pcr

阅读 / 问答 / 标签

灌注固定后过的脑组织可以做western blot,pcr,elisa等吗

大鼠灌注取脑;用途:;1.用于常规HE染色,免疫组化分析;2.冰冻切片可以不做脑组织固定;3.不可用于westernblot和PCR;4.如果观察脑组织的缺血、损伤或其它病变时,不作;原理:;心脏灌流术能够快速冲净血液并在动物死亡前进行组织;必要性:;1.脑组织较软,且细胞成分不易保留,脑组织是较易;2.经前固定后,取脑操作时,可减少脑组织损伤;3.脑内血液大鼠灌注取脑用途:1.用于常规HE染色,免疫组化分析。2.冰冻切片可以不做脑组织固定。3.不可用于western blot和PCR。4.如果观察脑组织的缺血、损伤或其它病变时,不作灌注固定,而是在取出脑组织后作固定,将大大影响效果。原理:心脏灌流术能够快速冲净血液并在动物死亡前进行组织的前固定,避免了组织的自溶现象,是脑组织切片观察的常用方法。多聚甲醛使组织蛋白发生交联,以保持蛋白的原位和表面结构不变,从而能使其对应的抗体准确检测其表达位置和量。必要性:1.脑组织较软,且细胞成分不易保留,脑组织是较易软化的组织之一,血供也较为丰富,所以最好是在取脑组织前用4%多聚甲醛灌注固。2.经前固定后,取脑操作时,可减少脑组织损伤。3.脑内血液都在,HE染色后,可去除红细胞背景影响。大鼠灌注取脑标准操作规程(SOP):流程:1) 麻醉 2)开胸 3)心脏左心室穿针,剪开右心耳 4)生理盐水冲水 5)4%多基甲醛固定 6)取脑 7)保存或切片.具体过程:大鼠经深度麻醉后,固定于自制的手术木板上,置于解剖盘中,开胸暴露并游离出心脏,经左心室插入灌流针并固定, 切开右心耳,先灌注冰冻无菌生理盐水(4℃)XmL,直到肝和肺脏颜色转白及右心房流出液澄清,后再灌注冰冻(4℃)4%多聚甲醛XmL,断头取脑,多聚甲醛浸泡固定24小时。Tips:1.多聚甲醛的配置:一般方法为:4%多聚甲醛PBS缓冲液配法:称取40g PFA溶于装有500mlDEPC水的玻璃容器(烧杯或烧瓶)中,持续加热磁力搅拌至60~65℃,使成乳白色悬液。用1.0mol/L的NaOH值至7.4,使呈清亮状(滴加),再加入约500ml PBS,充分混匀(在冰浴或冷水浴中),可再检测一下pH,过滤后定容至1000ml,室温或4℃保存备用。简便方法:先配好PBS,称好相应的多聚甲醛,37℃水浴或温箱密封放置2天,就能全溶。若是很急,55℃水浴一天,期间不时震荡。注意,4%的多聚甲醛需临用前配制,配制后需过滤去除小的杂质,避免心脏灌流时造成栓塞影响灌流效果。2.制作灌注装置,用两瓶塑料包装的输液瓶装灌注液。同时配好输液器备用。3.10%水合氯醛按4mL/100g的剂量腹腔注射麻醉动物。4.沿两侧肋弓剪开皮肤,打开腹腔,用一血管钳夹持剑突并向上提拉,用弯剪在膈肌与胸骨柄相连处剪一小口,造成人工气胸,然后向两侧顺延,剪断膈肌及肋骨,夹持剑突的血管钳将剑突连带胸廓上翻固定,充分暴露心脏,直视下穿刺针左心室心尖处,用血管钳固定。5.快速滴注生理盐水(室温),同时剪开右心耳。约注入100~150mL,至流出液体血色较浅基本澄清,停止灌注。肝脏、眼珠、爪子迅速变白是排出血液的有效观察指标。6.继续用4%多聚甲醛灌流250ml固定。7.后固定:灌流后的脑组织置于4%PFA置4度冰箱内进行后固定,时间>2h,过夜最好。补充:还有一种省时省剂的方法。夹闭腹主动脉:只灌注上肢及头脑,固定的好又快,又省试剂。先灌注生理盐水约100ml,见到老鼠两前肢及两肺变白可改灌注多聚甲醛。多聚甲醛用100ml以下即可。灌注成功的标志:刚开始灌注时老鼠前肢剧烈抽动(下肢不抽动证明腹主动脉夹闭完全);前肢及颈部僵硬;所灌注的脑组织白而硬。

pcr程序中slope什么意思

标准曲线的斜率,可以换算到扩增效率

ELISA和PCR的原理和用途

enzymelinkedimmunosorbentassay,ELISA。指将可溶性的抗原或抗体吸附到聚苯乙烯等固相载体上,进行免疫反应的定性和定量方法。这一方法的基本原理是:①使抗原或抗体结合到某种固相载体表面,并保持其免疫活性。②使抗原或抗体与某种酶连接成酶标抗原或抗体,这种酶标抗原或抗体既保留其免疫活性,又保留酶的活性。在测定时,把受检标本(测定其中的抗体或抗原)和酶标抗原或抗体按不同的步骤与固相载体表面的抗原或抗体起反应。用洗涤的方法使固相载体上形成的抗原抗体复合物与其他物质分开,最后结合在固相载体上的酶量与标本中受检物质的量成一定的比例。加入酶反应的底物后,底物被酶催化变为有色产物,产物的量与标本中受检物质的量直接相关,故可根据颜色反应的深浅刊物定性或定量分析。由于酶的催化频率很高,故可极大地放大反应效果,从而使测定方法达到很高的敏感度。聚合酶链式反应,简称PCR。聚合酶链式反应,其英文PolymeaseChainReaction(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(PolymeraseChainReaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。

什么是rep-PCR

PCR是DNA的体外扩增技术. PCR(聚合酶链式反应)原理 PCR是体外酶促合成特异DNA片段的方法,主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成: 即在高温(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物3"端为合成的起点,以单核苷酸为原料,沿模板以5"→3"方向延伸,合成DNA新链。这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍。

PCR的原理是什么

聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术.它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定.过去几天几星期才能做到的事情,用PCR几小时便可完成.PCR技术是生物医学领域中的一项革命性创举和里程碑. PCR技术简史 PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”. PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应.其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间. PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加.②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一.此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难.这使得 PCR技术在一段时间内没能引起生物医学界的足够重视.1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段.但每循环一次,仍需加入新酶.1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶.此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%.②在热变性时不会被钝化,不必在每次扩增反应后再加新酶.③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb).由于提高了扩增的特异性和效率,因而其灵敏性也大大提高.为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase).此酶的发现使PCR广泛的被应用. PCR技术基本原理 PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物.PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍.到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝. PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升.反应最终的DNA 扩增量可用Y=(1+X)n计算.Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数.平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值.反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素.大多数情 况下,平台期的到来是不可避免的. PCR扩增产物 可分为长产物片段和短产物片段两部分.短产物片段的长度严格地限定在两个引物链5"端之间,是需要扩增的特定片段.短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3"端开始延伸,其5"端是固定的,3"端则没 有固定的止点,长短不一,这就是“长产物片段”.进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合.引物在与新链结合 时,由于新链模板的5"端序列是固定的,这就等于这次延伸的片段3"端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”.不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用. PCR反应体系与反应条件 标准的PCR反应体系: 10×扩增缓冲液 10ul 4种dNTP混合物 各200umol/L 引物 各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至 100ul PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度.理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增. 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右. ②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段. ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带.ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列. ④避免引物内部出现二级结构,避免两条引物间互补,特别是3"端的互补,否则会形成引物二聚体,产生非特异的扩增条带. ⑤引物3"端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败. ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处. ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性. 引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会. 酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶.催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少. dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性.dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris.HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存.多次冻融会使dNTP降解.在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配.浓度过低又会降低PCR产物的产量.dNTP能与Mg2+结合,使游离的Mg2+浓度降低. 模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本. SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸.提取的核酸即可作为模板用于PCR反应.一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增.RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA. Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜.Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少. PCR反应条件的选择 PCR反应条件为温度、时间和循环次数. 温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点.在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸.对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性). ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因.一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响.此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败. ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素.变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合.由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞.退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度.对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想.引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T) 复性温度=Tm值-(5~10℃) 在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性.复性时间一般为30~60sec,足以使引物与模板之间完全结合. ③延伸温度与时间:Taq DNA聚合酶的生物学活性: 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行. PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合.PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的.3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min.延伸进间过长会导致非特异性扩增带的出现.对低浓度模板的扩增,延伸时间要稍长些. 循环次数 循环次数决定PCR扩增程度.PCR循环次数主要取决于模板DNA的浓度.一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多. PCR反应特点 特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性. 其中引物与模板的正确结合是关键.引物与模板的结合及引物链的延伸是遵循碱基配对原则的.聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度.再通过选择特异性和保守性高的靶基因区,其特异性程度就更高. 灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平.能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌. 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应.扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广. 对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板.可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测. PCR扩增产物分析 PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论.PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法. 凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性.PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件. 琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用. 聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析. 酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究. 分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法. Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交.此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研. 斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析.

pcr技术的四种原料是什么

就胞嘧啶而言是dctp.就四个碱基的mix则为dntp(n=a,t,c,g).因为是以此底物为原料,要加在3"-OH上需要高能建.dnmp是没有高能磷酸键的,而dntp则有两个.但最后在DNA链中的形式是dnmp.

pcr技术的具体过程

类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火(复性)--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时 聚合酶链式反应间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至40~60℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在DNA聚合酶的作用下,于72℃左右,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。参考资料:

PCR技术的优点

聚合酶链式反应(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。 特异性强   PCR反应的特异性决定因素为:   ①引物与模板DNA特异正确的结合;   ②碱基配对原则;   ③Taq DNA聚合酶合成反应的忠实性;   ④靶基因的特异性与保守性。   其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。   灵敏度高   PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=10-6)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。   简便、快速   PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。   对标本的纯度要求低   不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。

什么是PCR?

