DNA2需要更少次数的PCR扩增就可以达到某一个阈值. 如果对于详细原理有什么执念的同学可以自行百度,必应,谷歌。。。 在实际实验过程中, 我们的实验没那么简单 一个仿真例子: 那么我们一般这样做,我会有处理和未处理的细胞,我们想比较这两种细胞geneA表达量的差异,我们在提取细胞的RNA并定量后反转成cDNA后,进行qPCR, 获得geneA和某一个内参基因(如GAPDH)的CT值。内参基因GAPDH在这里起到一个矫正的效果来去除不同的样品间 RNA产量 , RNA质量 以及 逆转录效率 上的差别。 最最最常用的qPCR相对定量的方法是 ΔΔCT 法 (读作:delta delta CT) 公式如下 即 先用内参基因校准,再算样品与对照组间的差异 ,而我们的表达量的差异就可以表征为 虽然大多数qPCR设备都配有很完备的分析软件, 但是 。。。。。 这些软件的图可能不适合直接放文章,或者, 咳咳,很丑,你想自己修改之类的 而他们一般都不太提供最终计算结果,只提供CT值,那么这个就很让人头大了。 于是乎 秉承着 自己动手丰衣足食 一直折腾一直爽 的传统美德,我写了一个小小的工具,方便大家计算最终的相对表达量 该工具基于微软爸爸的EXCEL和VBA,不限样本数量,基因数量及每组实验的平行个数(如果你有三个复孔,其中一个如果CT和其他两个差别很大,你可以删除该孔,有些组3个复孔,有些2个,不影响程序运行) 在同学(zi)的(ji)强(xian)烈(de)要(mei)求(shi)下,我的qPCR数据处理小程序迎来了V2.0版本,主要增加了自动添加误差线的功能。 大家感受一下, 一键出图 的魅力,喜欢的同学记得点赞,转发哦, 获取链接在文末 获得相对表达量值之后呢,你可以使用origin或者graphpad等工具作图,读者可以查看我往期关于origin的文章哦 文章直通车>>> origin科研作图 此工具如有任何问题或者你们有什么建议或者链接失效等情况,请于公众号“肖恩札记”留言

假设检验 以及 qPCR数据处理应用

那么进入正题吧! 今天我们讲讲假设检验这个东西,并且会以 qPCR数据处理 为例子,应用假设检验,获得传说中小于0.05就很了不起就P值。 文末还有大大的彩蛋哦!!! 假设检验这个东西,我们顾名思义,就是 检验 某一个 假设 ,所以,这就很自然地引出两个重点,欸对,两个重点就是: 我们可以这么理解student t检验这个东西: 一般来说,我们的假设是, A,B两组没有差异 ,然后计算在A,B没有差异的情况下,出现我们观察到的数据的概率。 如果该概率<0.05 ,那么我们就说,这事发生的概率太低了,这个假设不靠谱,我们就 否定原有的假设 ,进而相信A组数据和B组数据在统计上有显著性差异。 这里有两个统计学的术语: 除了T检验,还有别的检验,不同的检验都有对应的 假设 和 检验 方法,比如F-检验,卡方检验,秩和检验等,适用于不同的情况,有不同的目的,使用前要搞清楚。 最常用的就是T检验,我们已经知道了他的整体逻辑了,但是我们还不清楚,他如何计算的,理解了计算过程,可以让我们更好地理解和解读p值,不去错误地使用p值,不迷信p值。 在理解计算原理之前,我们举个栗子,思考一下别人的人生: 老张闭上眼睛,认真思考着以上问题(读者可以跟着他一起思考,助他一臂之力) 没想到老张是个被苹果耽误了的数学家。他花了一周画了两张图。 老张点了根烟,叹息道, 这一切都是抽样造成的 ,如果我能收集世上所有A苹果和B苹果,就可以求出准确的均值,我就知道哪个苹果大了。但是我做不到,做不到就只能抽样。 抽样只能近似真实的均值,但总存在误差。 比如上面的两张图,蓝色是抽样的A苹果不同重量的频数,红色是B苹果。左右两张图,同样是均值差10g(均值以竖直直线表示),但是左图中, 红色曲线下面积与蓝色曲线下面积很少重叠 ,也就是说,红色整体上 确实大于 蓝色。而右边的图,虽然红色的均值大于蓝色10g,但是 这两条曲线基本重合 ,这次抽样B比A大10g,很有可能是 误差 。下次再试一次,可能A就比B大了。 老张猛吸一口烟,转念又想,即使是右图的情况,如果我是统计了咱们镇 所有的AB苹果 ,得出这样的结果,是不是还是可以说B比A平均大10g呢,这总比我统计100个苹果来的准吧! 老张熄灭了手头的烟,缓缓的说: 面对浩瀚无垠的数学宇宙,张三开始了他的统计之旅: 他提出了以下思路: 于是乎,老张不知道怎么回事(我也不知道怎么回事,请知道这个公式怎么来的同学私戳我),推导出了第一个公式 表示苹果的重量, 表示苹果的均值, 表示苹果的真实均值, n为样本数 为x的真实标准差, 为x的样本标准差 表示 与 之间的误差的标准差,学名叫标准误,standard error (se) 该公式是说,如果我对一颗苹果树抽样,取n个苹果,那么我们可以认为苹果的样本均值概率应该服从 以 为中心,标准差为 的正态分布 注意: 这里描述的是采样均值的分布,不是采样个体的分布,即你采样很多次,每次计算出的均值放在一起,是这样一个正态分布 这里可能难以理解,于是老张又画图说明 这张图这么理解,这里很重要 , 我是上帝,我知道苹果树的苹果真实均重300g,标准差10g,我从一种树上摘了30个苹果,对苹果的取样应该,其均值应该是 以300为中心,标准差为 = 1.8 的正态分布。 张三不是上帝,张三只能根据采样,他发现样本均值为298,标准差为7.78,(图中蓝色部分)。 但是他对真实的均值和标准差一无所知 ,所以聪明的张三,反其道而行,他说, 既然能用真实的均值和方差推测样本的均值,是不是可以用样本的均值和方差推测真实均值 ,套用上面的公式,推测苹果的真实均重概率应该是图中红线那样,以298为中心,标准差为 = 1.42, 这就是对真实均值力所能及最好的判断 这时候,张三转念又想,怎么比较A和B的差异呢,眼珠子那么一转,有了! 我们既然比较AB之间的差距,为什么不去计算 A均值-B均值呢, 张三说要有X,我们就有了X 这是,我们只要检验 X = 0 是否成立就行了,我们的零假设是AB无差异,即X=0, 如果零假设成立,那么X的分布应该是一个以0为中心的分布,该分布的方差,应该是 方差 + 方差 ,即: 有了这样的分布,我们就可以描述每次抽样X在某个范围的概率 张三画了第三张图 该曲线下面积占比其实就是零假设下的事件发生的概率。 P值计算的是零假设下的发生某事件或者更为极端事件的概率 如我取样后计算得到X=2, 按照正态分布可以计算得,从2到正无穷,曲线下面积占比为约0.025(右边红色部分),那么A比B大2或者大更多的概率是2.5%,这就是P值。2.5%这个概率够小,我们觉得零假设应该是在扯淡,于是拒绝零假设,选择备选假设,即认为AB有显著差异 上面其实是算单尾的情况,即比较A比B大,或者A比B小的情况,会先假定一个方向。而日常常用的是双尾t-检验,他不假设AB哪个大哪个小,所以如果算出X=2, 他会计算两边, 的曲线下面积,故数值上P值=0.05,是单尾的2倍 一般我们以5%作为阈值,只有在P<0.05时,我们才认为,零假设下,出现这么大的X的概率太小了,才会舍弃零假设,选择AB确实有差异这个备选假设。 因为双尾不假设AB哪个大哪个小,p值是单尾的两倍,所以更为严格。 我们一般都选双尾 说了这么多,我们来应用一下,比如我有基因A,我一顿操作处理了细胞,想通过qPCR看看A的表达变了没。 比如 我来编个数据, 那你说这个A的表达是变了还是没变? 我也不知道,但我们可以假设A没变,看看我们获得这样的数据的概率,如果概率<0.05, 我们就舍弃这个假设。 在Excel中,可以直接算t-test,如图: 尽管上下两次计算的时候,他们的均值差大小相近,但由于第二次样本多,所以我们对真实均值的估计分布会精确一些,即正态分布更加修长苗条,他们同样的均值差情况下,第二种情况就落在正态分布更外侧的地方,曲线下面积更小。 很感谢,大家看到这里,还记得之前我出过一个qPCR处理的软件吗,这次推出了进化版,可以计算p值,程序会自动计算每个基因处理组与对照组的双尾t检验,还是一键全自动,熟悉的味道,更强的功能。同名公号后台回复 qPCR 领取。 2020-03-28

qPCR的下游实验是什么

荧光标记收集PCR反应产物。qpcr下游实验原理是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测,实验内容是荧光定量PCR在常规PCR基础上加入荧光标记探针或相应荧光染料收集PCR反应产物。

数字PCR的原理

数字PCR是新型起来的一种核酸分子绝对定量技术。该技术可直接获得DNA分子的拷贝数,实现其实样品中核酸分子的绝对定量,且无需标准品或内标。数字PCR已经被广泛应用到医学、生物学等各个领域,如拷贝数变异、突变检测、复杂来源样品中低丰度核酸分子的检测、NGS数据验证、miRNA等微小差异表达研究、单细胞基因表达分析等方面,在已知突变的癌症分子标志物检测、传染病病原体检测、基因组三倍体分析和基因表达分析等领域展现了强大的优势。德国Qioptiq iFLEX系列超稳定低噪声激光器模块,是流式细胞仪、dPCR、共聚焦显微等仪器理想的激光器模块。此外,还可选择光束组合器组合多波长激光器,可以按照客户定制要求提供圆光斑或整形光斑,并且功率可调。payne@rayscience.com

rt-pcr和qpcr的不同

RT-PCR(逆转录聚合酶链反应)和qPCR(定量聚合酶链反应)是两种常用的分子生物学技术,用于检测和量化特定DNA或RNA序列。RT-PCR主要用于检测和扩增RNA序列。首先,RNA通过逆转录酶转录成cDNA(互补DNA),然后使用聚合酶链反应扩增目标序列。RT-PCR在基因表达研究、病毒检测等领域广泛应用。qPCR是一种定量分析技术,可用于准确测量DNA或RNA的初始数量。它通过荧光探针或DNA染料监测PCR反应过程中的DNA合成量。qPCR可以提供准确的基因表达水平、病原体数量等信息。

qpcr数据分析及作图方法

qPCR数据处理方法为△△Ct法原理【△△Ct法原理】其特点是只依靠Ct值来计算结果,因此跑完qPCR之后的结果中除了Ct值外,其他数据几乎在后续分析和计算中是用不到的。但前提是目的基因和内参基因的扩增效率应基本一致。1、先来了解一下什么是Ct值?阈值循环数Thresholdcycle(Ct)也写作Cq值,荧光信号达到荧光阈值时PCR循环数。仪器软件通常将第3-15个循环的荧光值设为基线(baseline)。阈值(threshold)一般是基线的标准偏差的10倍。模板的Ct值与该模板的起始拷贝数的对数存在一定线性关系,起始模板量浓度越高,Ct值越小;起始模板量浓度越低,Ct值越大。PCR循环在到达Ct值所在的循环数时,刚刚进入真正的指数扩增期(对数期),此时微小误差尚未放大,Ct值的重现性较好,即相同含量的初始模板,得到的Ct值是相对稳定的。

qpcr步骤及原理和pcr的区别

实时定量PCR(qPCR)和数字PCR(dPCR) qPCR主要使用插入染料或荧光探针(例如TaqMan)。通过监测PCR期间的荧光强度,可以比较多个样品的DNA水平。数字PCR(dPCR)的基本工作原理很简单。先将样品分为多个PCR反应,每个反应多包含一个模板。然后通过对阳性和阴性反应进行计数来确定初始样品中模板分子的数量。

qpcr原理

实时荧光定量PCR(qPCR)即在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过Cq值和标准曲线对起始模板进行定量分析的方法。根据Real-time qPCR的化学发光原理可以分为2大类:一类为探针类,包括TaqMan@探针和分子信标,利用与靶序列特异杂交的探针来指示扩增产物的增加;一类为非探针类,其中包括如SYBR Green或者特殊设计的引物(如LUX Primers) 通过荧光染料来指示产物的增加。荧光监测上世纪八十年代Cetus Corporation公司的化学家Kary Mullis发明了PCR,如今DNA扩增技术俨然已经成为了生物学研究的基础。三十多年以来,人们为了解决研究中出现的新问题新需求,不断对这一经典技术进行改良。从经典PCR、实时定量PCR再到现在的数字PCR,PCR技术在不断蜕变却从未淡出我们的视野。如今PCR技术早已走出实验室,在遗传学鉴定和疾病诊断中发挥着巨大的作用,在越来越广阔的领域里焕发着新的活力。技术用于实践

