barriers / 阅读 / 详情

曲线拟合的最小二乘法

2023-08-22 18:14:03
共1条回复
wio

对于曲线拟合函数ψ(x),不要求其严格的通过所有数据点,也就是说拟合函数ψ(x)在xi处的偏差(亦称残差)不都严格的等于零,即为矛盾方程组:为了是近似曲线能尽量反映所给数据点的变化趋势,要求偏差按照某种度量标准最小。这后面的分析用到了范数的概念。这种方法就叫做曲线拟合的最小二乘法。

最小二乘法原理

我们新建并打开一个excel表格,在excel中输入或打开要进行最小二乘法拟合的数据。此时按住“shift”键,同时用鼠标左键单击以选择数据。单击菜单栏上的“插入”-“图表”-“散点图”图标。

此时,我们选择第一个“仅带数据标记的散点图”图标,随后我们可以在窗口中间弹出散点图窗口。鼠标左键单击上边的散点,单击鼠标右键,弹出列表式对话框,再单击“添加趋势线(R)”。右侧就会弹出“设置趋势线格式”对话框。

最小二乘法原理

利用最小二乘法将上面数据所标示的曲线拟合为二次曲线,使用c语言编程求解函数系数;最小二乘法原理 原理不再赘述,主要是解法采用偏微分求出来的。

相关推荐

最小二乘法的原理

最小二乘法原理:找出一条直线使得所有图上面的点纵坐标的差值的平方和最小,其实也是方差最小。最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。最小二乘法在交通运输学中的运用:交通发生预测的目的是建立分区产生的交通量与分区土地利用、社会经济特征等变量之间的定量关系,推算规划年各分区所产生的交通量。因为一次出行有两个端点,所以我们要分别分析一个区生成的交通和吸引的交通。交通发生预测通常有两种方法:回归分析法和聚类分析法。回归分析法是根据对因变量与一个或多个自变量的统计分析,建立因变量和自变量的关系,最简单的情况就是一元回归分析,一般式为:Y=α+βX式中Y是因变量,X是自变量,α和β是回归系数。若用上述公式预测小区的交通生成,则以下标 i 标记所有变量;如果用它研究分区交通吸引,则以下标 j 标记所有变量。
2023-08-14 06:02:041

简述最小二乘估计原理。

参差平方和最小
2023-08-14 06:04:041

最小二乘法的基本原理是什么??

使每个采样点的拟合值与实际值之差的平方为最小。
2023-08-14 06:04:203

谁能通俗的讲解一下偏最小二乘法的原理

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
2023-08-14 06:04:451

声速测量怎么用最小二乘法处理数据

最小二乘法原理 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1). Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”. 你测的数据 是时间X和距离Y, 用所测数据确定a0,a1
2023-08-14 06:05:101

用最小二乘法处理数据的优点

它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。实际应用中,常用一堆数据来得到优化或相对理想的参数值。
2023-08-14 06:05:202

普通最小二乘估计量b1的方差 var(b1)=(∑X^2/n∑x^2)*σ2公式怎么推导?

首先这里需要用到几个OLS的假定:E(u)=0, cov(ui,uj)=0, var(u)=σ^2; 在这里用大写表示估计量, k=(x-X u0305)/∑((x-X u0305)^2) B2=b2+∑ku, B1=Y u0305-B2*X u0305=Y u0305-(b2+∑ku)*X u0305=b1+(∑u)/n-X u0305*∑ku, E(B1)=b1 var(B1)=E[(B1-b1)^2]=E{[(∑u)/n-X u0305*∑ku]^2}=E((∑u)^2)/n^2+X u0305^2*E((∑ku)^2)-2(X u0305/n)*E[(∑u)(∑ku)] 分开来证明 cov(ui,uj)=E(ui*uj)-E(ui)*E(uj)=0, so E(ui*uj) =0; E[(u)^2]=Du+E(u)^2=σ^2; E((∑u)^2)=∑E(u^2)+2∑E(ui*uj)=n*σ^2E((∑ku)^2)=∑(k^2)*E(u^2)=σ^2/(∑((x-X u0305)^2)); E[(∑u)(∑ku)]=∑k*E(u^2)+∑k*E(ui*uj)=σ^2*∑k=0; 汇总在一起 var(B1)=σ^2/n+(σ^2)(X u0305^2)/(∑((x-X u0305)^2)) 你最后合并一下就能得出这个公式
2023-08-14 06:06:362