无明显同源性。 引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。 模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。 Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。 PCR反应条件的选择 PCR反应条件为温度、时间和循环次数。 温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。 ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。 ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T) 复性温度=Tm值-(5~10℃) 在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。 ③延伸温度与时间:Taq DNA聚合酶的生物学活性: 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行。 PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。 循环次数 循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。 PCR反应特点 特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性。 其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。 灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。 对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。 PCR扩增产物分析 PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。 凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。 琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用。 聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。 酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。 分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。 Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。 斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。 核酸序列分析:是检测PCR产物特异性的最可

PCR技术介绍

PCR技术的基本原理 类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍

pcr都需要什么原料

一段已知的目的基因的核苷酸序列(DNA模板)引物四种脱氧核苷酸热稳定DNA聚合酶(taq酶)

PCR共分几步?

标准的PCR过程分为三步: 1.DNA变性   (90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA 2.退火   (25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链. 3.延伸   (70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链.   每一循环经过变性、退火和延伸,DNA含量即增加一倍.如图所示:   现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度.

分析体内DNA复制和体外PCR扩增DNA有何异同点

他们有完全不同的差别,因为第一个诶,它是螺旋式的耳PCR,它是渐进式的。

PCR技术应用的领域有哪些

1、核酸的基础研究:基因组克隆2、不对称PCR制备单链DNA用于DNA测序3、反向PCR测定未知DNA区域4、反转录PCR(RT-PCR)用于检测细胞中基因表达水平、RNA病毒量以及直接克隆特定基因的cDNA5、荧光定量PCR用于对PCR产物实时监控6、cDNA末端快速扩增技术7、检测基因的表达8、医学应用:检测细菌、病毒类疾病;诊断遗传疾病;诊断肿瘤;应用于法医物证学。

什么是PCR实验

细菌培养检查

在生物实验中PCR的具体步骤是什么?

体系是:PCR buffer,Taq酶,dNTPs,引物,模板,ddH2O补充至20ul或50ul体系。举例:10 × buffer: 2 ul dNTP(2.5mmol): 2ul 引物(2.5umol): 1.5ul 模板: 1ul Taq: 0.2ul ddH2O: 13.3ul程序:1 94度 5min 2 94度 1min 3 55度 1min 4 72度 2min(1min 1000bp) 2-4重复35个循环 5 72度 10min 6 4度 hold

PCR名词解释

多聚酶链式反应扩增DNA片段.

PCR试验的步骤

 标准的PCR过程分为三步(如图所示):   1.DNA变性(90℃-96℃):双链DNA模板在热作用下,   氢键断裂,形成单链DNA   2.退火(复性)(40℃-65℃):系统温度降低,引物与   DNA模板结合,形成局部双链.   3.延伸(68℃-75℃):在Taq酶(在72℃左右最佳的活   性)的作用下,以dNTP为原料,从引物的5′端→3′ 端延   伸,合成与模板互补的DNA链.   每一循环经过变性、退火和延伸,DNA含量既增加一倍.   现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度.

什么是PCR技术?

聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。PCR是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。

PCR是什么材质?是什么塑料?俗称什么?

PCR是Post Customer Recycled的缩写,不是什么材质。是消费后再生塑料的统称。

pcr是什么意思 怎么理解pcr是什么意思

1、PCR是聚合酶链式(PolymeraseChainReaction)反应的简称,是一种将几个或几十个拷贝数DNA片段扩增至上百万份拷贝的方法,这是迄今为止最为重要的技术之一。PCR技术的影响不仅仅局限于生物科学领域,几乎人人都可以感受到PCR所带来的改变,在亲子鉴定以及犯罪调查中PCR技术便有广泛应用。 2、PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

PCR是什么?

PCR类似于DNA的天然复制过程,是利用合成的两段已知序列的寡核苷酸作为引物,在热稳定的DNA聚合酶的作用下,扩增位于两引物之间的特定DNA片段。PCR包括三个基本步骤:变性、退火、延伸

pcr实验步骤详细

类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火(复性)--延伸三个基本反应步骤构成:1.模板DNA的变性:模板DNA经加热至90~95℃一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;2.模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55~60℃,引物与模板DNA单链的互补序列配对结合;3.引物的延伸:DNA模板--引物结合物在DNA聚合酶的作用下,于70~75℃,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

PCR反应的三个步骤是什么?

 标准的PCR过程分为三步(如图所示):   1.DNA变性(90℃-96℃):双链DNA模板在热作用下,   氢键断裂,形成单链DNA   2.退火(复性)(40℃-65℃):系统温度降低,引物与   DNA模板结合,形成局部双链.   3.延伸(68℃-75℃):在Taq酶(在72℃左右最佳的活   性)的作用下,以dNTP为原料,从引物的5′端→3′ 端延   伸,合成与模板互补的DNA链.   每一循环经过变性、退火和延伸,DNA含量既增加一倍.   现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度.

pcr是什么

聚合酶链式反应(英文全称:Polymerase Chain Reaction), 聚合酶链式反应简称PCR。聚合酶链式反应(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。详细见这个网址http://baike.baidu.com/view/2764.htm

pcr是什么意思 怎么理解pcr是什么意思

1、PCR是聚合酶链式(PolymeraseChainReaction)反应的简称,是一种将几个或几十个拷贝数DNA片段扩增至上百万份拷贝的方法,这是迄今为止最为重要的技术之一。PCR技术的影响不仅仅局限于生物科学领域,几乎人人都可以感受到PCR所带来的改变,在亲子鉴定以及犯罪调查中PCR技术便有广泛应用。 2、PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

pcr什么意思

pcr是指聚合酶链式反应。聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中凶手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对,这也是“微量证据”的威力之所在。由1983年美国Mullis首先提出设想,1985年由其发明了聚合酶链反应,即简易DNA扩增法,意味着PCR技术的真正诞生。到如今2013年,PCR已发展到第三代技术。1976年,台湾科学家钱嘉韵,发现了聚合酶,为PCR技术发展做出了基础性贡献。临床应用:1、感染性疾病。PCR在医学检验学中,最有价值的应用领域,就是对感染性疾病的诊断。理论上,只要样本有一个病原体存在,PCR就可以检测到。PCR对病原体的检测解决了免疫学检测的“窗口期”问题,可判断疾病是否处于隐性或亚临床状态。2、肿瘤。癌基因的表达增加和突变,在许多肿瘤早期和良性的阶段就可出现。PCR技术不但能有效的检测基因的突变,而且能准确检测癌基因的表达量,可据此进行肿瘤早期诊断、分型、分期和预后判断。3、遗传病。PCR技术首次临床应用,就是从检测镰状细胞和β-地中海贫血的基因突变开始的。基因的突变和缺失均会引起各种珠蛋白的表达不平衡,用FQ-PCR检测各种珠蛋白基因表达差异,是地中海贫血诊断的有效手段。

PCR是什么意思呀?

聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。PCR由变性-退火-延伸三个基本反应步骤构成:模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;引物的延伸:DNA模板-引物结合物在72℃、DNA聚合酶(如TaqDNA聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。

名词解释pcr

聚合酶链式反应简称PCR(英文全称:Polymerase Chain Reaction) 是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点

pcr的名词解释

聚合酶链式反应简称PCR(英文全称:Polymerase Chain Reaction) 是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点.它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术.

PCR是什么意思?

聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。DNA聚合酶(DNA polymerase I)最早于1955年发现 ,而较具有实验价值及实用性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow 所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称 Taq polymerase), 则是于1976年从 温泉中的细菌(Thermus aquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的 酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由 Dr. Kjell Kleppe 提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR则于1983由 Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr. Mullis 并于1985年与 Saiki 等人正式表了第一篇相关的论文。此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年诺贝尔化学奖

普通基因扩增和PCR的区别

区别:对未知序列进行测序,可以通过PCR把整段基因都扩增出来,但是因为现在测序的技术限制,DNA片段两端的序列是测不出来的,直接PCR产物测序的结果只能获得基因中间部分序列。所以利用细菌的T载体进行TA克隆,把基因整合到质粒上扩增,然后用质粒上的引物再PCR,让整个目的基因成为新一轮PCR产物的中间部分,这样再测序就能够获得整个目的的全长序列。另外,PCR扩增平均每1000个碱基就有两个错误,保真性远不及菌体内复制。

Taq PCR,RT PCR,LD PCR是什么意思

呃……PCR知道吧?polymerasechainreaction聚合酶链式反应TaqPCR应该就是用普通的TaqDNA聚合酶的PCRRTPCR有的时候指reversetrascriptionPCR,逆转录PCR。有时指real-timePCR,实时荧光定量PCR。LDPCR指long-distancePCR长距离PCR,是普通PCR的一种优化,扩增10k以上片段

ELISA和PCR的原理和用途

enzyme linked immunosorbent assay,ELISA。指将可溶性的抗原或抗体吸附到聚苯乙烯等固相载体上,进行免疫反应的定性和定量方法。这一方法的基本原理是:①使抗原或抗体结合到某种固相载体表面,并保持其免疫活性。②使抗原或抗体与某种酶连接成酶标抗原或抗体,这种酶标抗原或抗体既保留其免疫活性,又保留酶的活性。在测定时,把受检标本(测定其中的抗体或抗原)和酶标抗原或抗体按不同的步骤与固相载体表面的抗原或抗体起反应。用洗涤的方法使固相载体上形成的抗原抗体复合物与其他物质分开,最后结合在固相载体上的酶量与标本中受检物质的量成一定的比例。加入酶反应的底物后,底物被酶催化变为有色产物,产物的量与标本中受检物质的量直接相关,故可根据颜色反应的深浅刊物定性或定量分析。由于酶的催化频率很高,故可极大地放大反应效果,从而使测定方法达到很高的敏感度。聚合酶链式反应,简称PCR。聚合酶链式反应,其英文Polymease Chain Reaction(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。

qrt-pcr原理

qRT-PCR(定量逆转录聚合酶链式反应)是利用逆转录酶将RNA模板转录为cDNA,再使用Taqman探针或SYBRGreen等荧光染料检测cDNA的定量过程。以下是关于qRT-PCR原理的更加详细介绍。首先,RNA模板经过逆转录反应转化为cDNA,其中需要引物与逆转录酶配合作用,以产生目标序列所需的反向链DNA。一般情况下,选择特异性引物,以确保只转录我们所需的mRNA。然后,应用荧光染料探针或SYBRGreen等探针,通过PCR过程进行放大,并以探针特异性或荧光信号变化作为结果检测。荧光染料可以识别PCR过程中释放的特定碱基,因此在每个PCR循环结束后,荧光信号相应上升。qRT-PCR技术的原理是以荧光分子为探针,荧光分子会跟随或结合到目标DNA或RNA分子中,并发出明亮的信号作为检测结果。该技术通过扫描每个PCR循环和试管中的荧光信号,确定了DNA和RNA的具体存在量。相比传统PCR技术,qRT-PCR可实现高度精准和特异性的定量检测,具有高灵敏度、快速、准确等优点。广泛应用于分子生物学、临床检测和疾病诊断等领域,在基因表达定量、病毒检测、肿瘤标记物检测等方面发挥着重要作用。综上所述,qRT-PCR技术是一种利用逆转录酶将RNA转录为cDNA,再通过PCR荧光探针或SYBRGreen等等检测手段进行定量分析的方法。该技术具有高精准度、高灵敏度和高特异性等优点,在分子生物学、临床诊断等领域具有广泛的应用前景。

PCR技术是干什么的

pcr 仪器功能及应用范围?

PCR扩增的反应条件

标准的PCR反应体系:10×扩增缓冲液 10ul4种dNTP混合物 各200umol/L引物 各10~100pmol模板DNA 0.1~2ugTaq DNA聚合酶 2.5uMg2+ 1.5mmol/L加双或三蒸水至 100ulPCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。设计引物应遵循以下原则:①引物长度: 15-30bp,常用为20bp左右。②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。④避免引物内部出现二级结构,避免两条引物间互补,特别是3"端的互补,否则会形成引物二聚体,产生非特异的扩增条带。⑤引物3"端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。模板(靶基因)核酸模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA

做PCR实验要准备什么

PCR技术必须有人工合成的合理引物和提取的样品DNA,然后才进行自动热循环,最后进行产物鉴定与分析.引物设计与合成目前只能在少数技术力量较强的研究院、所进行,临床应用只需购买PCR检测试剂盒就可开展工作,PCR自动热循环中影响因素很多,对不同的DNA样品,PCR反应中各种成份加入量和温度循环参数均不一致.现将几种主要影响因素介绍如下.  一、温度循环参数  在PCR自动热循环中,最关键的因素是变性与退火的温度.如操作范例所示,其变性、退火、延伸的条件是:94℃60s, 37℃60s, 72℃120s,共25~30个循环,扩增片段500bp.在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算.在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测.  关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的.下面就各种温度的选择作一介绍.  1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动.变性温度低则变性不完全,DNA双链会很快复性,因而减少产量.一般取90~95℃.样品一旦到达此温度宜迅速冷却到退火温度.DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持Taq DNA聚合酶的活力,加入Taq DNA聚合酶后最高变性温度不宜超过95℃.  2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加.一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度.也可根据引物的(G+C)%含量进行推测,把握试验的起始点,一般试验中退火温度Ta(annealing temperature)比扩增引物的融解温度TTm(melting temperature)低5℃,可按公式进行计算:Ta = Tm - 5℃= 4(G+C)+ 2(A+T) -5℃  其中A,T,G,C分别表示相应碱基的个数.例如,20个碱基的引物,如果(G+C)%含量为50%时,则Ta的起点可设在55℃.在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要.  3.引物延伸温度温度的选择取决于Taq DNA聚合酶的最适温度.一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒.每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质.扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因Taq DNA聚合酶在退火温度下足以完成短序列的合成.对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的.此时,引物延伸温度与退火温度相同.对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使Taq DNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段.  4.循环次数常规PCR一般为25~40个周期.一般的错误是循环次数过多,非特异性背景严重,复杂度增加.当然循环反应的次数太少,则产率偏低.所以,在保证产物得率前提下,应尽量减少循环次数.  扩增结束后,样品冷却并置4℃保存.  二、引物引物设计  要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5"端决定扩增产物的两个5"末端位置.由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要.  引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括:  1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次.因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸.这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体.有时可在5"端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5"端生物素标记或荧光标记可用于微生物检测等各种目的.  有时引物不起作用,理由不明,可移动位置来解决.  2.(G+C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体.两个引物中(G+C)%含量应尽量相似,在已知扩增片段(G+C)%含量时宜接近于待扩增片段,一般以40%~60%为佳.  3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpin structures).例如:  4.引物之间两个引物之间不应发生互补,特别是在引物3"端,即使无法避免,其3"端互补碱基也不应大于2个碱基,否则易生成“引物二聚体”或“引物二倍体”(Primer dimer).所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物.  另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列.否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加.  5.引物3"端配对DNA聚合酶是在引物3"端添加单核苷酸,所以,引物3"端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增.  引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定.  人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质.纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年.

pcr的名词解释

聚合酶链式反应简称PCR(英文全称:PolymeraseChainReaction)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成copy一个周期,循环进行,使目的DNA得以迅速扩知增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(PolymeraseChainReaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外道引物定向酶促扩增技术。

PCR的英文全称是什么?

Polymerase Chain Reaction

PCR是什么意思?

聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。DNA聚合酶(DNA polymerase I)最早于1955年发现 ,而较具有实验价值及实用性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow 所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称 Taq polymerase), 则是于1976年从 温泉中的细菌(Thermus aquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的 酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由 Dr. Kjell Kleppe 提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR则于1983由 Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr. Mullis 并于1985年与 Saiki 等人正式表了第一篇相关的论文。此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年诺贝尔化学奖

什么是PCR?

PCR是聚合酶链式(Polymerase Chain Reaction)反应的简称,是一种将几个或几十个拷贝数DNA片段扩增至上百万份拷贝的方法,这是迄今为止最为重要的技术之一。PCR技术的影响不仅仅局限于生物科学领域,几乎人人都可以感受到PCR所带来的改变,在亲子鉴定以及犯罪调查中PCR技术便有广泛应用。PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。参考资料PCR技术原理.丁香通[引用时间2018-5-11]

什么是PCR技术?

PCR实际上是在体外模拟DNA体内复制的过程.和体内DNA复制一样,PCR在扩增DNA的时候也会经历DNA双链的解开(变性),寡聚核酸与单链DNA的结合(退火),以及DNA聚合酶开始合成DNA(延伸)的三个过程.但PCR和体内DNA复制不同,在体内DNA的复制整个过程是由一系列酶所控制的,所以像DNA解链等在体温下就可以完成.而PCR则需要一个高温来完成DNA的解链,所以PCR反应的DNA taq聚合酶是耐高温的酶.此外,无论体内或者PCR反应,DNA的合成都需要一小段寡聚核酸作为引物提供3‘羟基末端,以让DNA聚合酶识别并开始合成DNA.在体内这个3"羟基末端是由寡聚的RNA提供,而在PCR中则由寡聚的DNA提供,因为DNA分子比RNA分子稳定易于储藏和使用.在体内双链DNA聚合方向是5‘-3"的,其中一条链是5‘-3",而另外一条链虽然也是5‘-3",但它是由冈崎片段连接起来的,而总体的合成方向是3‘-5".在PCR反应中,每一条链的合成方向都是5‘-3",没有类似冈崎片段的东西.在体内,DNA聚合是从复制起始位点开始的,由聚合酶识别复制起始位点.而在PCR反应中,DNA的聚合是从引物结合处开始的,主要是由引物的特异性来控制复制的起始位置.基本上就是这样了.我们是验室用BIOG KIT做PCR实验检测目标RNA,做下来S型曲线的起跳值在28左右

PCR的基本原理是什么?其基本流程如何?