RT-qPCR 基本原理

内容目录: RT-qPCR简介 RT-qPCR逆转录过程 RT-qPCR 的 qPCR 过程 定量逆转录PCR(quantitative reverse transcription PCR, RT-qPCR)是应用于以RNA作为起始材料的PCR实验中的一种实验方法。在该方法中,总RNA或信使RNA(mRNA)首先通过逆转录酶转录成互补DNA(cDNA)。随后,以cDNA为模板进行qPCR反应。RT-qPCR已被用于多种分子生物学的应用中,其中包括基因表达分析、RNA干扰验证、微阵列验证、病原体检测、基因测试和疾病研究。 RT-qPCR可通过一步法或两步法来完成(图1、表1)。一步法RT-qPCR把逆转录与PCR扩增结合在一起,使逆转录酶与DNA聚合酶在同一管内同样缓冲液条件下完成反应。一步法RT-qPCR只需要利用序列特异性引物。在两步法RT-qPCR中,逆转录和PCR扩增过程是在两个管中完成,使用不同的优化的缓冲液、反应条件、以及引物设计策略。 在设计RT-qPCR实验过程中,决定是否要使用总RNA或纯化的mRNA作为模板进行逆转录十分重要。尽管mRNA可能能够提供略高的灵敏度,但总RNA仍经常使用。其原因是总RNA作为起始材料具有较mRNA更重要的优势。首先,其过程需要较少的纯化步骤,这确保了更好的定量回收模板和更好的把结果标准化为起始的细胞数。其次,其避免了mRNA富集步骤,这能够避免由于不同mRNA的回收率不同而带来的结果偏移的可能性。总的来说,由于在大多数的应用中,目标基因的相对定量比检测的绝对灵敏度更为重要,因此在大多数情况下,总RNA更适用1。 在两步法中,有三种不同的方法可用于引发cDNA反应:oligo(dT) 引物、随机引物、或序列特异性引物(图2,表2)。通常情况下,是将 oligo(dT) 引物和随机引物进行混合使用。这些引物退火至模板 mRNA 链,并提供给逆转录酶一个用于合成的起点位置。 逆转录酶是利用 RNA 合成 DNA 的一种酶。一部分逆转录酶具有 RNA 酶活性,能够在转录后降解 RNA-DNA 杂交链中的 RNA 链。如果其不具有 Rnase 酶活性,可加入 RNaseH 以获得更高的 qPCR 效率。常用的酶包括莫洛尼鼠白血病病毒逆转录酶(MMLV)和禽成髓细胞瘤病毒逆转录酶(AMV)。对于 RT-qPCR 来说,理想的情况下是选择具有较高热稳定性的逆转录酶,这样 cDNA 的合成能够在较高的温度下进行,确保成功转录具有较高二级结构的 RNA,同时保持其在整个反应过程中的全部活性,从而得到更高的 cDNA 产量。 RNase H 能够从 RNA-DNA 双链中降解 RNA 链,从而允许双链 DNA 的有效合成。然而,当使用长 mRNA 作为模板,RNA 可能被过早的降解,从而导致截短的 cDNA。因此,在 cDNA 克隆过程中,如果需要合成长的转录物时,尽量减小 RNase H 的活性通常是有益的。与此相反,拥有 RNase H 活性的逆转录酶通常有利于 qPCR 的应用,因为它们能够在 PCR 的第一个循环中提高 RNA-DNA 双链的熔解(图3)。 用于 RT-qPCR 中 qPCR 步骤的 PCR 引物最好应设计成跨越一个外显子-外显子连接,其中一条扩增引物可以潜在地跨越实际外显子-内含子边界(图4)。由于含内含子的基因组 DNA 序列不会被扩增,因此这种设计可以减少从污染的基因组DNA中扩增得到的假阳性的风险。 如果引物不能被设计成能够分离外显子或外显子-外显子边界,则有必要利用无 RNA 酶的 DNA 酶I或 dsDNA 酶处理 RNA 样品以除去基因组 DNA 污染。 一个逆转录阴性对照(-RT对照)应该包括在所有的 RT-qPCR 的实验中,以检测 DNA 污染(如基因组 DNA 或来自之前反应的 PCR 产物)。这一对照包含除逆转录酶之外的所有反应组分。由于该对照不会发生逆转录,因此如果观察到 PCR 扩增,则极有可能来自 DNA 的污染。

荧光定量PCR技术原理及利用?

荧光定量PCR技术是在PCR技术的基础上发展而来的,PCR技术是由人创造的模拟基因组DNA自然条件下的复制的一项技术。我们都知道,基因组要完成复制才能发生细胞的分裂;如果基因组不能复制,那么随着细胞的分裂,基因组会被逐渐稀释。正是由于基因组的半保留复制,才使得物种的繁衍得到生生不息。正如上所述,基因组的复制是以半保留复制的方式进行的;在复制时DNA双螺旋链解旋,裸露出需要互补配对的碱基,这个时候细胞内的dNTPs、DNApolymerase等成分纷纷进入功能空间,随着时间的推移一条与原来模板链互补配对的新链产生了。人们在阐释了基因组的复制以后,开启了创造性模拟这一自然发生的生化反应的探索实践,并最终于1985年由美国的K.B.Mullis成功发明,Mullis还因此获得了1993年的诺贝尔化学奖。(试吧商城【shibamarket】)简单来说,PCR技术就是将引物(可以与DNA单链模板互补配对的一小段DNA寡核苷酸链)、模板、dNTPs、DNAploymerase、反应Buffer、ddH2O等配制成一个反应体系,然后按照反应所需要的温度顺序进行温控式执行反应;经过数十个循环以后,产生不计其数的与原始模板序列几乎一样或互补配对的新生序列,这样就得到了大量的用于后续实验的DNA模板。(试吧商城【shibamarket】)荧光PCR技术是在PCR技术日趋完善的基础上,为了能实时监测PCR反应过程中的所需DNA片段含量的发展变化,科研工作者又对DNA与荧光小分子的相互作用进行了深入研究并取得大量积极的成果;而后将两项技术结合起来,并融合了快速发展的计算机软件技术,形成了这种可以既能精确地控制PCR反应所需的温度变化要求,又能实时地收集反应体系受到激发光照射后产生的荧光信号,还能将这种荧光信号转变为计算机软件可接受并处理的电子信息;并最终诞生了实验人员通过计算机软件就可以控制和检测普通PCR体系的RealTimeqPCR技术。RealTimePCR体系与一般PCR体系在成分组成上多出了小分子荧光染料或荧光探针这一成分。在温度控制方面多出了DNA熔解这一程序,就是通过梯度式地变化温度,使DNA双螺旋逐步分离开来;因为荧光染料只有嵌合在DNA双螺旋上才能被激发产生荧光,所以通过检测荧光信号的变化峰值就可以推断出引物的特异性如何,换句话说就是可以分析所扩增的DNA双螺旋有几种序列组成。(试吧商城【shibamarket】)通过此技术,可以使实验人员利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法;并利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct值和标准曲线的分析对起始模板进行定量分析。Real-TimeqPCR技术即实时荧光定量PCR技术避免了传统PCR以终产物监测定量产生的偏差,提高实验的重复性。当然,反转录酶的发现和利用使RealTimePCR技术的适用范围由现成DNA为模板扩大到间接地以RNA为模板。该技术目前已被广泛应用于监测处理后细胞mRNA表达量的变化、比较不同组织的mRNA表达差异、验证基因芯片、验证引物特异性、检测siRNA干扰的实验结果、检测非翻译RNA的表达变化、检测细胞富集度、验证表观遗传学的影响等等。(试吧商城【shibamarket】)

qpcr原理及流程

一、QPCR原理“qpcr原理是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法;应用于对PCR进程进行实时检测。检测方法:加尾法和颈环法miRNA很短,用mRNA的反转录方法无法得到足以定量的cDNA。所以,miRNA的反转要求将miRNA序列进行延长,目前常用的序列延长反转录法包括茎环法和加尾法。特色:①RNA加尾和引物延伸法,样本用量少(1μg)且不需分离miRNA。②采用通用反转录引物,一次反转录产物可用于上百个miRNA检测。③检测通量高,可同时检测数十个miRNAs。④不同末端成熟miRNA都能被加尾和反转录,保证定量准确性。⑤配合QIAGEN试剂盒,保证实验可靠性;⑥扩增产物特异性高,通过产物热解离曲线(融解曲线)判断。

qpcr原理及应用是什么?

目前实时定量PCR作为一个极有效的实验方法,已被广泛地应用于分子生物学研究的各个领域。实时荧光定量PCR 技术的主要应用:DNA或RNA 的绝对定量分析:包括病原微生物或病毒含量的检测,转基因动植物转基因拷贝数的检测,RNAi 基因失活率的检测等。基因表达差异分析:例如比较经过不同处理样本之间特定基因的表达差异(如药物处理、物理处理、化学处理等 ),特定基因在不同时相的表达差异以及cDNA 芯片或差显结果的确证。QPCR的英文全名是Real-time Quantitative PCR Detecting System。即实时荧光定量核酸扩增检测系统,也叫实时定量基因扩增荧光检测系统,简称QPCR。在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。

qpcr原理及应用是什么?