时间序列最小二乘估计结果怎么算

一.特征估计和模型检验1、均值估计[1]估计量 u0302= u0305_n[2]性质无偏性: u0302是 的无偏估计相合性:若 _ → 0,则 u0302是 的相合估计;如果{ }严遍历则是强相合估计收敛性:若若{ _ }正态/独立同分布白噪声,则2、自协方差[1]估计量[2]性质(若 { 1 = 0} = 0,则 正定)3、偏相关函数[1]定义[2]性质如果{ }是正态平稳序列,则当 > 时,4、独立白噪声检验[1]正态检验[2]卡方检验5、特殊序列检验[1]季节序列检验[2]求和模型检验
2023-08-14 06:06:431

在回归分析中,估计回归系数的最小二乘法的原理是( )。

【答案】:C对于给定的n组观测值,可用于描述数据的直线有很多条,究竟用哪条直线来代表两个变量之间的关系。需要有一个明确的原则。我们自然会想到距离各观察点最近的一条直线,即实际观测点和直线间的距离最小。根据这一思想对回归模型进行估计的方法称为最小二乘法。最小二乘法就是使得因变量的观测值与估计值之间的离差平方和最小来估计参数的方法。
2023-08-14 06:06:511

最小小的原理

最小二乘法是一种用于拟合数据的最常用的统计学方法。它的基本原理是,通过最小化拟合数据的误差平方和,来求解拟合参数的最优解。最小二乘法的基本思想是,在拟合数据的时候,要使拟合数据的误差平方和最小,从而得到最优的拟合参数。具体来说,就是要求解一个函数,使得该函数的误差平方和最小。最小二乘法的解决方法是,首先,根据拟合数据,建立拟合函数,然后,求解拟合函数的最优参数,使得拟合函数的误差平方和最小。最后,根据拟合函数和最优参数,得到拟合数据的最优拟合曲线。最小二乘法的实现步骤主要有:1)根据拟合数据,建立拟合函数;2)求解拟合函数的最优参数;3)根据拟合函数和最优参数,得到拟合数据的最优拟合曲线。最小二乘法的实现过程中,需要用到微积分、线性代数等数学知识,以及梯度下降算法等机器学习算法。
2023-08-14 06:07:241

最小二乘法原理认为最可信赖值应是什么最小

我用括号把层次分开,简单的说就是: 让(((采样的点)跟(拟合的曲线)的距离)总和)最小. 楼上的说法有问题,不是非要直线不可,任何曲线都可以的. 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2。
2023-08-14 06:07:342

最小二乘法拟合圆原理

最小二乘法拟合圆原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差最小二乘法,是一种数学优化技术。它通过最小化误差的平方和找到一组数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据、并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法拟合圆的方法;第一步,根据已知点,描图X=[。。。],Y=[。。。],plot(X,Y,"p")第二步,根据已知点拟合圆的一般式方程,利用公式求出圆心和半径首先,用方程x^2+y^2+Dx+Ey+F=0,拟合出其系数D、E、F,求出圆心(-D/2,-E/2),半径0.5√(D^2+-E^2-4F)第三步,根据圆的参数方程,求出x,y的点,描点plot(x,y,"r-"),得到拟合圆的图形利用仿真的得来的数据、选取某一截面,用最小二乘法进行拟合,得到其拟合效果图,如上图所示在1809年高斯对最小二乘估计进行的误差分析中发现。在线性模型的所有无偏估计类中,最小二乘估计是唯一的方差最小的无偏估计。进入20世纪后,哥色特、费歇尔等人还发现。在正态误差的假定下、最小二乘估计有较完善的小样本理论、使基于它的统计推断易于操作且有关的概率计算不难进行与此同时。对最小二乘法误差分析的研究也促进了线性模型理论的发展.如今。线性模型已经成为理论结果最丰富、应用最广泛的一类回归模型.
2023-08-14 06:07:431