基本原理:在模板、引物、4种dNTP和赖热DNA聚合酶存在的条件下,特异扩增位于两段已知序列之间的DNA区段的酶促合成反应。基本步骤:变性:加热使双链DNA变为单链; 退火:降温使引物和互补模板在局部形成杂交链 ;延伸:耐热DNA聚合酶按5"→3"方向催化以引物为起始点的延伸反应。生物一一四。

pcr是什么意思

  1、PCR是聚合酶链式(PolymeraseChainReaction)反应的简称,是一种将几个或几十个拷贝数DNA片段扩增至上百万份拷贝的方法,这是迄今为止最为重要的技术之一。PCR技术的影响不仅仅局限于生物科学领域,几乎人人都可以感受到PCR所带来的改变,在亲子鉴定以及犯罪调查中PCR技术便有广泛应用。   2、PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

pcr是什么意思

pcr是聚合酶链式反应聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中凶手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。这也是“微量证据”的威力之所在。由1983年美国Mullis首先提出设想,1985年由其发明了聚合酶链反应,即简易DNA扩增法,意味着PCR技术的真正诞生。到如今2013年,PCR已发展到第三代技术。1976年,中国科学家钱嘉韵,发现了稳定的Taq DNA聚合酶,为PCR技术发展也做出了基础性贡献。PCR是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。

生化PCR名词解释

PCR(聚合酶链反应)是一种模拟天然DNA复制的体外扩增技术,通过事关反应,使极少量的基团组DNA的特定基因片段在短时间内扩增上百万倍!这个好像在蛋白里!我忘了!不过这个概念肯定是正确的!

PCR的过程

 标准的PCR过程分为三步(如图所示):   1.DNA变性(90℃-96℃):双链DNA模板在热作用下,   氢键断裂,形成单链DNA   2.退火(复性)(40℃-65℃):系统温度降低,引物与   DNA模板结合,形成局部双链.   3.延伸(68℃-75℃):在Taq酶(在72℃左右最佳的活   性)的作用下,以dNTP为原料,从引物的5′端→3′ 端延   伸,合成与模板互补的DNA链.   每一循环经过变性、退火和延伸,DNA含量既增加一倍.   现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度.

pcr是什么的缩写

pcr是什么的缩写介绍如下:聚合酶链式反应(英文全称:Polymerase Chain Reaction), 聚合酶链式反应。简称PCR。聚合酶链式反应(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。编辑本段发展简史人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想。但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖。   但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。尔后,Saiki等人又在黄石公园从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石。在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。

pcr过程是什么?

pcr过程是包括高温变性,低温退火,中温延伸三个不同的事件。变性加热使模板DNA在高温下双链间的氢键断裂而形成两条单链。退火使溶液温度降至50到60℃,模板DNA与引物按碱基配对原则互补结合,延伸溶液反应温度升至72℃,耐热DNA聚合酶以单链DNA为模板,在引物的引导下,利用反应混合物中的4种脱氧核苷三磷酸。pcr含义概况聚合酶链式反应PCR是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。因此,无论是化石中的古生物、历史残骸,还是所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。

PCR的定义是什么?

聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段.可看作生物体外的特殊DNA复制. DNA聚合酶(DNA polymerase I)最早于1955年发现 ,而较具有实验价值及实用性的Klenow fragment of E.Coli 则是于70年代的初期由Dr.H.Klenow 所发现,但由于此酶不耐高温,高温能使之变性,因此不符合使用高温变性的聚合酶链式反应.现今所使用的酶(简称 Taq polymerase),则是于1976年从 温泉中的细菌(Thermus aquaticus)分离出来的.它的特性就在于能耐高温,是一个很理想的 酶,但它被广泛运用则于80年代之后.PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由 Dr.Kjell Kleppe 提出.他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验.而现今所发展出来的PCR则于1983由 Dr.Kary B.Mullis发展出的,Dr.Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位.Dr.Mullis 并于1985年与 Saiki 等人正式表了第一篇相关的论文.此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背.随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术.Mullis也因此获得了1993年诺贝尔化学奖

如何用普通的pcr做基因分型……还有原理是什么?十分感谢!!!

更准确,普通PCR做出来效果不会很明显的

PCR抑制物怎么除呀,急死了

由于粪便中含有大量Taq 聚合酶的抑制物质, 很多方法提取的DNA 其扩增效果不佳, 如H?0?8ss 在PCR 反应中就加了牛血清蛋白来克服抑制剂对Taq 聚合酶的抑制作用。目前采取的方法有多种, 作者将其大致分两类:( 1 ) 粪便裂解后纯化DNA , 如Ernest et al .(2000) 在粪便经蛋白酶K处理后, 用酚- 氯仿多次抽提, 然后, DNA 溶液经聚丙烯酰胺葡聚糖柱子洗脱来纯化DNA ; Taberlet et al . (1996) 、Reedet al . (1997) 和Parsons et al . (1999) 用硫氰酸胍处理粪便, 直接用硅粒沉淀DNA 而使之与杂质分离达到纯化的目的; Constable et al . (1995) 和Savill et al . (2001) 在用蛋白酶K 裂解粪便的同时另外加入了十六烷基三甲基溴化铵( Cetylt rimethyl2ammoniumbromide , CTAB) 消化PCR 反应抑制物, 再经多次酚- 氯仿抽提纯化DNA ; Ding et al . (1998) 将DNA 抽提试剂盒(XTRAXTM DNA Ext raction Kit , BIODESIGN International) 应用于大熊猫的粪便DNA 提取, Tengel et al . (2001) 介绍了提取粪便DNA 的试剂盒QIAamp DNA Stool Mini Kit , Germany) 清除PCR 抑制物; Reed et al . (1997) 将碱性多价金属离子螯合树脂Chelex2100 应用于清除抑制物(Reed 在自己的文章中已证明该方法并非理想) 。这些方法或操作繁琐, 花费高, 或结果不十分理想, 或缺乏实验室通用性。(2) 粪便预处理, 如Deuter et al . (1995) 先将粪便于- 80 ℃冷冻, 再匀浆, 经两次差速离心除去了残渣, 但经过柱洗脱才得到了纯度高的DNA ; Lantz et al . (1997) 利用聚乙二醇和葡聚糖40 组成的二相系统对粪便进行预处理, 很理想地除去了PCR 抑制物, 但花费较高, 缺乏通用性; Machiels et al . (2000) 用磷酸缓冲盐溶液和酚- 氯仿- 异戊醇组成的二相系统对粪便预处理, 但其后的处理过程十分繁琐。介绍一种在细胞裂解前经丙酮预处理的抽提方法。丙酮是一种优良的有机溶剂, 在DNA 的提取过程中曾被用来消除抑制物, 有很好的效果(Schneiderbauer et al . , 1991 ; Udy et al . , 1994 ;施苏华等, 1996 ; Purohit et al . , 2003) 。本实验预处理中丙酮能很好地将粪便中的色素、多糖及一些有机盐等PCR 抑制物除去, 最后得到的DNA 可用于PCR 扩增, 并用于进一步的遗传分析。一种从大熊猫粪便中提取DNA 的改进方法钟 华① 赖旭龙② 魏荣平③ 刘中来①33( ①华中师范大学生命科学学院, 武汉430079)( ②中国地质大学地球科学学院, 武汉430074) ( ③中国保护大熊猫研究中心, 四川卧龙623006)。在粪便DNA的提取过程中采用一个新的预处理方法, 将粪便用预冷的丙酮洗2~3 次, 除去粪便中含有的大量PCR 抑制物,然后用蛋白酶K裂解、酚- 氯仿抽提, 能提取到纯度很高的DNA 供PCR 扩增。粪便DNA小量提取试剂盒动物粪便样品中存在大量有意义的基因组DNA,其DNA主要来自于动物自身脱落的消化道细胞、消化道中各种细菌(如大肠杆菌)或真菌等微生物,以及一些末消化食物DNA。由于粪便中存在大量抑制因子,所以常规的DNA纯化方式并不能有效地去除这些杂质,而导致下游实验的失败,如PCR不能扩增出所需片段。Omega Biotek公司采用了硅胶柱纯化方式和独特的溶液系统,能有效去除动物粪便中各种影响下游实验(如PCR)的抑制因子,并能高效地回收粪便中的基因组DNA。动物粪便样品经PBS和ST1重悬后,70°C处理5分钟裂解细菌;离心去除不溶解的杂质,加入ST2和蛋白酶消化样品;氯仿抽提去除蛋白质,转移上清液加入异丙醇沉淀DNA,进一步去除各种杂质;加入灭菌水溶解DNA,调节结合条件,上柱离心吸附DNA;经过两次快速洗涤,去除残留的杂质和抑制物,最后DNA溶解于灭菌水或低盐缓冲液中。纯化的DNA可直接用于PCR,Southern杂交,定量PCR等各种灵敏实验。

PCR试剂盒问题

广州健仑生物科技有限公司是TAKARA产品的中国总代理,

有人用过Takara的RT-PCR试剂盒吗

这个用过,效果不错,但是相比较价格,略高啊,还有别的选择

TAKARA的PMD18-T载体可以用哪个通用引物验证? 用了TAKARA的PMD18-T载体转入了目的片段,想用PCR验证下,

M13F(-47):CGC CAG GGT TTT CCC AGT CAC GAC M13R(-48):AGC GGA TAA CAA TTT CAC ACA GGA

takara家的酵母pcrmix为什么不用破壁

因为酵母硒片根本不需要破壁。而且破壁酵母的意思是酵母经过了破壁处理。食物破壁后,营养物质会全部释放,功能也会增强,酵母破壁后发酵能力也会增加。

PCR电泳条带是什么,如何形成的?形成原理是什么?谢谢各路大侠!