一、原理在指数阶段,PCR 产物的量在每个循环中大约增加一倍。然而,随着反应的进行,反应组分被消耗,最终一种或多种组分变得有限。此时,反应减慢并进入平台期。最初,荧光保持在背景水平,即使产物以指数方式累积,也无法检测到荧光的增加。最终,足够的扩增产物积累以产生可检测的荧光信号。发生这种情况的循环数称为量化循环,或 q。由于 q值是在试剂不受限制的指数阶段测量的,因此可以使用实时 qPCR 根据描述反应进程的已知指数函数可靠和准确地计算反应中存在的模板的初始量。反应的 Cq主要由扩增反应开始时存在的模板量决定。如果在反应开始时存在大量模板,则需要相对较少的扩增循环来积累足够的产物以产生高于背景的荧光信号。因此,反应将具有低的或早期的 Cq。二、应用实时荧光定量 PCR/qPCR 检测已成为快速、灵敏地测定和定量各种生物样品中核酸的首选工具,具有多种应用,例如基因表达分析、食品中转基因生物的检测和癌症表型分析.在研究实验室中,qPCR 测定广泛用于定量测量转化细胞系中的基因拷贝数(基因剂量)或突变基因的存在。与逆转录 PCR (RT-PCR) 相结合,qPCR 分析可用于精确定量基因表达的变化,例如,通过测量细胞的变化,响应不同环境条件或药物治疗的表达增加或减少mRNA水平。qPCR/实时 PCR 仪器实时 PCR 检测系统由配备光学检测模块的热循环仪组成,用于测量每个扩增循环期间荧光团与目标序列结合时产生的荧光信号。Bio-Rad 实时 PCR 检测系统具有热循环仪和可互换的模块,用于荧光团的单重和多重检测以及固定的实时 PCR 单元。所有 qPCR 系统都具有热梯度功能。

qpcr原理及应用

  qpcr原理:通过凝胶电泳、毛细管电泳等方法对产物进行检测。qpcr应用于大学及研究所、CDC、检验检疫局、兽医站、食品企业及乳品厂等。  1、qpcr是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。DNA由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。  2、Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。逆转录PCR,或者称反转录PCR(reverse transcription-PCR,RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形。在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板透过PCR进行DNA复制。由一条RNA单链转录为互补DNA(cDNA)称作“逆转录”,由依赖RNA的DNA聚合酶(逆转录酶)来完成。  3、由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。数字PCR即Digital PCR(dPCR),它是一种核酸分子绝对定量技术。相较于qPCR,数字PCR可让你能够直接输出DNA分子的个数,是对起始样品的绝对定量。

qpcr原理及应用是什么?

一、原理DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。耐热DNA聚合酶-Taq酶的发现对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性-退火-延伸三个基本反应步骤构成:1、 模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;2、 模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;3、 引物的延伸:DNA模板-引物结合物在72℃、DNA聚合酶(如TaqDNA聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链;重复循环变性-退火-延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。二、应用1、基因表达分析:例如结核分岔杆菌(Mycobacterium tuberculosis)是一种生长相当缓慢的细菌,传统培养及鉴定一般需要花数周时间。2015年时Watanabe Pinhata和Cergole-Novella以自己发展的real time PCR检测mpt64,直接检测病人痰液中的结核分岔杆菌,分析715个检体657个病人,其检测灵敏度(sensitivity)及特异性(specificity)分别为90.3%及98.6%。整个实验流程可以在5个小时内完成,此方法可以用于没有套装试剂(kit)可以使用的实验室。2、检验生物芯片的结果;3、siRNA与miRNA诊断;4、基因型鉴定;5、饮食分析;6、兽医微生物检测。特点1、荧光实时定量PCR的基本原理有两个要点:首先是对PCR反应中的每一个循环的反应产物进行实时检测并记录下来;其次,用于检测PCR产物实时检测的荧光染料标记在一段可以与单链PCR产物(模板)特异性杂交的探针上,并且处于淬灭状态,只有当探针与模板特异性结合以后才有可能释放出荧光信号。2、每一轮循环中PCR的产出量都以荧光信号的形式被PCR仪的光学检测系统记录下来,在某一循环中荧光信号的强度达到预先设定的阈值时,此时的循环数称为CT(Threshold Cycle),Ct值与起始的模板量成反比,起始的核酸量越多,达到阈值的循环数就越少,换句话说CT值会越小。如果要确定量的话,需要做出标准曲线,以Ct值为纵坐标,起始模板数为横坐标作图。在新的MIQE规范中Ct这个惯用的名词被重新定义为Cq值(quantification cycle)。

qpcr原理及应用

qpcr原理是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。因而发达国家在相关方法和仪器方面的研发非常快,成为分子生物学诊断的主流。应用行业:各级各类医疗机构、大学及研究所、CDC、检验检疫局、兽医站、食品企业及乳品厂等。由于qPCR是实时定量检测致病病原体基因核酸,因此它比化学发光、时间分辨、蛋白芯片等免疫学方法更具独到优势。扩展资料实时荧光定量PCR技术有效地解决了传统定量只能终点检测的局限,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。因此,实时荧光定量PCR无需内标是建立在两个基础之上的:1)Ct值的重现性PCR循环在到达Ct值所在的循环数时,刚刚进入真正的指数扩增期(对数期),此时微小误差尚未放大,因此Ct值的重现性极好,即同一模板不同时间扩增或同一时间不同管内扩增,得到的Ct值是恒定的。2)Ct值与起始模板的线性关系由于Ct值与起始模板的对数存在线性关系,可利用标准曲线对未知样品进行定量测定,因此,实时荧光定量PCR是一种采用外标准曲线定量的方法。外标准曲线的定量方法相比内标法是一种准确的、值得信赖的科学方法。利用外标准曲线的实时荧光定量PCR是迄今为止定量最准确,重现性最好的定量方法,已得到全世界的公认,广泛用于基因表达研究、转基因研究,药物疗效考核、病原体检测等诸多领域。参考资料来源:百度百科-QPCR

rfp(红色萤光蛋白)用质粒pDsred做模板,做pcr扩增怎么都扩增不出来?

我帮你看了下,你的引物在中间有错配,长度大概就是400多bp,因此你pcr不出来,我建议你可以在rfp序列外的序列中设计引物,然后酶切下来,不要在rfp上设计引物浪费时间。多一点保证rfp的阅读框没有问题的。见图片

DNA分子杂交为什么不属于分子水平克隆技术? PCR为什么属于?转基因技术与DNA重组技术的区别?

我在这里就不跟你用专业术语解释了,用专业术语解释你都能自己找到,我就用最简单的方式跟你说。首先,你要搞清楚什么叫做克隆。克隆,在分子生物上其实就是“无性繁殖”,可能我这么说欠妥,但是你就可以这么理解。DNA分子杂交为什么不属于分子水平的克隆,因为,杂交它只是互补配对,而不设计“繁殖”,即扩增,或者说有一个一变二,二变四.....的过程,所以,他不属于克隆技术。但是PCR就不一样啦,PCR就是相当一个“繁殖”过程,把一个片段扩增成2^n个,所以PCR是克隆技术。转基因技术和DNA重组技术的区别,光看名字我觉得其实就能看出来。转基因技术,说一个极端的例子,比如说,把水母的荧光基因导入到小鼠身体内,使本来不会发光的小鼠可以自发光了,这个就是转基因技术。这期间要用的就是基因工程技术。原理当然是DNA重组。其实杂交育种和基因工程的的区别很好理解,杂交育种其实就是正常的繁殖,比如说黄种人和白种人的结合其实也是杂交育种的一种情况,只不过放在人身上没人这么说而已。基因工程就不一样啦,基因工程会涉及“开刀”的,就好像上面那个例子。不同物种间的基因重组。这么说还有什么不理解不?

请问,pcr仪上的ramp c/s为3 是什么意思

ramp是变温速度 c/s是 度/秒 temp 温度递增/递减 是指每次循环温度自动递增或减若干度TIME 时间递增/递减 是指每次循环时间自动递增或递减若干秒ramp是变温速度 c/s是 度/秒 temp 温度递增/递减 是指每次循环温度自动递增或减若干度TIME 时间递增/递减 是指每次循环时间自动递增或递减若干秒说明书www.labant.com/club/club_article_download.php?tiid=26

RNAi 基因失活率的检测荧光定量PCR

荧光定量PCR加入带荧光基团探针探针能目基结合单链DNA合双链DNA荧光基团激发光所实检测反应物荧光强度反应双链DNA浓度由于合双链DNA速率模板浓度关所参考曲线比较计算模板相浓度模板信号RNA其反应基发达量

请教半定量pcr的原理及介绍

半定量反转录-聚合酶链反应(semi-quantitativereversetranscriptionandpolymeraseChainreaction,SqRT-PCR)是近年来常用的一种简捷、特异的定量RNA测定方法,通过mRNA反转录成cDNA,再进行PCR扩增,并测定PCR产物的数量,可以推测样品中特异mRNA的相对数量。以半定量RT-PCR为基础建立起来的mRNA含量测定技术,较含内标化的RT-PCR定量测定的mRNA的方法更为简便可行。这种方法不另设‘内标准",排除了俩对不同引物之间的相互抑制和灵敏读差异,而且具有明显的剂量-效益关系和良好的重复性。步骤:1.抽提RNA,2.反转录获得cDNA,3.以cDNA为模板做PCR注意:步骤1,RNA抽提质量一定要好,注意污染。内参的选择,常用的有βactin和GAPDH俩中。步骤3,半定量RT-PCR应该再两管中进行,既内参和目的基因各一管,这样便于控制,做图的时候可以放在一各泳道里跑!指数期和平台期一定要摸清楚!

PCR产物的检测方法有哪些

您是需要检测产品吗?可以追问我。

PCR电泳条带是什么,如何形成的?形成原理是什么?

首先PCR电泳主要是琼脂糖凝胶电泳.电泳仪有正负极的,而DNA是带负电荷的.故而向正方向移动. 然后,DNA里是有碱基的.碱基可以吸收紫外光.最重要的是有染色剂,常用的有溴化乙锭等等.一般在配制凝胶的时候会加进去,或者跑完电泳然后将凝胶浸在含有染色剂的溶液里,染色剂可以插入DNA链中.在可见光下是看不见条带的,但在紫外光照射下就能出现条带. 这也是为什么能出现条带的原因.

PCR产物的检测方法有哪些?都有什么原理

1.琼脂糖凝胶电泳 同时点分子量marker,根据marker条带判断产物分子量大小,从而大致判断是不是你要的2.酶切 已知你产物的序列,看上面有什么酶切位点,用一个酶或者两个酶切断,看与理论预测的条带数目和大小是否一致。一般检测有以上两步就行了,如果需要知道确切的需要进行33.测序 连接到pMD-18t 载体上,转到大肠杆菌中。拿到公司去测序,测序结果通过gene bank比对看与哪个基因一致,这种方法最准确4.表达 pcr产物连到真核或者原核表达载体上,适宜条件表达出来以后的蛋白做质谱分析,看与理论产物表达的蛋白是否有一致的片段

PCR防污染 UNG酶

操作污染……!