最小二乘法公式的案例分析

使用年数1 2 3 4 5 6 7 8 9 10平均价格2651 1943 1494 1087 765 538 484 290 226 204(1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征?(2) 令 , 绘出数据 的散点图, 注意观察有何特征?(3) 利用“Line”函数, 将散点连接起来, 说明有何特征?(4) 利用最小二乘法, 求 与 之间的关系;(5) 求 与 之间的关系;(6) 在同一张图中显示散点图 及 关于 的图形.思考与练习1. 假设一组数据 : , , …, 变量之间近似成线性关系, 试利用集合的有关运算, 编写一简单程序: 对于任意给定的数据集合 , 通过求解极值原理所包含的方程组, 不需要给出 、 计算的表达式, 立即得到 、 的值, 并就本课题 I /(3)进行实验.注: 利用Transpose函数可以得到数据A的第一个分量的集合, 命令格式为:先求A的转置, 然后取第一行元素, 即为数据A的第一个分量集合, 例如(A即为矩阵)= (数据A的第一个分量集合)= (数据A的第二个分量集合)B-C表示集合B与C对应元素相减所得的集合, 如 = .2. 最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.
2023-08-14 06:08:061

根据最小二乘法估计回归方程参数的原理是( )。

【答案】:A最小二乘法就是使得因变量的观测值和估计值之间的离差(又称残差)平方和最小来估计回归方程参数的方法。
2023-08-14 06:08:211

在回归分析中,估计回归系数的最小二乘法的原理是使得( )的离差平方和最小。

【答案】:D此题考查最小二乘法。最小二乘法就是使得因变量观测值与估计值之间的离差平方和最小来估计参数β0和β1的方法。
2023-08-14 06:08:291

什么是“最小二乘法原理”?

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:08:592

最小二乘法的原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:09:082

最小二乘法的原理是什么?

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。   Y计= a0 + a1 X (式1-1)   其中:a0、a1 是任意实数   为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。   令: φ = ∑(Yi - Y计)2 (式1-2)   把(式1-1)代入(式1-2)中得:   φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)   当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。   (式1-4)   (式1-5)   亦即:   m a0 + (∑Xi ) a1 = ∑Yi (式1-6)   (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)   得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:   a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)   a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)   这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。   在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。   R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *   在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
2023-08-14 06:09:205

最小二乘法的原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:09:532

最小二乘原理是什么

设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x n,我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。 最小二乘法是处理各种观测数据进行测量平差的一种基本方法。 如果以不同精度多次观测一个或多个未知量,为了求定各未知量的最可靠值,各观测量必须加改正数,使其各改正数的平方乘以观测值的权数的总和为最小。因此称最小二乘法。所谓“权”就是表示观测结果质量相对可靠程度的一种权衡值。 法国数学家勒让德于1806年首次发表最小二乘理论。事实上,德国的高斯于1794年已经应用这一理论推算了谷神星的轨道,但迟至1809年才正式发表。此后他又提出平差三角网的理论,拟定了解法方程式的方法等。为利用最小二乘法测量平差奠定了基础。 最小二乘法也是数理统计中一种常用的方法,在工业技术和其他科学研究中有广泛应用。 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计= a0 + a1 X)的离差(Yi - Y计)的平方和‘〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) (见附图)亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值
2023-08-14 06:10:081

什么叫最小二乘法原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:10:322

简答题 简述最小二乘法基本原理

完全最小二乘法(Total Least Squares),又称总体最小二乘法。可参考:总体最小二乘法。基本原理:求解Ax=b的最小二乘法只认为b含有误差,但实际上系数矩阵A也含有误差。总体最小二乘法就是同时考虑A和b二者的误差和扰动,令A矩阵的误差扰动为E,向量b的误差向量为e,即考虑矩阵方程:(A+E)x=b+e (1)的最小二乘解。上式(1)可写作:(B+D)z=0 (2)式中B=[-b|A],D=[-e|E],z=[1/x]。求解方程组的总体最小二乘法(TLS)就是求解向量z,使得扰动矩阵D的F-范数最小。
2023-08-14 06:10:431