首先PCR电泳主要是琼脂糖凝胶电泳。电泳仪有正负极的,而DNA是带负电荷的。故而向正方向移动。然后,DNA里是有碱基的。碱基可以吸收紫外光。最重要的是有染色剂,常用的有溴化乙锭等等。一般在配制凝胶的时候会加进去,或者跑完电泳然后将凝胶浸在含有染色剂的溶液里,染色剂可以插入DNA链中。在可见光下是看不见条带的,但在紫外光照射下就能出现条带。这也是为什么能出现条带的原因。谢谢。

PCR产物电泳试验原理

电泳检测是为了确定PCR产物是否扩增出来,是否有非特异性扩增和引物二聚体。点样时,产物与BUFFER混合带负电,通过电泳可以将长度不同的片段分开,以达到检测的目的

现在有哪几种PCR的方法啊?

PCR种类太多了举几种常见的PCR吧:荧光定量PCR,TAIL-PCR,重组PCR,降落PCR

荧光定量pcr,amplification curve 起峰很晚,为什么

起始模板量浓度低;扩增效率不高;反应条件过于严谨

PCR的详细过程是什么样的?

他回答,挺全的步骤!

何为PCR,说明其原理及其应用

聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术. PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物.PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需 4分钟,3小时就能将待扩目的基因扩增放大几百万倍.到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝. 定点诱变:设计引物时对引物进行修改,使其在某些位点上与扩增模板不相配对,但是又不影响引物与模板的退火,这种引物扩增后的到的产物就是在这些不配对区发生了定点突变. 分子标记的鉴别:RAPD扩增的片断是引物之间的区域,不同个体引物之间的序列长度不同,可以作为物种或个体的一种标记,这是分子水平的标记,也称分子标记. 基因克隆:反向PCR.

PCR的原理是什么,它有什么用途?

PCR(聚合酶链式反应)原理PCR是体外酶促合成特异DNA片段的方法,主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成:即在高温(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物3"端为合成的起点,以单核苷酸为原料,沿模板以5"→3"方向延伸,合成DNA新链。这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍。

PCR的原理是什么

别看他们那些东西,如果你是高中生需要做题目的话,直接写这七个字:DNA双链复制这就是题目问你PCR技术的原理是什么你该回答的东西。

什么是PCR技术PCR的基本原理是什么

PCR技术也叫聚合酶链式反应是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点,是能将微量的DNA大幅增加。PCR技术的原理是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。

PCR产物电泳条带为什么被“劈开”了

PCR产物电泳条带为什么被“劈开”了说明不是引物之间形成二聚体,而是第一对引物的设计有问题(特异性很差).如果一定要扩增那个区,建议引物的位置向两边放一放.如果你没有好的设计软件,建议到Primer3去试试(目前最好的免费引物设计).如果还是不行,把序列发给我,我帮你设计(我有专业软件,ABI primer express 3 和 Invitrogen Vector NTI 10)通常是非特异扩增过多引起,提高退火温度试试PCR产物放置过久考虑产物降解;如果是PCR后及时上样,考虑引物特异性较差或者模板不纯(包括降解以及掺有别的DNA序列)如果用PCR产物做模板的话,量太大也会有这个现象。胶没煮好也会这样

细胞被霉菌污染之后还能跑pcr吗

霉菌繁殖能力太强,而且目前没有特别有效又不会同时杀灭细胞的抗真菌药,要是细胞长霉你就别挣扎了.一般染普通细菌如大肠杆菌或者葡萄球菌等,而且发现得早,情况尚不严重的话可以用抗生素冲击法:如果发现有染菌迹象,立即更换新鲜培液,并加入普通使用浓度10倍的青-链霉素双抗(有现成商品出售,比如Invitrogen公司卖的是1000X的,你按1:100用就行),37度培养处理24-36小时,再换乘正常培液培养,不断观察细菌是否重新出现,如果没有重新出现,恭喜你成功了.一定要早发现,早处理,细菌生长非常迅速,细菌生长的同时还会分泌毒素杀死你的细胞,晚一小时发现都会让成功率降低不少.不过一旦染菌以后还是别抱太大希望,双抗对细胞本身也有害,常常"同归于尽".有条件的话还是复苏或者买新的细胞吧 细胞污染最麻烦的还是支原体,因为显微镜看不到,光确定是否被支原体污染就要购买特殊试剂进行检验,非常麻烦.而且支原体对青霉素不敏感,除支原体的药价格很昂贵,往往比买新的细胞还贵