PCR的原理

实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。我们实验室用的是BIOG-SYBR染料法,用qRTPCR来比较不同处理组间目的基因的表达差异。

PCR技术基本原理

PCR又叫作聚合酶链式反应,其扩增步骤包括三个连续步骤。(1)变性:是利用DNA在体外高温时变性,双链解离变成单链;(2)退火:低温时引物与单链按碱基互补配对的原则结合;(3)延伸:再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"- 3")的方向合成互补链的过程。将这三个步骤重复(“循环”)25-35次,即可按指数方式获得精确的目标DNA拷贝。

我不懂PCR的意义?生物化学方面的词

百度百科,百度一下便知

普通PCR、原位PCR、反向PCR和反转录PCR的 基本原理和操作步骤(一)

1概述 聚合酶链式反应(Polymerase Chain Reaction),简称 PCR ,是一种 分子生物学 技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。 DNA聚合酶 (DNA polymerase I)最早于1955年发现,而较具有实验价值及实用性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow 所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称Taq polymerase), 则是于1976年从温泉中的细菌(Thermus aquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由 Dr. Kjell Kleppe 提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR则于1983由 Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr. Mullis 并于1985年与Saiki 等人正式发表了第一篇相关的论文。此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年 诺贝尔 化学奖。 2 PCR原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 3 PCR反应体系与反应条件 3.1标准的PCR反应体系 10×扩增缓冲液 10μl 4种dNTP混合物 200μl 引物 10~100μl 模板DNA 0.1~2μg Taq DNA聚合酶 2.5 μl Mg2+ 1.5mmol/L 加双或三蒸水 100 μl 3.2 PCR反应五要素 参加PCR反应的物质主要有五种即引物(PCR引物为DNA片段,细胞内DNA复制的引物为一段RNA链)、酶、dNTP、模板和缓冲液(其中需要Mg2+)。[PCR步骤] 标准的PCR过程分为三步: 1.DNA变性(90℃-96℃):双链DNA模板在热作用下, 氢键断裂,形成单链DNA 2. 退火 (25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。 3.延伸(70℃-75℃):在 Taq酶 (在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。 每一循环经过变性、退火和延伸,DNA含量即增加一倍。现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。 4 PCR反应特点 4.1特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性。 其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。 4.2灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=-6)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。 4.3简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。 4.4对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。 5 PCR常见问题 5.1假阴性,不出现扩增条带 PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板 :①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消 化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模 板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处 理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应 固定不宜随意更改。 酶失活 :需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而 导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 引物 :引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不 理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度 高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单 位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 Mg2+浓度 :Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特 异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。 反应体积的改变 :通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多 大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败。 物理原因 :变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一。 靶序列变异 :如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某 段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。 5.2假阳性 出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。 引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。需重新设计引物。 靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管及样进枪头等均应一次性使用。必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。 5.3出现非特异性扩增带 PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带 与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、 或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数 过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶 则不出现,酶量过多有时也会出现非特异性扩增。其对策有:必要时重新设计引 物。减低酶量或调换另一来源的酶。降低引物量,适当增加模板量,减少循环次 数。适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。 5.4出现片状拖带或涂抹带 PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量 差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓 度。④增加模板量,减少循环次数。

简述pcr的基本原理

基本原理:PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。 扩展资料   在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。   PCR由变性--退火--延伸三个基本反应步骤构成:   1、模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备。   2、模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合。   3、引物的延伸:DNA模板--引物结合物在72℃、DNA聚合酶(如TaqDNA聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的`半保留复制链。   重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

一个pcr反应体系中不包含下面哪一项内容

一个pcr反应体系中不包含的一项内容是:T7 RNA聚合酶。PCR反应体系主要由寡核苷酸(引物)、4 种dNTP、Taq DNA聚合酶、靶序列DNA和PCR反应缓冲液体系组成。设计PCR引物时的一般原则:1、引物长度:一般15~ 30碱基,过短则特异性低;过长则会引起引物间的退火而影响有效扩增。2、避免内部二级结构,避免序列内有较长的回文结构,使引物自身不能形成发夹结构。3、G/C和A/T碱基均匀分布,G/C含量在45%~ 55% 之间,引物碱基序列尽可能选择碱基随机分布,避免嘌呤、嘧啶的连续排列。4、要避免两个引物间特别是3"末端DNA序列互补以及同一引物自身3"末端的序列互补,使它们不能形成引物二聚体或发卡结构。5、引物3"端碱基一般应与模板严格配对,并且3" 端为G、C或T时引发效率较高。6、引物5"端碱基可不与模板匹配,可添加与模板无关的序列(如限制性内切酶的识别位点、ATG起始密码子或启动子序列等)。这些与原初模板并不配对的非互补序列在后续的循不中将被带到双链DNA中去,这样反应产物不仅含有目的序列,同时在目的基因两侧又有了的限制酶切位点,用相应的限制酶切割后即可将PCR产物定向克隆到载体中。PCR反应体系的主要成分包括:PCR就是聚合酶链式反应。再外界情况下完成对核算片段的迅速合成。主要成分:有两端引物,Taq DNA聚合酶、模板DNA,合成DNA的核苷酸。主要程序:模板DNA的变性,两条链解开。引物模板退火,二者碱基配对。DNA聚合酶以四种核甘酸为底物,在引物引导下合成和模板互补的DNA新链。重复此过程。搜索:fmri基因检测是什么。rna的三个主要功能。反应体系。聚合酶标准。举例说明什么是核酶。什么是引物二聚体。pcr反应体系的原理:PCR技术的基本原理类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR是一种体外DNA 扩增技术,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应。将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性——低温退火——引物延伸”三步反应的多次循环,使DNA片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段。

pcr报名条件是什么

1、实验室通过卫生部或者所在省、市有关部门组织的验收合格;2、操作人员要参加专门培训并且考试合格。pcr是利用dna双链复制的原理,在生物体外大量扩增特定dna片段的分子生物学技术,其特点是可以以微量的dna为模板,快速扩增得到大量拷贝。

PCR技术具体的过程

变性--退火(复性)--延伸

PCR仪工作原理?

聚合酶链反应(Polymerase Chain Reaction ,简称PCR)是80年代中期发展起来的体外核酸扩增技术。 它具有特异、敏感、产率高、 快速、 简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。 二、PCR基本原理 基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成: 1、模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; 2、模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; 3、引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍(Plateau)。到达平台期所需循环次数取决于样品中模板的拷贝。 在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体(microsome)是细胞内蛋白质合成的部位;1957年Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。 从分子生物学的发展过程,可以看到在近半个世纪中它是生命科学范围发展最为迅速的一个前沿领域,推动着整个生命科学的发展。至今分子生物学仍在迅速发展中,新成果、新技术不断涌现,但分子生物学的历史还短,积累的资料还不够。例如:在地球上千姿万态的生物携带庞大的生命信息,迄今人类所了解的只是极少的一部分,还未认识核酸、蛋白质组成生命的许多基本规律;又如即使到2005年我们已经获得人类基因组DNA3×109bp的全序列,确定了人的5-10万个基因的一级结构,但是要彻底搞清楚这些基因产物的功能、调控、基因间的相互关系和协调,要理解80%以上不为蛋白质编码的序列的作用等等,都还要经历漫长的研究道路。可以说分子生物学的发展前景光辉灿烂,道路还会艰难曲折。 平或放大真核细胞单拷贝基因,通过PCR方法都是不难完成的。 4、特异性强 作为引物的寡核苷酸与模板结合的正确性是决定反应产物是否特异的关键。 5、对原始材料质量要求低含微量(pg,ng)的目的DNA的粗制品或者总RNA,就可以用做反应起始材料来获取目的产物。 主要适用于生命科学、医学、农业科学、环境科学、考古学及历史事件解读和卫生安全方面。

简述pcr606主要功能

1983年美国PE-Cetus公司的Mullis等人发明了聚合酶链反应(polymerase chain reaction,PCR),1985年公开报道,使人们能在试管内以几小时的反应将DNA扩增10^9倍.1987年PCR得到美国的专利权,PCR技术在生命科学中掀起了一场革命,并形成了巨大的市场,有人预言,本世纪末PCR产值可达到4x10^8美元.本章介绍PCR的原理、常用的各种PCR方法及主要应用范围.一、基本原理DNA在细胞中的复制是—个比较复杂的过程.参与复制的基本因素有:DNA聚合酶、DNA连接酶、DNA模板、由引发酶合成的RNA引物、核苷酸原料、无机离子、合适的pH、以及解开DNA的超螺旋及双螺旋等结构的若干酶与蛋白质因子等.PCR是在试管中进行DNA复制反应,基本原理与体内相似,不同之处是耐热的Taq酶取代DNA聚合酶,用合成的DNA引物替代RNA引物,用加热(变性)、冷却(退火、保温(延伸)等改变温度的办法使DNA得以复制,反复进行变性、退火、延伸循环,就可使DNA无限扩增.PCR的具体过程如下:将PCR反应体系升温至95℃左右,双链的DNA模板就解开成两条单链,此过程为变性.然后将温度降至引物的Km值以下,3"端与5"端的引物各自与两条单链DNA模板的互补区域结合,此过程称为退火.当将反应体系的温度升至70℃左右时,耐热的Taq DNA聚合酶催化四种脱氧核糖核苷酸按照模板DNA的核苷酸序列的互补方式依次加至引物的3"端,形成新生的DNA链.每一次循环使反应体系中的DNA分子数增加约一倍.理论上循环几次,就增加为2^n倍.当经30次循环后,DNA产量达2^30拷贝,约为10^9个拷贝.PCR扩增过程见图8-1.由于实际上扩增效率达不到2倍,因而应为(1+R)^n,R为扩增效率.

PCR技术和LCR技术的区别

1、本质不同PCR是聚合酶链式反应,是利用一段DNA为模板,在DNA聚合酶和核苷酸底物共同参与下,将该段DNA扩增至足够数量,以便进行结构和功能分析。LCR是以DNA连接酶将某一DNA链的5`-磷酸与另一相邻链3`-羟基连接为基础,应用两对互补的引物,双链DNA经加热变性后,两对引物分别与模板复性。。2、原理不同PCR原理用于扩增位于两段已知序列之间的DNA片段,类似于天然DNA的复制过程;LCR可准确区分基因序列中单个基因突变,由Landegree于1988年首次应用于镰刀形细胞贫血的分子诊断。扩展资料:流动性覆盖率(LCR,Liquidity Covered Ratio)= 优质流动性资产储备/未来30日的资金净流出量,流动性覆盖率的标准是不低于100%这个公式的意义:确保单个银行在监管当局设定的流动性严重压力情景下,能够将变现无障碍且优质的资产保持在一个合理的水平,这些资产可以通过变现来满足其30天期限的流动性需求。基因座控制区(locus control region,LCR),指负责维持染色质的开放构型并克服基因表达抑制状态的调控区域。存在于逆转录RNA、DNA中。

从克隆载体上PCR出目的基因原理

DNA的复制,根据碱基配对原则。高温变性(90度),低温复制(50度), 适温延伸(70度,因为聚合酶活性的关系)

PCR实验过程中的注意事项

PCR产物的电泳检测时间   一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失. PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件.寻找原因亦应针对上述环节进行分析研究. 酶切分析: 根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究.   分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法.   Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交.此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研.   斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析.   氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸.提取的核酸即可作为模板用于PCR反应.一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增.RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA. 温度与时间的设置:   基于PCR原理三步骤而设置变性-退火-延伸三个温度点.在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸.对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性). 实验操作注意事项 尽管扩增序列的残留污染大部分是假阳性反应的原因,样品间的交叉污染也是原因之一.因此,不仅要在进行扩增反应是谨慎认真,在样品的收集、抽提和扩增的所有环节都应该注意: 1. 戴一次性手套,若不小心溅上反应液,立即更换手套; 2. 使用一次性吸头,严禁与PCR产物分析室的吸头混用,吸头不要长时间暴露于空气中,避免气溶胶的污染; 3. 避免反应液飞溅,打开反应管时为避免此种情况,开盖前稍离心收集液体于管底.若不小心溅到手套或桌面上,应立刻更换手套并用稀酸擦拭桌面; 4. 操作多份样品时,制备反应混合液,先将dNTP、缓冲液、引物和酶混合好,然后分装,这样即可以减少操作,避免污染,又可以增加反应的精确度; 5. 最后加入反应模板,加入后盖紧反应管; 6. 操作时设立阴阳性对照和空白对照,即可验证PCR反应的可靠性,又可以协助判断扩增系统的可信性; 7. 尽可能用可替换或可高压处理的加样器,由于加样器最容易受产物气溶胶或标本DNA的污染,最好使用可替换或高压处理的加样器.如没有这种特殊的加样器,至少PCR操作过程中加样器应该专用,不能交叉使用,尤其是PCR产物分析所用加样器不能拿到其它两个区; 8. 重复实验,验证结果,慎下结论.

pcr原理是碱基互补配对

不用较这个真,懂的原理就行了.本质上一样的.