最小二乘法

我用括号把层次分开,简单的说就是:让(((采样的点)跟(拟合的曲线)的距离)总和)最小.楼上的说法有问题,不是非要直线不可,任何曲线都可以的. 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.
2023-08-14 06:10:561

最小二乘法的优缺点是什么?

一、最小二乘法的优点:1、最小二乘法能通过最小化误差的平方和寻找数据的最佳函数匹配。2、利用最小二乘法能简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。3、最小二乘法可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。当自变量和因变量同时存在均值为零,相同方差的随机误差时,此方法能给出在统计意义上最好的参数拟合结果。二、、最小二乘法的缺点:XTX不可逆时,不能用最小二乘估计。最小二乘法是线性估计,已经默认了是线性的关系,使用有一定局限性。在回归过程中,回归的关联式不可能全部通过每个回归数据点。扩展资料最小二乘法的原理:研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如:其中:a0、a1 是任意实数为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和最小为“优化判据”。参考资料来源:百度百科-最小二乘法
2023-08-14 06:11:191

高中以上知识,最小二乘法的公式ab怎么算???在线等

a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)b=y(平均)-a*x(平均)b 是截距a 是斜率
2023-08-14 06:11:472

求“最小二乘法”拟合曲线的原理

最小二乘法目的是根据n个离散的点,拟合出一条曲线y=F(x),每个点到F(x)的距离两两相乘的积最小。
2023-08-14 06:11:552

为什么最小二乘回归的残差和是0? 急 !!急!!

对于n个样本 残差和=yi-(bxi+a)(i=[1,n])=ny-n(bx+a),这里x,y为均值,因为y=a+bx,所以n(y-bx-a)=0
2023-08-14 06:12:404

加权最小二乘法克服异方差的主要原理

加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度。加权最小二乘法是对原模型进行加权,使之成为一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数的一种数学优化技术。线性回归的假设条件之一为方差齐性,若不满足方差齐性(即因变量的变异程度会随着自身的预测值或者其它自变量的变化而变化)这个假设条件时,就需要用加权最小二乘法(WLS)来进行模型估计。加权最小二乘法(WLS)会根据变异程度的大小赋予不同的权重,使其加权后回归直线的残差平方和最小,从而保证了模型有更好的预测价值。在多重线性回归中,我们采用的是普通最小二乘法(OLS)估计参数,对模型中每个观测点是同等看待的。但是在有些研究问题中,例如调查某种疾病的发病率,以地区为观测单位,地区的人数越多,得到的发病率就越稳定,因变量的变异程度就越小,而地区人数越少,得到的发病率就越大。在这种情况下,因变量的变异程度会随着自身数值或者其他变量的变化而变化,从而不满足残差方差齐性的条件。
2023-08-14 06:13:071

用极为专业的数学语言来解释下 “最小2乘法”

注意;在残差满足VPV为最小的条件下解算测量估值或参数估值并进行精度估算的方法。其中V为残差向量,P为其权矩阵。最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。最小二乘法原理  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1.x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。   Y计= a0 + a1 X (式1-1)   其中:a0、a1 是任意实数   为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。   令: φ = ∑(Yi - Y计)2 (式1-2)   把(式1-1)代入(式1-2)中得:   φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)   当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。   (式1-4)   (式1-5)   亦即:   m a0 + (∑Xi ) a1 = ∑Yi (式1-6)   (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)   得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:   a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)   a1 = [m∑Xi Yi - (∑Xi ∑Yi)] / [m∑Xi2 - (∑Xi)2 )] (式1-9)   这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。   在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1. x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。   R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *   在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
2023-08-14 06:13:202

最小二乘法怎么算

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:13:422

什么是小二乘法有什么用呀?