如何设计含attb位点的pcr引物

使用Multisitegateway技术构建载体的方法 Multisite gateway 实验步骤如下 设计含有attB位点的PCR引物建议使用Vector NTI Advance 软件来设计含有attB和attBr的引物。 上游引物必须同时满足以下条件 含有2225 bp的attB位点 至少1825 bp的模板或插入片段特异性的序列 multisitegateway引物序列的特异性 Fig specificsequences Multisitegateway 下游引物的设计也需满足以上三个条件。 因为我们要在E coli 体内表达蛋白 所以设计上游引物时 要在attB位点之前加上SD Shine Dalgarno 序列来保证翻译的准确性。同时为了保证阅读框的正确性 需要在attB位点之前加上两个核苷酸 但不能是AA AG和GA 因为它们会和attB位点末端的胸腺嘧啶核苷酸T形成终止密码子。 得到PCR产物并电泳检测PCR程序设置和电泳方法同上 需要指出的是 若PCR的模板是包含卡那抗性基因 kanamycin resistance gene 的质粒 需要在电泳检测和纯化PCR产物前对其进行消化 使用的酶是Dpn 作用是为了去除模板对后续反应的干扰。 消化的体系和过程 在50μl的PCR反应体系中 加入5 μl10X REact Dpn37 孵育15 min 65 热激15 min使Dpn BP反应得到entryclone 反应体系如下 BP反应的引物组分Table BPreaction Components Sample Negative control positive control attB PCR product 20 50 fmoles pDONRTMvector 150 ng pMSGW control plasmid 100 ng TEBuffer pH 其中携带attB位点的PCR产物的量可以用以下公式来计算 50 fmoles 2500 bp 660 fg fmoles ng106fg 82 PCRproduct required 实验步骤如下 按上面计算方法和反应体系加入合适体积的pDONRTMvector 和PCR产物 20冰箱里拿出BP Clonase II enzyme mix 放在冰盒上两分钟左右使其解冻。 轻轻涡旋BP酶两次每次两秒钟 BPClonaseII enzyme mix 并立即将其送回 20 冰箱里 样品轻轻涡旋几次使其混合均匀。 25孵育1 蛋白酶K37 孵育10 min。 之后进入转化环节后续实验流程同经典载体构建 最终得到含有attL位点的entry clone。 LR反应组分Table LRreaction Component Sample Negative Control attL4 attR1entry clone 10 fmoles attL2entry clone 10 fmoles attR2 attL3entry clone 10 fmoles pDEST R4 R3 Vector II 20 fmoles TEBuffer pH 使用Infusion方法快速大量构建载体的方法 fusion是一种不依赖于限制性内切酶Restriction Free 的克隆方法 引入此方法的最初动机是为了在一个载体的任意位置引入外源DNA片段。此方法基于DNA片度的扩增 得到的大量的DNA可以作为线性载体扩增的模板。这个方法可实现将多个不同的外源基因同时插入某一个特定的载体的任意我们感兴趣的位置 从而弥补了位点特异性重组系统中对特异位点和特殊系统的需求 为分子克隆和蛋白表达的调控提供广阔的思路和方法。这种方法的原理是DNA片段之间的同源重组 现在应用比较广泛的是由Clontech公司提供的In FusionTM system它可以实现以下克隆需求 同时克隆多个DNA片段 Simultaneous cloning 基因的替换 Gene replacement 多位点突变 Multisite mutagenesis 多组分重组 Multi componentassembly 同时插入和删除基因 Simultaneous insertionand deletion 引物设计及目的基因片段扩增该方法的原理和步骤同前in fusion PCR 只是这个方法中PCR产物需用Dpn 将模板消化。载体线性化载体线性化的方法既可以用特异性酶切消化也可以通过常规PCR 使用PCR的方式使载体线性化消除了对特异性酶切位点的依赖和限制 同时彻底实现载体和片段之间的无缝连接 消除后续由于特殊碱基序列的加入对实验结果的影响 同时大华 35大节省了时间和成本投入。fusion“连接”反应将纯化的DNA片段和载体按照2 1的摩尔比混合入250 EP管中必要时可以加入In fusionTM enzyme 由Clontech提供 和相应buffer 是反应总体系为10 μl。之后共同转入感受态细胞 进入筛选环节。 感受态细胞的制备在线虫载体构建的整个过程中 最重要的实验材料是各种促进反应进行的酶和高转化效率的感受态细胞。不同的载体因其携带筛选基因或者特异表达的宿主的不同 需要诸如DH5α、TOP10等不同类型的感受态细胞 例如在Multisite gateway反应中 通常需要借助ccdB的筛选机制 这种情况下就不能使用携带有ccdA基因的菌株 如TOP10F" 。所以 在不同方法的构建中 要严格选择感受态细胞类型。以下以实验室常用的感受态细胞DH5α为例 详述用氯化钙 CaCl2 法的制备过程。 用CaCl2法制备感受态细胞的原理是通过低渗的CaCl2溶液在低温 时处理快速生长的细菌从而得到感受态菌株细菌外形膨胀为球形 这样的形态结构有利于外源DNA分子形成抗DNA酶的羟基 钙磷酸复合物 这种复合物会粘附在细菌表面 如果热激 细胞对DNA的吸收将大大加强。 实验的关键是选取出于对数生长期的菌株 所有的操作必须尽可能保持在完全无污染无杂菌并且低温的条件下进行。实验材料及准备事项 100ml 胰化蛋白胨 CaCl2的制备称取22 CaCl2溶于200ml事先灭菌的水中 充分溶解后保存于4 冰箱中。 将浓度为100的甘油120 高温灭菌。 器材10 ml移液管 需灭菌玻璃大培养皿 内铺一张滤纸 需灭菌大、中、小枪头各一盒 需灭菌 50 ml离心管 mlEP管 用铁饭盒灭菌 100 ml SOB培养基需40个EP管 步骤如下 80冰箱里取出DH5α 常温使其冻融后通过接种环接种细菌与无抗培养皿中。将培养板放入3 将预先水浴锅灭菌的15ml离心管放在超净台中 紫外照射半个小时以上。从培养皿上挑取单个菌落 接种至离心管中 导入3 ml无抗培养基LB 37 摇床振荡过夜培养 转速为300 rpm 。次日取1 ml菌液接种至100 ml LB培养基中 以215 rpm的转速37 培养2 3小时。期间 要每隔半个小时测定一下600 nm的OD值。 停止培养将烧瓶置于冰上10 15分钟 同时将预先灭好菌的50 ml离心管也置于冰上冷却至0 在超净台中将菌液尽可能平均的分装入两个50 ml离心管中 以4000 rmp的转速离心10分钟。 弃上清将离心管倒置在滤纸上1分钟 以吸干残留的培养基。每个离心管中加入5 ml预冷的浓度为0 1M的CaCl2溶液 重悬菌体 并开始计时 可以用移液枪轻轻反复吹打30分钟。 将悬浮好的菌液再次以4000rmp的转速离心5分钟 去掉上清 吸干残余培养基后 每管加入2 ml预冷的浓度为0 M的CaCl2溶液反复吹打以重悬菌体 此时可以将两个离心管合为一个 放于冰上预冷20分钟 这期间 可以将已灭菌的1 mlEP管放于冰上预冷。 加入500 μl浓度为100 的甘油 mlEP管中。等全部分装完成时 投于液氮中1个小时 之后再转移到 80 冰箱中。 细菌转化效率的检测方法 设置阳性对照和阴性对照 阳性对照是为了估算细菌的转化效率 阴性对照是排除感受态细胞被污染的可能 及查明失败的可能因素。 阴性对照 只将感受态细胞涂于含某种抗性的平板上 而不加入任何DNA 正常情况下不应该有单菌落出现。 阳性对照 选择标准质粒 一般是pUC19 以50 pg、100 pg的量分别转化到感受态细胞里 将平板放于37 培养箱里过夜培养。数单菌落的个数以估计感受态的转化效率。 效率估算公式为 转化率 1000克隆 10pg DNA 当此值达到1 106时 可满足一般克隆的实验需求 当此值达到1 107时 可用作更复杂克隆的构建需求。 线虫的显微注射通过将外源基因显微注射到雌雄同体的线虫的性腺 gonad 能够获得有种系特异性的线虫。DNA片段可以通过染色体之间的同源和非同源的整合被传递到下一代中。显微注射的步骤如下 制作Pad将配置好的2 的琼脂糖放在水浴锅内防止其凝固。吸取100 μl于干净的载玻片上 并迅速将另一块载玻片轻压上面 待琼脂糖稍微干燥时取走载玻片 标记Pad的正反面之后放于干燥箱 80 中过夜。拉制电极常常用含有内芯的硼硅玻璃微电极作为注射用电极 该电极的外径为1 nm内径0 75 nm。用拉制仪拉制好的电极尖端是封闭的 在用之前需要打开一个开口 开口的大小要适宜。 准备注射液注射液的体系一般选取10 目的载体质粒的浓度范围为110 μl。其余体积用1TE补平。以12 000 rpm转速离心3分钟。 吸取1μl注射液到拉好的电极中 放置1520分钟 目的是为了使注射液通过内芯的虹吸作用流入电极尖端 并排除内气泡。 拿出注射要用的Pad在上面滴一滴油 保证有足够的油使线虫减慢干燥的过程 但不能太多以使其移动。 用一个干净的针needle 触碰到油上面 挑取N2时期的成虫 线虫挑取的区域应该远离菌斑所在位置 以避免将菌落带到pad上面。选择有容易辨别的gonad的线虫也同样重要。将线虫垂直放在pad上 使其gonad位于左侧 通常 线虫的阴部 vulva 会指向与needle的方向 两侧的gonad会直接与体壁对应。 当needle恰好位于载玻片上时将线虫聚焦在10 的物镜下 确定看到线虫的gonad。将线虫以和needle成15 到45 的角度摆放 通过轻轻降低needle使其和线虫出于同一水平。转换到40 物镜 聚焦到胞体的gonad 使用调试器上下移动needle 直到针尖对准胞体的gonad。 轻轻沿着needle移动线虫当needle插入线虫体内时 按照gonad和虫体壁处于相反位置的方式轻轻压线虫。轻旋调节器 knob 开始DNA注射液的流入 快速的开合 如果needle确定位于gonad处 此处部位会膨胀并充满液体。如果液体流动不畅 轻轻触碰桌面有助于解决此问题。要避免因加入液体过多导致液体沿着needle进入部位流散到线虫的其他部位。 将needle从线虫中拿出建议沿着逆时针方向。回到10 物镜下 滴一滴M9 buffer使线虫悬浮。使用眉毛挑将线虫放置于另外一个含有M9 buffer的板子上。这样做的目的是为了洗掉多余的油。再将线虫挑到含有细菌的板子上。一个板子上可以放置多条注射后的线虫。两三天后 数F1转基因线虫 并将折射成功的线虫单独转移到板子上以得到有稳定转基因种系的线虫。 显微注射线虫的gonadFig elegansgonad 3910 可能出现的问题及策略 注射后线虫破裂或者死掉的原因可能是needle太大了 或者线虫缺水死亡 方法可能是每注射一个线虫的gonad就换一个新的needle 如果线虫没有直立 原因可能是pad太薄或者需要没烘干 可以通过将板子放在罩子上几个小时来烘干 如果线虫干的太快 可以使用更薄的pad或者在注射前将线虫转移到较湿的板子上。 实验结果与讨论实验中用到的质粒的构建方法 在前言部分和方法部门已做了详细阐述 需要研究的相关基因的启动子的信息 诸如启动子大小 表达部位等 借助于相关文献的报道 在Wormbase中截取特定长度的DNA序列 在NCBI中查找此基因的上下游序列和基因方向 借助网页UCSC提供的序列信息最终得到启动子序列。但在设计启动子引物时 必须留意到序列中3"端和5"端的序列可以根据引物的匹配性在小范围内适当调整。还有一些神经元的位置因为缺乏确切表达谱的启动子而无法最终确定。线虫有302个神经元 标记这些神经元需要大量的质粒构建。在实验初期 我们通过传统酶切连接方法和改造的常用线虫载体组成的BP反应来实现。但随着课题的发展和方法的改进 我们发现Multisite gateway方法更为便捷和高效 特别是在购买了雌雄同体线虫启动子库后 这种技术不仅被用来标记线虫神经元 更多的用在rescue实验和钙信号的测定的构建中。同时 为了使整个课题有一套完整的体系 我们又花费大量的精力将之前不太标准的由gateway反应得到的构建进行了改造 得到一个可以通用的表达体系。 改造Multisitegateway 中的载体pDESTR4 R3为pPD49 26 R4 R3 在使用Multisite gateway 技术构建多克隆载体的过程中 我们发现 这个系统并不是完美的 因为这个系统中各个重组位点的序列有一定的相似性 所以如果想要插入载体的片段的序列 特别是与引物匹配的那一段 与重组位点有相似性时 可能会导致这个技术中所涵盖的反应失败。同时 当我们想用一个启动子驱动不止两个以上基因的表达时 不能直接只用Invitrogen公司提供的试剂盒中的pDESTR4R3 因为外源基因在线虫体内表达时 需要3"UTR稳定整个翻译过程中的顺利进行 但该公司试剂盒提供的载体中不含我们需要的3"UTR 因此 我们改造了一个新的LR反应的载体pPD49 26 R4R3 因为pPD49 26中含带unc54 3"UTR 而且实验证华 41明我们改造的载体同样有很高的反应效率 1在Multisitegateway反应中验证pPD49 26 R4 R3的有效性 Pgpa 4特异性标记ASI神经元 可以驱动TagRFP t在此神经元中表达。 为明场与荧光共定位的图。Fig pPD4926 R4 R3 LRreaction multisitegateway ASI can 改造attL1Promoter attL2为attL4 promoter attR1 验证adaptor clone 如前所述 我们将携带attB1 attB2位点的启动子进行改造得到了标准Multisite gateway反应中的第一个entry clone 在这个改造的过程中 需要引入一个中间反应物 adaptor clone。如果我们可以观察到改造后的启动子能够驱动荧光蛋白在特定部位表达 由此可以验证adaptor clone的有效性。在本课题中 我们使用改造后的启动子Pdaf 7驱动荧光蛋白在神经元ASI里表达 由此adaptor clone的有效性得到验证。