试述PCR扩增的原理和步骤

PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物. PCR是一种体外DNA 扩增技术,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性——低温退火——引物 PCR扩增仪 延伸”三步反应的多次循环,使DNA片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段. 在环境检测中,靶核酸序列往往存在于—个复杂的混合物如细胞提取液中,且含量很低,对于探测这种复杂群体中的特异微生物或某个基因,杂交就显得不敏感.使用PCR技术可将靶序列放大几个数量级,再用探针杂交探测对被扩增序列作定性或定量研究分析微生物群体结构.PCR技术常与其他技术结合起来使用,如RT-PCR、竞争PCR、槽式PCR、RAPf)、ARDRA等.

什么是聚合酶链反应(PCR)?

聚合酶链反应(PCR)的基本原理是一种酶促合成反应。即在模板DNA、引物和脱氧核糖核苷酸存在下,在DNA聚合酶的作用下,使DNA链扩增延伸。试验先通过加热变性,使DNA双螺旋的氢链断裂,解离成单链DNA;然后通过退火,突然降温使引物与其互补的模板在局部形成杂交链;然后再在DNA聚合酶、脱氧核糖核苷三磷酸底物和镁离子存在的条件下,在聚合酶催化下,以引物为起始点,使DNA链延伸。扩展资料:PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。反应特点:特异性强;灵敏度高;简便、快速;纯度要求低。参考资料:叶顺章. 聚合酶链反应在性病诊断中的应用[J]. 中华皮肤科杂志, 1996(3):147-148.百度百科-聚合酶链式反应

各位高手谁能给我详细的讲解一下PCR技术的过程

聚合酶链式反应(英文全称:Polymerase Chain Reaction),聚合酶链式反应 简称PCR.聚合酶链式反应(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点.它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术. 编辑本段发展简史   人类对于核酸的研究已经有100多年的历史.20世纪60年代末70年代初,人们致力于研究基因的体外分离技术.但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作.Khorana于1971年最早提出核酸体外扩增的设想.但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义.   1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文.从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖.   但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术.1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性.而后,Saiki等人又在黄石公园从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高.也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石.在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段.到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等. 编辑本段技术原理   DNA的半保留复制是生物进化和传代的重要途径.双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝.在聚合酶链式反应 实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链.因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制.   但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展.发现耐热DNA聚合同酶--Taq酶对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床. 编辑本段工作原理   类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物.PCR由变性--退火(复性)--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时聚合酶链式反应 间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至40~60℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在DNA聚合酶的作用下,于72℃左右,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍. 编辑本段反应特点   特异性强   PCR反应的特异性决定因素为:   ①引物与模板DNA特异正确的结合;   ②碱基配对原则;   ③Taq DNA聚合酶合成反应的忠实性;   ④靶基因的特异性与保守性.   其中引物与模板的正确结合是关键.引物与模板的结合及引物链的延伸是遵循碱基配对原则的.聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度.再通过选择特异性和保守性高的靶基因区,其特异性程度就更高.   灵敏度高   PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=10-6)水平.能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌.   简便、快速   PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应.扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广.   对标本的纯度要求低   不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板.可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测. 编辑本段反应五要素   参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+   引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度.理论上,只要知道任何一段模板DNA序列, 就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增.   设计引物应遵循以下原则:   ①引物长度:15-30bp,常用为20bp左右.   ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段.   ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带.ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列.   ④避免引物内部出现二级结构,避免两条引物间互补,特别是3"端的互补,否则会形成引物二聚体,产生非特异的扩增条带.   ⑤引物3"端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败.   ⑥引物中有或能加上合适的酶切位点, 被扩增的靶序列最好有适宜的酶切位点, 这对酶切分析或分子克隆很有好处.   ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性.引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会. 编辑本段反应体系与反应条件   标准的PCR反应体系:   10×扩增缓冲液10ul   4种dNTP混合物各200umol/L   引物各10~100pmol   模板DNA0.1~2ug   TaqDNA聚合酶2.5u   Mg2+1.5mmol/L   加双或三蒸水至100ul   PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和缓冲液(其中需要Mg2+) 编辑本段PCR反应条件的选择   PCR反应条件为温度、时间和循环次数.   温度与时间的设置:基于PCR原理三步骤而设置变性-退火-延伸三个温度点.在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸.对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性).   ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因.一般情况下,93℃~94℃min足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响.此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败.   ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素.变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合.由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞.退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度.对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想.引物的复性温度可通过以下公式帮助选择合适的温度:   Tm值(解链温度)=4(G+C)+2(A+T)   复性温度=Tm值-(5~10℃)   在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合, 提高PCR反应的特异性.复性时间一般为30~60sec,足以使引物与模板之间完全结合.   ③延伸温度与时间:Taq DNA聚合酶的生物学活性:   70~80℃ 150核苷酸/S/酶分子   70℃ 60核苷酸/S/酶分子   55℃ 24核苷酸/S/酶分子   高于90℃时, DNA合成几乎不能进行.   PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合.PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的.3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min.延伸进间过长会导致非特异性扩增带的出现.对低浓度模板的扩增,延伸时间要稍长些. 编辑本段酶及其浓度   目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶.催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少.   dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性.dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris.HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存.多次冻融会使dNTP降解.在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配.浓度过低又会降低PCR产物的产量.dNTP能与Mg2+结合,使游离的Mg2+浓度降低.   模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本.SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀; 蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸.提取的核酸即可作为模板用于PCR反应.一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增.RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA.   Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜.Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少. 编辑本段工作步骤   PCR反应的基本过程 标准的PCR过程分为三步(如图所示):   1.DNA变性(90℃-96℃):双链DNA模板在热作用下,   氢键断裂,形成单链DNA   2.退火(复性)(40℃-65℃):系统温度降低,引物与   DNA模板结合,形成局部双链.   3.延伸(68℃-75℃):在Taq酶(在72℃左右最佳的活   性)的作用下,以dNTP为原料,从引物的5′端→3′ 端延   伸,合成与模板互补的DNA链.   每一循环经过变性、退火和延伸,DNA含量既增加一倍.   现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度. 编辑本段循环参数   1、预变性(Initial denaturation).   模板DNA完全变性对PCR能否成功至关重要,一般95℃加热3-5分钟.   2、引物退火(Primer annealing)   退火温度一般需要凭实验(经验)决定.   退火温度对PCR的特异性有较大影响.   3、引物延伸   引物延伸一般在72℃进行(Taq酶最适温度).   延伸时间随扩增片段长短及所使用Taq酶的扩增效率而定.   4、循环中的变性步骤   循环中一般95℃,30秒足以使各种靶DNA序列完全变性:   变性时间过长损害酶活性,过短靶序列变性不彻底,易造成扩增失败.   5、循环数   大多数PCR含25-35循环,过多易产生非特异扩增.   6、最后延伸   在最后一个循环后,反应在72℃维持5-15分钟.使引物延伸完全,并使单链产物退火成双链.   PCR-PCR常见问题 编辑本段电泳检测时间   一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失.   假阴性,不出现扩增条带   PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件.寻找原因亦应针对上述环节进行分析研究.   模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消 化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚.⑤模 板核酸变性不彻底.在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处 理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应 固定不宜随意更改.   酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而 导致假阴性.需注意的是有时忘加Taq酶或溴乙锭.   引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不 理想、容易弥散的常见原因.有些批号的引物合成质量有问题,两条引物一条浓度 高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单 位.②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决.如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度.③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效.④引物设计不合理,如引物长度不够,引物之间形成二聚体等.   Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特 异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带.   反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul.或100ul,应用多 大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败. 编辑本段物理原因   变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率.有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一.   靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某 段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的.假阳性出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高.引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列.靶序列太短或引物太短,容易出现假阳性.需重新设计引物.   靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性.这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外.除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒.所用离心管及样进枪头等均应一次性使用.必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸.二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性.可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除.   出现非特异性扩增带   PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带 与非特异性扩增带.非特异性条带的出现,其原因:一是引物与靶序列不完全互补、 或引物聚合形成二聚体.二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数 过多有关.其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶 则不出现,酶量过多有时也会出现非特异性扩增.其对策有:必要时重新设计引 物.减低酶量或调换另一来源的酶.降低引物量,适当增加模板量,减少循环次 数.适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸).   出现片状拖带或涂抹带   PCR扩增有时出现涂抹带或片状带或地毯样带.其原因往往由于酶量过多或酶的质量 差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起.其对策有:减少酶量,或调换另一来源的酶.②减少dNTP的浓度.适当降低Mg2+浓 度.增加模板量,减少循环次数. 编辑本段克隆PCR产物   1)克隆PCR产物的最优条件是什么?   最佳插入片段:载体比需实验确定.1:1(插入片段:载体)常为最佳比,摩尔数比1:8或8:1也行.应测定比值范围.连接用5ul 2X连接液,50ng质粒DNA,1Weiss单位的T4连接酶,插入片段共10ul.室温保温1小时,或4℃过夜.在这2种温度下,缺T-凸出端的载体会自连,产生蓝斑.室温保温1小时能满足大多数克隆要求,为提高连接效率,需4℃过夜.   2)PCR产物是否需要用凝胶纯化?   如凝胶分析扩增产物只有一条带,不需要用凝胶纯化.如可见其他杂带,可能是积累了大量引物的二聚体.少量的引物二聚体的摩尔数也很高,这会产生高比例的带有引物二聚体的克隆,而非目的插入片段.为此需在克隆前做凝胶纯化.   3)如果没有回收到目的片段,还需要作什么对照实验?   A)涂布未转化的感受态细胞.   如有菌落,表明氨苄失效,或污染上带有氨苄抗型的质粒,或产生氨苄抗型的菌落.   B)转化完整质粒,计算菌落生长数,测定转化效率.   例如,将1ug/ul质粒1:100稀释,1ul用于100ul感受态细胞转化.用SOC稀释到1000ul后,用100ul铺板.培养过夜,产生1000个菌落.转化率为:产生菌落的总数/铺板DNA的总量.   铺板DNA的总量是转化反应所用的量除以稀释倍数.具体而言转化用10ng DNA,用SOC稀释到1000u后含10 ng DNA,用1/10铺板,共用1 ng DNA.转化率为:   1000克隆X10(3次方) ng /铺板1 ng DNA ug=10(6次方)cfu/ ug   转化pGEM-T应用10(8次方)cfu/ ug感受态细胞   如没有菌落或少有菌落,感受态细胞的转化率太低.   C)如用pGEM-T正对照,或PCR产物,产生>20-40蓝斑(用指定步骤10(8次方)cfu/ ug感受态细胞),表明载体失去T.可能是连接酶污染了核酸酶.T4 DNA连接酶(M1801,M1804,M1794)质量标准好无核酸酶污染,不应用其它来源的T4 DNA连接酶替换.   D)用pGEM-T或pGEM-T Easy载体,连接pGEM-T正对照,转化高频率感受态细胞(10(8次方)cfu/ug),按照指定的实验步骤,可得100个菌落,其中60%应为白斑,如产生>20-40蓝斑,没有菌落或少有菌落,连接有问题.   4)对照实验结果好,却没有回收到目的片段,实验出了什么问题?   A)连接用室温保温1小时,能满足大多数克隆,为提高效率,需4℃过夜.   B)插入片段带有污染,使3`-T缺失,或抑制连接,抑制转化.为此,将插入片段和pGEM-T正对照混合,再连接.如降低了对照的菌落数,插入片段需纯化,或重新制备.如产生大量的蓝斑,插入片段污染有核酸酶,使pGEM-T或pGEM-T Easy载体3`-T缺失.   C)插入片段不适于连接.用凝胶纯化的插入片段,因受UV过度照射,时有发生.UV过度照射会产生嘧啶二聚体,不利于连接,DNA必需重新纯化.   D)带有修复功能的耐热DNA聚合酶的扩增产物末端无A,后者是pGEM-T或pGEM-T Easy载体克隆所需.加Taq DNA聚合酶和核苷酸可在末端加A.详情查pGEM-T pGEM-T Easy载体技术资料(TM042).   E)高度重复序列可能会不稳定,在扩增中产生缺失和重排,如发现插入片段高频率地产生缺失和重排,需用重组缺陷大肠杆菌菌株,如SURE细胞. 编辑本段PCR反应的分类 SOEing-PCR(重叠PCR)   重叠区扩增基因拼接法,是基于普通PCR 技术衍生出的一种基因融合和定点突变的有效方法.众所周知,由于引物只需要与模板有效结合,尤其是5"端序列不必与模板完全配对,因此扩增引物的5"端可以添加一种甚至是两种酶切位点,以便于后期克隆.SOEing 法正是利用这一特点,向两个独立基因掺入一段新的序列以达到两个基因出现一个重叠区的目的,3"端的结合使基因融合或定点突变得以实现. RT-PCR(逆转录PCR)   RT-PCR 为反转录RCR(reverse transcription PCR)和实时PCR(real time PCR)共同的缩写.逆转录PCR,或者称反转录PCR(reverse transcription-PCR,RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形.在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板通过PCR进行DNA扩增.