最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.
2023-08-14 06:14:011

最小二乘原理使用的前提条件

设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x n,我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。 最小二乘法是处理各种观测数据进行测量平差的一种基本方法。
2023-08-14 06:14:091

谁懂迭代加权最小二乘法,能否给讲下原理

最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配.  最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小.  最小二乘法通常用于曲线拟合.很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达.  比如从最简单的一次函数y=kx+b讲起   已知坐标轴上有些点(1.1,2.0),(2.1,3.2),(3,4.0),(4,6),(5.1,6.0),求经过这些点的图象的一次函数关系式.  当然这条直线不可能经过每一个点,我们只要做到5个点到这条直线的距离的平方和最小即可,这这就需要用到最小二乘法的思想.然后就用线性拟合来求.
2023-08-14 06:14:202

极为简单的最小二乘法问题

  最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。  最小二乘法公式  ∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平  ∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2  最小二乘法的原理:  用各个离差的平方和M=∑(i=1到n)[yi-(axi+b)]^2最小来保证每个离差的绝对值都很小。解方程组?M/?a=0;?M/?b=0,整理得(∑xi^2)a+(∑xi)b=∑xiyi;(∑xi)a+nb=∑yi。解出a,b。  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中, 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。  Y计= a0 + a1 X (式1-1)  其中:a0、a1 是任意实数  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化数据”。  令: φ = ∑(Yi - Y计)2 (式1-2)  把(式1-1)代入(式1-2)中得:  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。  (式1-4)  (式1-5)  亦即:  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
2023-08-14 06:14:281

选择题:用最小二乘法确定直线回归方程的原则是什么

B 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。参见百度百科 最小二乘法
2023-08-14 06:14:572

ottd穿搭是什么意思?

OTTD指的是Outfit of the Day,意思是今日穿搭。这个词常常被用于时尚圈,特别是在社交媒体上,人们会晒出自己的最新穿搭照片,并使用OTTD作为标签。
2023-08-14 06:14:363

气动隔膜泵的工作原理及使用特点?

1、压缩空气为动力。2、是一种由膜片往复变形造成容积变化的容积泵,其工作原理近似于柱塞泵,由于隔膜泵工作原理的特点,因此隔膜泵具有以下特点:泵不会过热:压缩空气作动力,在排气时是一个膨胀吸热的过程,气动泵工作时温度是降低的,无有害气体排出。不会产生电火花:气动隔膜泵不用电力作动力,接地后又防止了静电火花可以通过含颗粒液体:因为容积式工作且进口为球阀,所以不容易被堵。对物料的剪切力极低:工作时是怎么吸进怎么吐出,所以对物料的搅动最小,适用于不稳定物质的输送流量可调节,可以在物料出口处加装节流阀来调节流量。具有自吸的功能。可以空运行,而不会有危险。可以潜水工作。可以输送的流体极为广泛,从低粘度的到高粘度的, 从腐蚀性得到粘稠的。没有复杂的控制系统,没有电缆、保险丝等。体积小、重量轻,便于移动。无需润滑所以维修简便,不会由于滴漏污染工作环境。泵始终能保持高效,不会因为磨损而降低。百分之百的能量利用,当关闭出口,泵自动停机,设备移动、磨损、过载、发热没有动密封,维修简便避免了泄漏。工作时无死点。永嘉正海泵阀有限公司的 隔膜泵使用效果不错还有不懂可以追问。望楼主采纳
2023-08-14 06:14:381

你可以在任何时候给我打电话 用英语翻译这句话

Youcancallmeatanytime还可以用另一种形式说:你可以在需要我的时候随时打电话给我。Pleasegivemeacallwhenyouwillneedme.望采纳O(∩_∩)O
2023-08-14 06:14:391