请教关于PCR产物电泳出现弥散条带

说明不是引物之间形成二聚体,而是第一对引物的设计有问题(特异性很差).如果一定要扩增那个区,建议引物的位置向两边放一放.如果你没有好的设计软件,建议到Primer3去试试(目前最好的免费引物设计).如果还是不行,把序列发给我,我帮你设计(我有专业软件,ABI primer express 3 和 Invitrogen Vector NTI 10)通常是非特异扩增过多引起,提高退火温度试试PCR产物放置过久考虑产物降解;如果是PCR后及时上样,考虑引物特异性较差或者模板不纯(包括降解以及掺有别的DNA序列)如果用PCR产物做模板的话,量太大也会有这个现象。胶没煮好也会这样

求助Real-Time PCR的详细步骤及注意事项

在做荧光定量PCR的时候用试剂盒比较方便。我们实验室之前用的BIOG荧光定量PCR试剂盒效果挺好的,反应很灵敏。最后实验做下来挺成功的。

麻烦大家帮帮我,PCR里面逆转录反应液中这些都代表什么都是什么意思啊

逆转录聚合酶链反应,或变形,被广泛用于聚合酶链反应(PCR),反转录PCR(逆转录聚合酶链反应RT-PCR)。在RT-PCR,RNA链是逆转录成为互补DNA,然后通过PCR作为模板进行DNA扩增。 />转录的RNA的单链互补DNA(cDNA)的称为“逆转录酶”的依赖于RNA的DNA聚合酶(逆转录酶)来完成。随后,通过另一条链的DNA的脱氧寡核苷酸引物和DNA依赖性DNA聚合酶来完成的,每个周期加倍,即通常的PCR。原RNA模板是H的RNA酶的降解,留下互补的DNA。 指数扩增的RT-PCR是一个非常敏感的技术,可以检测非常低拷贝数的RNA。 RT-PCR方法被广泛用于遗传性疾病的诊断,可用于定量监测的目标RNA含量。 (基因表达的检测,Northern印迹法) RT-PCR方法有时指的实时荧光定量PCR(实时PCR)。要区分用RT-PCR的,经常写“定量PCR(定量PCR)或RTQ-PCR(实时荧光定量PCR)。实时定量PCR(实时荧光定量PCR)是一个定量PCR(Q-插入在双链DNA特定PCR法)的DNA的量的增加,在一定时间内的时间为基础的DNA进行定量分析。实时PCR定量荧光颜料,有两种方法。荧光染料,与增加的DNA序列的特定寡核苷酸序列的另一种方式使用的荧光探针(探针)的组合。实时PCR和反向转录PCR合并的,微量的RNA,可用于内一个特定的时间,细胞,组织,特别是基因的表达。两个RT-PCR的组合被称为“定量RT-PCR(定量RT-PCR法)

我想问什么是反转录PCR?

一个可能做反转录pcr的,另一个可能做实时定量荧光pcr的。反转录pcr由一条rna单链转录为互补dna(cdna)称作“逆转录”,由依赖rna的dna聚合酶(逆转录酶)来完成。随后,dna的另一条链通过脱氧核苷酸引物和依赖dna的dna聚合酶完成,随每个循环倍增,即通常的pcr。原先的rna模板被rna酶h降解,留下互补dnart-pcr可能是实时pcr(real-timepcr),属于荧光定量pcr(q-pcr)的一种。以一定时间内dna的增幅量为基础进行dna的定量分析。

荧光定量cdna和普通pcr的cdna有什么差别

没有太大的差别。只是作为定量或者半定量的cDNA,要求质量比较高,才能使结果更可靠。非定量普通PCR的cDNA要求没那么严格,只要能正常扩增出目标片段即可。

用基因组DNA做模板进行PCR扩增,设计引物所选序列也用cDNA为模板有什么不同

序列不一样 引物当然不一样 你在cDNA上设计的引物可能在基因组上被内含子隔开了

如何在Windows下通过Cmake编译和使用PCRE

CMake是一个比make更高级的编译配置工具,它可以根据不同平台、不同的编译器,生成相应的Makefile或者vcproj项目。通过编写CMakeLists.txt,可以控制生成的Makefile,从而控制编译过程。CMake自动生成的Makefile不仅可以通过make命令构建项目生成目标文件,还支持安装(make install)、测试安装的程序是否能正确执行(make test,或者ctest)、生成当前平台的安装包(make package)、生成源码包(make package_source)、产生Dashboard显示数据并上传等高级功能,只要在CMakeLists.txt中简单配置,就可以完成很多复杂的功能,包括写测试用例。如果有嵌套目录,子目录下可以有自己的CMakeLists.txt。总之,CMake是一个非常强大的编译自动配置工具,支持各种平台,KDE也是用它编译的,感兴趣的可以试用一下。准备活动:(1)安装cmake。下载地址:根据自己的需要下载相应的包即可,Windows下可以下载zip压缩的绿色版本,还可以下载源代码。Windows下CMake的使用(2)运行cmake的方法。(GUI、命令行)CMake使用步骤:运行GUI的cmake界面:cmake-2.8.1-win32-x86incmake-gui.exeWindows下CMake的使用执行Configure:运行之后,生成了如下文件:Windows下CMake的使用 生成Makefile:执行Generate之后生成如下文件:Windows下CMake的使用运行make进行编译:Windows下CMake的使用编译完成后,在build目录生成Tutorial.exe,运行Tutorial.exe 25就可以看到运行结果:Windows下CMake的使用运行make install安装程序:Windows下CMake的使用运行make test进行测试:Windows下CMake的使用通过cmake tutorial学习CMake配置方法可以在源代码的Tests/Turorial目录中找到这个手册对应的代码。Windows下CMake的使用1、Step1。(如果不知道如何使用cmake,以及如何使用编译产生的Turorial.exe,可先看下前面“CMake使用步骤”的说明,它以Step4为例详细介绍了使用过程,Step1的配置可能不够完全,比如无法运行make install,无法运行make test,但可以参考。)简单的程序编译。(1)运行GUI的cmake,指定要编译的源代码路径和二进制文件路径(会自动创建)。Windows下CMake的使用(2)点击Configure,配置成功后,再点击Generate。配置需要选择合适的编译器,虽然我安装了VC2008,但没有配置成功;选择Unix Makefiles,配置成功,它自动找到了DevC++下的gcc.exe等编译器。Windows下CMake的使用(3)在build3目录执行make,就能够编译生成Turorial.exe了。D:ProjectsLab estngppcmake-2.8.1TestsTutorialStep1uild3>makeLinking CXX executable Tutorial.exe[100%] Built target Tutorial可以运行一下Turorial.exe:D:ProjectsLab estngppcmake-2.8.1TestsTutorialStep1uild3>Tutorial.exeTutorial.exe Version 1.0Usage: Tutorial.exe numberD:ProjectsLab estngppcmake-2.8.1TestsTutorialStep1uild3>Tutorial.exe 4The square root of 4 is 22、Step2把子目录编译为库,并且链接到最终的可执行文件。include_directories ("${PROJECT_SOURCE_DIR}/MathFunctions") add_subdirectory (MathFunctions) # 使得子目录MathFunctions也能被编译# add the executableadd_executable (Tutorial tutorial.cxx)target_link_libraries (Tutorial MathFunctions)产生makefile:在GUI上点击Configure,之后Generate还是灰色,再次点击Configure,Generate就可以点击了。编译:

网络用语pcr是什么意思

PCR abbr. Photo-conductive Relay 光电导继电器; [网络] 法; 链反应; 多重聚合酶链反应; [例句]Design and search primers for multiple applications including PCR, DNA hybridization and sequencing.设计和搜索多重引物,包括PCR引物、序列探针和测序引物。

有知道05cupcri钢板是什么材质的吗?