pcr原理是什么?

PCR的原理是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。PCR最有价值的应用领域就是对感染疾病的诊断。理论上,只要样本有一个病原体存在,PCR就可以检测到。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。扩展资料标准的PCR过程分为三步:1、DNA变性:(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA。2、退火:(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。3、延伸:(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′3′端的方向延伸,合成与模板互补的DNA链。每一循环经过变性、退火和延伸,DNA含量即增加一倍。有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。

qpcr原理及应用

qpcr原理是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。因而发达国家在相关方法和仪器方面的研发非常快,成为分子生物学诊断的主流。应用行业:各级各类医疗机构、大学及研究所、CDC、检验检疫局、兽医站、食品企业及乳品厂等。由于qPCR是实时定量检测致病病原体基因核酸,因此它比化学发光、时间分辨、蛋白芯片等免疫学方法更具独到优势。扩展资料实时荧光定量PCR技术有效地解决了传统定量只能终点检测的局限,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。因此,实时荧光定量PCR无需内标是建立在两个基础之上的:1)Ct值的重现性PCR循环在到达Ct值所在的循环数时,刚刚进入真正的指数扩增期(对数期),此时微小误差尚未放大,因此Ct值的重现性极好,即同一模板不同时间扩增或同一时间不同管内扩增,得到的Ct值是恒定的。2)Ct值与起始模板的线性关系由于Ct值与起始模板的对数存在线性关系,可利用标准曲线对未知样品进行定量测定,因此,实时荧光定量PCR是一种采用外标准曲线定量的方法。外标准曲线的定量方法相比内标法是一种准确的、值得信赖的科学方法。利用外标准曲线的实时荧光定量PCR是迄今为止定量最准确,重现性最好的定量方法,已得到全世界的公认,广泛用于基因表达研究、转基因研究,药物疗效考核、病原体检测等诸多领域。参考资料来源:百度百科-QPCR

荧光定量pcr原理

荧光定量PCR原理:随着PCR反应的进行,PCR反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。荧光定量PCR最早称TaqMan PCR,后来也叫Real-Time PCR,是美国PE(Perkin Elmer)公司1995年研制出来的一种新的核酸定量技术。该技术是在常规PCR基础上加入荧光标记探针或相应的荧光染料来实现其定量功能的一般而言,荧光扩增曲线可以分成三个阶段:荧光背景信号阶段,荧光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号被荧光背景信号所掩盖,无法判断产物量的变化。而在平台期,扩增产物已不再呈指数级的增加,PCR 的终产物量与起始模板量之间没有线性关系,根据最终的 PCR 产物量也不能计算出起始 DNA 拷贝数。只有在荧光信号指数扩增阶段, PCR产物量的对数值与起始模板量之间存在线性关系,我们可以选择在这个阶段进行定量分析。为了定量和比较的方便,在实时荧光定量 PCR 技术中引入了两个非常重要的概念:荧光阈值和 CT值。荧光域值(threshold)是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,但一般荧光域值的缺省设置是PCR反应前3-15个循环荧光信号标准偏差的10倍,即threshold。Ct 值:是指每个反应管内的荧光信号到达设定域值时所经历的循环数。Ct值与起始模板的关系:研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代表Ct值如下图所示。因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。荧光定量检测荧光定量检测根据所使用的标记物不同可分为荧光探针和荧光染料。荧光探针又包括Beacon技术(分子信标技术,以美国人Tagyi为代表)、 TaqMan探针(以美国ABI公司为代表)和FRET技术(以罗氏公司为代表)等;荧光染料包括饱和荧光染料和非饱和荧光染料,非饱和荧光染料的典型代表就是现在最常用的SYBR GreenⅠ;饱和荧光染料有EvaGreen、LC Green等。嵌合荧光染料法(SYBR GreenⅠ)SYBR Green I是荧光定量PCR最常用的DNA结合染料,与双链DNA非特异性结合。在游离状态下,SYBR Green I发出微弱的荧光,但一旦与双链DNA结合,其荧光增加1000倍。所以,一个反应发出的全部荧光信号与出线的双链DNA量呈比列,且会随扩增产物的增加而增加。

恒温PCR,听别人提起过,是什么原理

PCR是用来获取大量DNA片段的,恒温就是保持在一定的温度下。

实时荧光定量PCR技术的原理什么?

所谓的实时荧光定量 PCR 就是 通过对 PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。其原理是在实时荧光定量 PCR 反应中,引入了一种荧光化学物质,随着PCR 反应的进行, PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。

融合PCR的操作原理及注意事项

PCR原理三步骤 变性-退火-延伸。双链DNA在90~95℃变性,变为DNA单练,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸进行复制。

荧光定量pcr原理

荧光定量pcr原理是:在PCR扩增反应体系中加入荧光基团,通过对扩增反应中每一个循环产物荧光信号的实时检测,最后通过标准曲线对未知模板进行定量分析的方法。PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针两端分别标记一个报告荧光基团和一个淬灭荧光基团。开始时,探针完整地结合在DNA任意一条单链上,报告基团发射的荧光信号被淬灭基团吸收,检测不到荧光信号;PCR扩增时,Taq酶将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号。荧光定量PCR的应用1、核酸定量分析对传染性疾病进行定量定性分析,病原微生物或病毒含量的检测。2、基因表达差异分析比较经过不同处理样本之间特定基因的表达差异(如药物处理、物理处理、化学处理等),特定基因在不同时相的表达差异以及cDNA芯片或差显结果的确证。3、SNP检测检测单核苷酸多态性对于研究个体对不同疾病的易感性或者个体对特定药物的不同反应有着重要的意义,因分子信标结构的巧妙性,一旦SNP的序列信息是已知的,采用这种技术进行高通量的SNP检测将会变得简单而准确。

运用pcr技术获取真核生物的目的基因可不可以通过转基因技术在原核细胞中正确?

 (1)提取目的基因 从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段,或者人工合成目的基因,或从基因文库中提取相应的基因片段和PCR技术进行目的基因的增殖。  (2)将目的基因与运载体结合 在细胞外,将带有目的基因的DNA片段通过剪切、粘合连接到能够自我复制并具有多个选择性标记的运输载体分子(通常有质粒、T4噬菌体、动植物病毒等)上,形成重组DNA分子。  (3)将目的基因导入受体细胞 将重组DNA分子注入到受体细胞(亦称宿主细胞或寄主细胞) ,将带有重组体的细胞扩增,获得大量的细胞繁殖体。  (4)目的基因的筛选从大量的细胞繁殖群体中,通过相应的试剂筛选出具有重组DNA分子的重组细胞。  (5)目的基因的表达 将得到的重组细胞,进行大量的增殖,得到相应表达的功能蛋白,表现出预想的特性,达到人们的要求。转基因技术的原理是将人工分离和修饰过的优质基因,导入到生物体基因组中,从而达到改造生物的目的。由于导入基因的表达,引起生物体的性状,可遗传的修饰改变,这一技术称之为人工转基因技术(Transgene technology)。  人工转基因技术就是把一个生物体的基因转移到另一个生物体DNA中的生物技术。具有不确定性。常用的方法和工具包括显微注射、基因枪、电破法、脂质体等。转基因最初用于研究基因的功能,即把外源基因导入受体生物体基因组内(一般为模式生物,如拟南芥或斑马鱼等),观察生物体表现出的性状,达到揭示基因功能的目的。