05cupcri就是05cupcri钢板的材质。

什么是梯度PCR?

对于一个PCR反应,虽然有各种各样的PCR仪引物设计软件或者经验公式计算最适的退火温度,可是由于模版中碱基的组合千变万化,对于特殊片断,经验公式得到的数据不一定能"P"出来结果,细微的变化对结果都可能产生决定性的影响,因而“摸条件”一度是让人很头疼的问题。梯度PCR的出现部分解决了一些问题——在反应过程中每个孔的温度控制条件可以在指定范围内按照梯度变化,根据结果,一步就可以摸索出最适合的反应条件。不单退火温度,连变性温度和延伸温度都可以优化——对于多种聚合酶混合酶扩增如Invitrogen、Clontech、Promega的多数高保真Taq酶来说这个非常重要,因为Taq和校正酶的最佳反应温度可能有显著差异,优化延伸温度就显得很重要。多次实验可在一台仪器上完成,既节省实验时间提高效率,又节省实验成本。 检验地带网 对于带梯度功能的PCR仪,需要考虑梯度模式下不同梯度管排间的温度均匀性和准确性,还必须考虑仪器在梯度模式和标准模式下是否具有同样的温度特性。这种差异可能导致在梯度模式下得出的最佳条件与标准模式下单独做的结果出现差异。SteadySlope技术是eppendorf拥有的梯度PCR技术专利,可以同样的温度变化速率到达所有设定的梯度温度,所以在梯度模式下具有恒定的温度性。这一技术保证了在梯度模式和普通模式之间可以进行可靠的信息传递,不会因为温度特性不同而导致产量和特异性的变化。MJ没有付专利费而选择在梯度模式下采用不同的降温速率,每个梯度温度之间的温度曲线不同,从梯度模式向普通模式进行转换的可能会出现问题。此外采用TCT(三组回路)技术的梯度PCR仪由于在梯度PCR模式下增加了一个加热和冷却的控制区域,保证了梯度温度控制的精确性并使不同梯度管排间的温度均匀性更好。 在PCR仪上增加原位PCR模块就可以在玻片上进行原位PCR扩增,MJ和eppendorf的PCR仪都有提供原位适配器以满足不同需要。购买配有支持原位PCR模块的PCR仪对从事医学研究的工作者是很值得的,一机两用。 此外,随着基因组高通量研究的需求的提高,各品牌都推出了多槽式高通量PCR仪,各有特长:MJ有一种一拖四,就是1个主机带4个扩增槽,每个槽可以独立控温,一次可以作96x4个样品的PCR,不过一旦出现问题4个都不能用了。ABI则在原来的9700的基础上推出了双384孔的基座,一次完成384x2个样品,使得9700的功能又扩展到高通量领域而无需购买新的机器,可惜两个384槽不能独立控温。

基因甲基化检测、甲基化PCR 的原理是什么

一种全新的DNA甲基化研究方法——Pyrosequencing技术 DNA甲基化是一种表观遗传修饰,它是由DNA甲基转移酶(DNA methyl-transferase, Dnmt)催化S-腺苷甲硫氨酸作为甲基供体,将胞嘧啶转变为5-甲基胞嘧啶(mC)的一种反应,在真核生物DNA中,5-甲基胞嘧啶是唯一存在的化学性修饰碱基。CG二核苷酸是最主要的甲基化位点,它在基因组中呈不均匀分布,存在高甲基化、低甲基化和非甲基化的区域,在哺乳动物中mC约占C总量的2-7%。一般说来,DNA的甲基化会抑制基因的表达。DNA的甲基化对维持染色体的结构、X染色体的失活、基因印记和肿瘤的发生发展都起重要的作用。 CpG双核苷酸在人类基因组中的分布很不均一,而在基因组的某些区段,CpG保持或高于正常概率,这些区段被称作CpG岛。CpG岛主要位于基因的启动子和第一外显子区域,约有60%以上基因的启动子含有CpG岛。 CpG甲基化的研究在肿瘤的研究中有着非常主要的地位。通过基因启动子区及附近区域CpG岛胞嘧啶的甲基化可以在转录水平调节基因的表达,从而引起相应基因沉默,去甲基化又可恢复其表达。DNA甲基化在生理情况下就参与了控制基因的时空表达,在肿瘤发生时,肿瘤细胞全基因组低甲基化是一个重要特征。肿瘤细胞基因组甲基化的程度与正常细胞相比仅为20-60% , 同时伴有局部区域基因的高甲基化,包括肿瘤抑制基因、抑制肿瘤转移和浸润的基因、细胞周期调节基因、DNA修复基因、血管形成抑制基因等。但是目前研究手段的局限,限制了DNA甲基化的广泛研究。 近年来,研究者不断探索定性及定量检测单个或多个甲基化位点的方法,但由于甲基化多态性区域存在的密度很高,所以对于延伸反应其引物的位置很难设计。Pyrosequencing技术作为一种新的序列分析技术,能够快速地检测甲基化的频率,对样品中的甲基化位点进行定性及定量检测,为甲基化研究提供了新的途径。 从原理上来看,Pyrosequencing是一种通过合成方法进行序列分析的方法,它通过核苷酸和模板结合后释放的焦磷酸引发酶级联反应,促使荧光素发光并进行检测。这项技术曾经被用作单核苷酸多态性(SNP)的基因型和单倍型的检测,以及细菌和病毒的鉴定和分型研究。这项技术的一个主要特点是在Pyrogarm™软件上显示的峰值高度来自于序列分析的原始数据,通过峰值的高度可以精确的检测混合DNA模板中等位基因的频率。 目前甲基化研究方面,很多甲基化定量分析的报道采用亚硫酸氢盐处理甲基化样本,并用混合的PCR产物 作为校正。其主要原理是:亚硫酸氢盐可以将没有甲基化的胞嘧啶转化为尿嘧啶,而在适当的实验条件下甲基化的胞嘧啶保持不变。因而,用它处理样本后,再进行PCR扩增,甲基化的位点可以被当作一个C/T的SNP来处理,它的基因频率为0-100%。在此,我们给大家介绍一个研究人员使用Pyrosequencing技术分析并精确定量DNA甲基化水平的例子。 研究者在一个Pyrosequencing反应中同时检测了6个甲基化位点。这种方法同样可以用于石蜡包埋的组织,并且具有较高的重复性和精确性。实验选择谷胱甘肽-S-转移酶π(GSTP1)转录启动位点的CpG岛进行检测。这些位点在正常前列腺组织中是非甲基化的,而在肿瘤样本中高甲基化。通过PCR扩增一个包含17个甲基化多态位点140bp的片段,并用4个测序引物研究其中15个位点(Table 1)。使用在线的SNP测序引物设计软件(Pyrosequencing AB)设计测序引物,其中一些甲基化多态性位点用最可能的碱基所代替,以减少计算的数量。再通过人工检测测序引物可能存在的错配。此外,同时在PSQ 96MA DNA分析仪上运行空白对照,扣除由测序引物、生物素标记的引物或是模板引起的背景。PCR引物设计完全与模板相匹配,不覆盖任何甲基化多态性区域。使用10ng亚硫酸氢盐转化的DNA样本或是10 fmol纯化的PCR产物,10 pmol 正向(5"-GTGATTTAGTATTGG-3")和反向(5"-biotin-AACTCTAAACCCCATC-3")引物扩增GSTP1转录启动位点的基因片段,扩增片段长度为144bp。反应体系为60 mM Tris-SO4, pH 8.9, 18 mM (NH4)2SO4, 1 mM MgSO4, 200 μM dNTPs,以及3 U Platinum Taq DNA高保真聚合酶,终体积为50μL。PCR循环设置:首先在95℃下变性4分钟,然后在95℃ 30S,50℃ 45S以及72℃ 20S条件下重复50个循环,最后一步延伸步骤在72℃下4分钟,中止反应。PCR反应在Eppendorf的Mastercycler 96 哺乳动物基因组中,DNA甲基化是指CpG二核苷酸中的胞嘧啶第5位碳原子被甲基化. DNA甲基化是一种基因外修饰,不改变DNA的一级结构; 他在细胞正常发育、基因表达模式以及基因组稳定性中起着至关重要的作用. 全基因组低甲基化,维持甲基化模式酶的调节失控和正常非甲基化CpG岛的高甲基化是人类肿瘤中普遍存在的现象. DNA高甲基化是导致抑癌基因失活的又一个机制.
 首页 上一页  1 2 3 4 5 6  下一页  尾页