RT-PCR实验操作的注意事项

在做Northern等杂交实验、构建cDNA文库、获取能够编码真核生物蛋白的基因、获得RNA病毒基因时,会用到RNA提取和RT-PCR技术。真核生物的基因组是DNA,为什么不直接从DNA PCR得到我们需要的基因呢?因为真核生物的基因含有大量的非编码区,称为内元(intron),真正编码蛋白的区段是被这些内元隔开的,这些编码区叫做外元(exon)。真核生物的DNA转录成为RNA之后,经过剪切和拼接,去掉这些非编码区,才形成成熟的mRNA,由mRNA再翻译成蛋白质。所以,如果直接从真核生物的基因组DNA获取目的基因,克隆再表达,试图获取目的蛋白的思路是行不通的,因为获取的DNA里面会含有非编码区。要表达真核生物的基因并表达出相应的蛋白,只能通过提取其mRNA并RT-PCR这条颇费周折的途径。1.RNA的提取RNA的提取其实原理很简单:通过变性剂破碎细胞或者组织,然后经过氯仿等有机溶剂抽提RNA,再经过沉淀,洗涤,晾干,最后溶解。但是由于RNA酶无处不在,随时可能将RNA降解,所以实验中有很多地方需要注意,稍有疏忽就会前功尽弃。1.1 分离高质量RNA成功的cDNA合成来自高质量的RNA。高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。RNA的质量决定了你能够转录到cDNA上的序列信息量的最大值。一般的RNA纯化方法是使用异硫氰酸胍/酸性酚的一步法。一般不必使用oligo(dT)选择性分离poly(A)+RNA。不管起始模板是总RNA还是poly(A)+ RNA,都可以检测到扩增结果。另外,分离poly(A)+RNA会导致样品间mRNA丰度的波动变化,从而使信息的检出和定量产生偏差。然而,当分析稀有mRNA时,poly(A)+RNA会增加检测的灵敏度。1.2 RNA提取的最大影响因素-RNA酶在所有RNA实验中,最关键的因素是分离得到全长的RNA。而实验失败的主要原因是核糖核酸酶(RNA酶)的污染。由于RNA酶广泛存在而稳定,可耐受多种处理而不被灭活,如煮沸、高压灭菌等,RNA酶催化的反应一般不需要辅助因子。因而RNA制剂中只要存在少量的RNA酶就会引起RNA在制备与分析过程中的降解,而所制备的RNA的纯度和完整性又可直接影响RNA分析的结果,所以RNA的制备与分析操作难度极大。在实验中,一方面要严格控制外源性RNA酶的污染;另一方面要最大限度地抑制内源性的RNA酶。外源性的RNA酶存在于操作人员的手汗、唾液等,也可存在于灰尘中。在其它分子生物学实验中使用的RNA酶也会造成污染。这些外源性的RNA酶可污染器械、玻璃制品、塑料制品、电泳槽、研究人员的手及各种试剂。而各种组织和细胞中则含有大量内源性的RNA酶。1.3 常用的RNA酶抑制剂*焦碳酸二乙酯(DEPC):是一种强烈但不彻底的RNA酶抑制剂。它通过和RNA酶的活性基团组氨酸的咪唑环结合使蛋白质变性,从而抑制酶的活性。*异硫氰酸胍:目前被认为是最有效的RNA酶抑制剂,它在裂解组织的同时也使RNA酶失活。它既可破坏细胞结构使核酸从核蛋白中解离出来,又对RNA酶有强烈的变性作用。*氧钒核糖核苷复合物:由氧化钒离子和核苷形成的复合物,它和RNA酶结合形成过渡态类物质,几乎能完全抑制RNA酶的活性。*RNA酶的蛋白抑制剂(RNasin):从大鼠肝或人胎盘中提取得来的酸性糖蛋白。RNasin是RNA酶的一种非竞争性抑制剂,可以和多种RNA酶结合,使其失活。*其它:SDS、尿素、硅藻土等对RNA酶也有一定抑制作用。1.4 防止RNA酶污染的措施、RNA提取之前需要注意和准备的工作*尽可能在实验室专门辟出RNA操作区,离心机、移液器、试剂等均应专用。RNA操作区应保持清洁,并定期进行除菌。*操作过程中应始终戴一次性橡胶手套和口罩,并经常更换,以防止手、臂上的细菌和真菌以及人体自身分泌的RNase带入各种容器内或污染用具。尽量避免使用一次性塑料手套。塑料手套不仅常常给操作带来不便,而且塑料手套的多出部分常常将器具有RNase处传递到RNase-free处,扩大污染。*尽量使用一次性的塑料制品,避免共用器具如滤纸、tips、tubes等,以防交叉污染。例如,从事RNA探针工作的研究者经常使用RNase H、T1等,在操作过程中极有可能造成移液器、离心机等的污染。而这些污染了的器具是RNA操作的大敌。*关于一次性塑料制品,建议使用厂家供应的出厂前已经灭菌的tips和tubes等。多数厂家供应的无菌塑料制品很少有RNase污染,买来后可直接用于RNA操作。用DEPC等处理的塑料制品,往往由于二次污染而带有RNase,从而导致实验失败。*所有的玻璃器皿均应在使用前于180℃的高温下干烤6hr或更长时间。*无法用DEPC处理的用具可用氯仿擦拭若干次,这样通常可以消除RNase的活性。*配制溶液用的乙醇、异丙醇、Tris等应采用未开封的新瓶装试剂。*塑料器皿可用0.1% DEPC水浸泡或用氯仿冲洗(注意:有机玻璃器具因可被氯仿腐蚀,故不能使用)。*有机玻璃的电泳槽等,可先用去污剂洗涤,双蒸水冲洗,乙醇干燥,再浸泡在3% H2O2 室温10min,然后用0.1% DEPC水冲洗,晾干。*配制的溶液应尽可能的用0.1% DEPC,在37℃处理12hr以上。然后用高压灭菌除去残留的DEPC。不能高压灭菌的试剂,应当用DEPC处理过的无菌双蒸水配制,然后经0.22μm滤膜过滤除菌。1.5 RNA提取的一般步骤RNA提取的一般步骤是:破碎组织→分离RNA→沉淀RNA→洗涤RNA→融解RNA→保存RNA破碎组织和灭活RNA酶可以同步进行,可以用盐酸胍、硫氰酸胍、NP-40、SDS、蛋白酶K等破碎组织,加入β-ME可以抑制RNA酶活性。分离RNA一半用酚、氯仿等有机溶剂,加入少量异戊醇,经过此步,离心,RNA一般分布于上层,与蛋白层分开。沉淀RNA一般用乙醇、3M NaAc(pH-5.2)或异丙醇。洗涤RNA使用70%乙醇洗涤,有时,为避免RNA被洗掉,此步可以省掉,洗涤之后可以晾干或者烤干乙醇,但是不能过于干燥,否则不易溶解。融解RNA一般使用TE。保存RNA应该尽量低温。为了防止痕量RNase的污染,从富含RNase的样品(如胰脏、肝脏)中分离到的RNA需要贮存在甲醛中以保存高质量的RNA,对于长期贮存更是如此。从大鼠肝脏中提取的RNA,在水中贮存一个星期就基本降解了,而从大鼠脾脏中提取的RNA,在水中保存3年仍保持稳定。另外,长度大于4kb的转录本对于痕量RNase的降解比小转录本更敏感。为了增加贮存RNA样品的稳定性,可以将RNA溶解在去离子的甲酰胺中,存于-70℃。用于保存RNA的甲酰胺一定不能含有降解RNA的杂物。来源于胰脏的RNA至少可以在甲酰胺中保存一年。当准备使用RNA时,可以使用下列方法沉淀RNA:加入NaAc至0.3M,12,000×g离心5分钟。1.6RNA抽提新方法-TRIZOL法TRIZOL试剂是直接从细胞或组织中提取总RNA的试剂。它在破碎和溶解细胞时能保持RNA的完整性。加入氯仿后离心,样品分成水样层和有机层。RNA存在于水样层中。收集上面的的水样层后,RNA可以通过异丙醇沉淀来还原。在除去水样层后,样品中的DNA和蛋白也能相继以沉淀的方式还原。乙醇沉淀能析出中间层的DNA,在有机层中加入异丙醇能沉淀出蛋白。共纯化DNA对于样品间标准化RNA的产量十分有用。TRIZOL是有毒物,接触皮肤或者不慎吞服,会导致灼伤,一旦接触皮肤后立即以大量的洗涤剂和清水清洗。TRIZOL在室温下能稳定保存12个月。尽管如此,为达到最佳效果,建议保存在2-8°C的环境下。2.RT-PCRRT-PCR是指将逆转录(Reverse Transcription;RT)反应和PCR (Polymerase Chain Reaction)反应组合在一起的方法。2.1 RT-PCR的原理RT-PCR将以RNA为模板的cDNA合成同PCR结合在一起,提供了一种分析基因表达的快速灵敏的方法。RT-PCR用于对表达信息进行检测或定量。另外,这项技术还可以用来检测基因表达差异或不必构建cDNA文库克隆cDNA。RT-PCR比其他包括Northern印迹、RNase保护分析、原位杂交及S1核酸酶分析在内的RNA分析技术,更灵敏,更易于操作。RT-PCR的模板可以为总RNA或poly(A)+选择性RNA。逆转录反应可以使用逆转录酶,以随机引物、oligo(dT)或基因特异性的引物(GSP)起始。RT-PCR可以一步法或两步法的形式进行。在两步法RT-PCR中,每一步都在最佳条件下进行。cDNA的合成首先在逆转录缓冲液中进行,然后取出1/10的反应产物进行PCR。在一步法RT-PCR中,逆转录和PCR在同时为逆转录和PCR优化的条件下,在一只管中顺次进行。2.2 RT-PCR的步骤⑴在冰浴离心管里面加入模板RNA 4uL,引物2uL,去离子水5uL,混匀,离心3-5秒;⑵70度水浴5分钟,冰浴30秒(此处是为了使引物和模板正确配对);⑶加入5×反应液4uL,RNase抑制剂1uL,dNTP 2uL(这些应该先配好,然后分再装到每一管),混匀;⑷37度水浴5分钟,加入1uL AMV-RT反转录酶,混匀;⑸37度水浴1小时(此步是反转录过程);⑹70度10分钟结束反应(此处是灭活酶活性,避免对后续实验产生干扰),产物置冰上进行下一步PCR实验,余下的-70度保存。2.3 RT-PCR的引物设计RT-PCR引物设计和一般PCR引物设计可以遵循同样的原则。细心地进行引物设计是PCR中最重要的一步。理想的引物对只同目的序列两侧的单一序列而非其他序列退火。设计糟糕的引物可能会同扩增其他的非目的序列。设计理想的引物都有以下共同的特点,而设计失败的引物则各有各的缺点:* 典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。* 选择GC含量为40%到60%或GC含量反映模板GC含量的引物。* 设计5"端和中间区为G或C的引物。这会增加引物的稳定性和引物同目的序列杂交的稳定性。* 避免引物对3"末端存在互补序列,这会形成引物二聚体,抑制扩增。* 避免3"末端富含GC。设计引物时保证在最后5个核苷中含有3个A或T。* 避免3"末端的错误配对。3"端核苷需要同模板退火以供聚合酶催化延伸。* 避免存在可能会产生内部二级结构的序列,这会破坏引物退火稳定性。目的序列上并不存在的附加序列,如限制位点和启动子序列,可以加入到引物5"端而不影响特异性。当计算引物Tm值时并不包括这些序列,但是应该对其进行互补性和内部二级结构的检测。引物的稳定性依赖于储存条件。应将干粉和溶解的引物储存在-20℃。以大于10μM浓度溶于TE的引物在-20℃可以稳定保存6个月,但在室温(15℃到30℃)仅能保存不到1周。干粉引物可以在-20℃保存至少1年,在室温(15℃到30℃)最多可以保存2个月。2.4 引物退火温度引物的另一个重要参数是熔解温度(Tm)。这是当50%的引物和互补序列表现为双链DNA分子时的温度。Tm对于设定PCR退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm低5℃。根据所使用的公式及引物序列的不同,Tm会差异很大。因为大部分公式提供一个估算的Tm值,所有退火温度只是一个起始点。可以通过分析几个逐步提高退火温度的反应以提高特异性。开始低于估算的Tm 5℃,以2℃为增量,逐步提高退火温度。较高的退火温度会减少引物二聚体和非特异性产物的形成。为获得最佳结果,两个引物应具有近似的Tm值。引物对的Tm差异如果超过5℃,就会由于在循环中使用较低的退火温度而表现出明显的错误起始。如果两个引物Tm不同,将退火温度设定为比最低的Tm低5℃。或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后再根据较低Tm设计的退火温度进行剩余的循环。这使得在较为严谨的条件下可以获得目的模板的部分拷贝。2.5 提高逆转录保温温度较高的保温温度有助于RNA二级结构的打开,增加了反应的产量。对于多数RNA模板,在没有缓冲液或盐的条件下,将RNA和引物在65℃保温,然后迅速置于冰上冷却,可以消除大多数二级结构,从而使引物可以结合。然而某些模板仍然会存在二级结构,即使热变性后也是如此。较高的保温温度也可以增加特异性,尤其是当使用基因特异性引物(GSP)进行cDNA合成时。如果使用GSP,确保引物的Tm值与预计的保温温度相同。不要在高于60℃时使用oligo(dT)和随机引物。随机引物需要在增加到60℃前在25℃保温10分钟。除了使用较高的逆转录温度外,还可以通过直接将RNA/引物混合物从65℃变性温度转到逆转录保温温度,并加入预热的2×的反应混合物提高特异性(cDNA热启动合成)。这种方法有助于防止较低温度时所发生的分子间碱基配对。使用PCR仪可以简化RT-PCR所需的多种温度切换。2.6 促进逆转录的添加剂包括甘油和DMSO在内的添加剂加到第一链合成反应中,可以减低核酸双链的稳定并解开RNA二级结构,最多可以加入20%的甘油或10%的DMSO而不影响或MMLV的活性。AMV也可以耐受最多20%的甘油而不降低活性。为了在逆转录反应中最大限度提高RT-PCR的灵敏度,可以加入10%的甘油并在45℃保温。如果1/10的逆转录反应产物加入到PCR中,那甘油在扩增反应中的浓度为0.4%,这不足以抑制PCR。在逆转录反应中经常加入RNase抑制剂以增加cDNA合成的长度和产量。RNase抑制剂要在第一链合成反应中,在缓冲液和还原剂(如DTT)存在的条件下加入,因为cDNA合成前的过程会使抑制剂变性,从而释放结合的可以降解RNA的RNase。蛋白RNase抑制剂仅防止RNase A,B,C对RNA的降解,并不能防止皮肤上的RNase,因此尽管使用了这些抑制剂,也要小心不要从手指上引入RNase。使用无RNaseH活性(RNaseH-)的逆转录酶:逆转录酶催化RNA转化成cDNA,不管是M-MLV还是AMV,在本身的聚合酶活性之外,都具有内源RNaseH活性。RNaseH活性同聚合酶活性相互竞争RNA模板与DNA引物或cDNA延伸链间形成的杂合链,并降解RNA:DNA复合物中的RNA链。被RNaseH活性所降解的RNA模板不能再作为合成cDNA的有效底物,降低了cDNA合成的产量和长度。因此消除或大大降低逆转录酶的RNaseH活性将会大有裨益。RNaseH-的MMLV逆转录酶及RNaseH-的AMV,比MMLV和AMV能得到更多量和更多全长。RT-PCR灵敏度会受cDNA合成量的影响。RT-PCR产物的大小受限于逆转录酶合成cDNA的能力,尤其是克隆较大的cDNA时。RNaseH-的逆转录酶可以显著提高长RT-PCR产物的产量,同时增加了热稳定性,所以反应可以在高于正常的37-42℃的温度下进行。2.7 RNaseH处理在PCR之前使用RNaseH处理cDNA合成反应可以提高灵敏度。对于某些模板,据认为cDNA合成反应中的RNA会阻止扩增产物的结合,在这种情况下,RNaseH处理可以增加灵敏度。一般当扩增较长的全长cDNA目标模板时,RNaseH处理是必需的,比如低拷贝的。对这种困难模板,RNaseH的处理加强了或AMV合成的cDNA所产生的信号。对于多数RT-PCR反应,RNaseH处理是可选的,因为95℃保温的PCR变性步骤一般会将RNA:DNA复合物中的RNA水解掉。2.8 小量RNA检测方法的提高当仅有小量RNA时,RT-PCR尤其具有挑战性。在RNA分离过程中加入的作为载体的糖元有助于增加小量样品的产量。可以在加入Trizol的同时加入无RNase的糖元。糖元是水溶性的,可以同RNA保持在水相中以辅助随后的沉淀。对于小于50mg的组织或106个培养细胞的样品,无RNase糖元的建议浓度为250μg/ml。2.9 一步法同两步法RT-PCR的比较两步法RT-PCR比较常见,在使用一个样品检测多个mRNA时比较有用。然而一步法RT-PCR具有其他优点。一步法RT-PCR在处理大量样品时易于操作,有助于减少残余污染,因为在cDNA合成和扩增之间不需要打开管盖。一步法可以得到更高的灵敏度,最低可以达到0.1pg总RNA,这是因为整个cDNA样品都被扩增。对于成功的一步法RT-PCR,一般使用反义的基因特异性引物起始cDNA合成。2.10 增加RT-PCR特异性第一链cDNA合成的起始可以使用三种不同的方法,各种方法的相对特异性影响了所合成cDNA的量和种类。随机引物法是三种方法中特异性最低的。引物在整个转录本的多个位点退火,产生短的,部分长度的cDNA。这种方法经常用于获取5"末端序列及从带有二级结构区域或带有逆转录酶不能复制的终止位点的RNA模板获得cDNA。为了获得最长的cDNA,需要按经验确定每个RNA样品中引物与RNA的比例。随机引物的起始浓度范围为50到250ng每20μl反应体系。因为使用随机引物从总RNA合成的cDNA主要是核糖体RNA,所以模板一般选用poly(A)+RNA。Oligo(dT)起始比随机引物特异性高。它同大多数真核细胞mRNA 3"端所发现的poly(A)尾杂交。因为poly(A)+RNA大概占总RNA的1%到2%,所以与使用随机引物相比,cDNA的数量和复杂度要少得多。因为其较高的特异性,oligo(dT)一般不需要对RNA和引物的比例及poly(A)+选择进行优化。建议每20μl反应体系使用0.5μg oligo(dT)。oligo(dT)12-18适用于多数RT-PCR。ThermoScript RT-PCR System提供了oligo(dT)20,因为其热稳定性较好,适用于较高的保温温度。基因特异性引物(GSP)对于逆转录步骤是特异性最好的引物。GSP是反义寡聚核苷,可以特异性地同RNA目的序列杂交,而不象随机引物或oligo(dT)那样同所有RNA退火。用于设计PCR引物的规则同样适用于逆转录反应GSP的设计。GSP可以同与mRNA3"最末端退火的扩增引物序列相同,或GSP可以设计为与反向扩增引物的下游退火。对于部分扩增对象,为了成功进行RT-PCR,需要设计多于一个反义引物,因为目的RNA的二级结构可能会阻止引物结合。建议在20μl的第一链合成反应体系中使用1pmol反义GSP。2.11 提高逆转录保温温度为了充分利用GSP特异性的全部优点,应该使用有较高热稳定性的逆转录酶。热稳定逆转录酶可以在较高温度保温以增加反应严谨性。比如,如果一个GSP退火温度为55℃,那么如果使用AMV或M-MLV在低严谨性的37℃进行逆转录,GSP所带有的特异性就没有完全利用。然而某些特别的逆转录酶可以在50℃或更高进行反应,这就会消除较低温度时产生的非特异性产物。为获得最大的特异性,可以将RNA/引物混合物直接从65℃变性温度转移到逆转录保温温度。这有助于防止低温时分子间碱基配对。使用PCR仪可以简化RT-PCR所需的多种温度转换。2.12 减少基因组DNA污染RT-PCR所遇到的一个潜在的困难是RNA中沾染的基因组DNA。使用较好的RNA分离方法,如Trizol,会减少RNA制备物中沾染的基因组DNA。为了避免产生于基因组DNA的产物,可以在逆转录之前使用扩增级的DNaseⅠ对RNA进行处理以除去沾染的DNA。将样品在2.0mM EDTA中65℃保温10分钟以终止DNaseⅠ消化。EDTA可以螯合镁离子,防止高温时所发生的依赖于镁离子的RNA水解。为了将扩增的cDNA同沾染的基因组DNA扩增产物分开,可以设计分别同分开的外显子退火的引物。来源于cDNA的PCR产物会比来源于沾染的基因组DNA的产物短。另外对每个RNA模板进行一个无逆转录的对照实验,以确定一个给定片段是来自基因组DNA还是cDNA。在无逆转录时所得到的PCR产物来源于基因组。

pcr试剂盒的性能质检主要包括

测量正确度。pcr试剂盒的性能质检主要包括测量正确度,测量精密度(含测量重复性和测量中间精密度),测量不确定度,分析特异性(含抗干扰能力),分析灵敏度,检出限和定量限,线性区间(可报告区间)等。PCR定性检测选择验证的性能指标宜包括方法符合率,检出限,抗干扰能力,交叉反应等。PCR方法已广泛用于科研,在工业中也有不断扩大应用的趋势,它包括检测一些病原体,检测支原体污染,检测细菌污染以及检测残留宿主DNA等。执业药师考试章节知识点归纳,祝你轻松取证。移动端题库:http://m.hqwx.com/tiku/zyys/?utm_campaign=baiduhehuorenPC端题库:http://hqwx.com/tiku/zyys/?utm_campaign=baiduhehuoren

pcrmix被污染了怎么办

一、污染监测一个好的PCR实验室,必须要时刻注意污染的监测,考虑是否受到污染,如有污染,是何原因造成的。通过有效地监测,采取正确的相应措施,防止或消除污染。1、阴性对照:阴性对照是每次PCR实验都必须做的。它包括了标本对照与试剂对照,通过对照确认样本和试剂是否受到感染。2、阳性对照:它是PCR 反应是否成功、产物条带位置及大小是否合乎理论要求的一个重要的参考标志。阳性对照要选择扩增度中等、重复性好、经鉴定是该产物的标本。但阳性对照其对检测或扩增样品污染的可能性很大。因而当某一PCR试剂已经使用稳定,检验人员完全掌握时,在之后的实验中应尽可能免设阳性对照。来减小污染概率。4、重复性试验。二、防止污染的方法1、合理分隔实验室:将样品的处理、配制PCR反应液、PCR循环扩增以及PCR产物的鉴定等步骤进行分区或者分室,尤其要将样本处理和PCR产物的鉴定与其它步骤严格分开。 理想的分区为,标本处理区、PCR反应液制备区、PCR循环扩增区、PCR产物鉴定区。2、PCR试剂要做好预混合分装:所有的PCR试剂都应进行小量分装,PCR反应液应尽可能预先配置好,然后再小量分装,在-20℃下保存,以减少重复加样次数,从而避免污染机会。另外,PCR试剂、PCR反应液应当与样品及PCR产物分开保存,不可放于同一冰盒或冰箱。3、吸样枪污染防护:吸样枪是一个非常容易发生污染的设备。如操作时不慎将样品或模板核酸吸入枪内或粘在枪头上,将会成为一个严重的污染源,因而使用吸样枪时要格外小心,吸样要慢,并尽量一次性完成,忌多次抽吸,避免发生交叉污染或气溶胶污染。4、减少PCR循环次数:以PCR产物达到检测水平为宜。5、防止操作人员污染:使用一次性手套、吸头、小离心管。
 首页 上一页  1 2 3 4 5 6  下一页  尾页