MEGENA原理

MEGENA是一种基于图嵌入的方式构建基因共表达网络的工具,相比较于WGCNA的权重分析,MEGENA直接用图对嵌入来完成,因此更加接近于真实情况 MEGENA的步骤大致分为四步: 第一步是快速构建平面滤波网络(FPFNC); 第二步是通过网络结构的紧凑性进行多尺度的聚类分析;利用k-split将PFN网络做拆分,然后计算每一个sub-cluster的紧凑程度,直到满足Terminate条件 第三步是多尺度的hub分析,目的是识别第二步分出来的sub-cluster里面hub基因; 第四步是分析sub-cluster与trait的相关性 接下来我们就一步一步的介绍下每一步的原理: Step 1 基于基因的表达矩阵,首先计算基因之间的相关性 Step 2 构造PFN网络,首先初始化一个空网络G0(V0,E0),其中该网络的节点互不相连,E0 = u2205 。其次对每一个gene pair(基于gene pair的相似性进行排序),并利用Boyer-Myrvold算法进行gene pair的平面性检验 在构建PFN平面图的时候,由gene pair 的similarities由高到低开始做平面性检验,若该gene pair通过平面性检验则纳入PFN图(G0)中;否则不纳入G0中, Ef = E0∪{i, j} 然后重复上述过程明知道达到该平面图所能容纳的最大边数,此时图为Gf(Vf,Ef) Step 1 首先介绍下度量网络紧凑性和局部紧密性的指标 Step 2 Network split:k-split 这一步主要的目的是对已经构造好的PFN(大网络)进行细分,分为更细致的sub-cluster Step 3 Identification of significantly compact sub-clusters,这一步的主要目的对上一步分出来的sub-cluster做显著性检验 对于 子图 l (sub-cluster l) ,作者计算了 子图 l (sub-cluster l) 内节点的平均最短距离(SPD),然后除以 子图 l (sub-cluster l) 的所有节点的最短距离(SPD)之和,定义为compactness 如果子图 Vl 满足: 如果满足上述条件的子图 l (sub-cluster l),就定义为 significantly sub-clusters 这一步的目的是将(2)中分出来的sub-cluster里面,鉴定出每个sub-cluster中的hub node(高连接度的node) Step 1 Grouping similar scales,作者定义中节点 i 与其他节点的连通度为: Step 2 通过上述 step 1 所述,鉴定每个sub-cluster中的连通度比较高的hub node(hub gene),并检验显著性 上面一步完成后,由PFN划分出来的sub-cluster,其中每个sub-cluster的节点代表每个基因,将这些基因对应的表达量矩阵进行PCA分解,选取PC1作为该矩阵的特征,与trait矩阵计算相关性,来表征sub-cluster与性状的联系 https://www.boost.org/doc/libs/1_41_0/libs/graph/doc/boyer_myrvold.html https://blog.csdn.net/chuhang123/article/details/103309865 假设我们获得的基因表达矩阵如下: 首先我们要计算每个 gene pair 的相关性 ijw表格: 获得 gene pair 的相关性以后,需要构建PFN大网络,而构建PFN大网络的核心是要检验每嵌入一条新的边以后要满足图的平面性 最后的PFN表格如下,第三列表示 gene pair 的权重 最后将PFN表格转换为PFN网络: 显而易见,最终的output由这几部分组成, module.output和hub.output ,因此我们对应看每一个部分具体的意义: 那么函数 nested.kmeans() 具有什么功能呢? 接下来我们一步一步看,关于 nested.kmeans(): step 1 首先要获得每个节点之间边的权重以及LPI值 值得注意的是这里d.func的作用是为了在构建图的时候使gene pair相关性大的两个gene节点靠得比较近;由于gene pair的权重是用相关性来表示,意味着如果两个gene的权重大,则这两个gene的相关性就大,就会在图聚类中靠得比较近,所以它们的图 "距离" 就会小。所以用 1 来减相当于做了一个转换 step 2 对已经构建好PFN划分利用k-中心聚类划分sub-cluster,并检验sub-cluster的一些属性,看是否满足条件 因此最后的 output中最重要的组成部分是modules = modules.keep: 其中比较重要的部分是计算出每一个sub-cluster中的hub基因,每一个sub-cluster中的hub基因定义为在该sub-cluster中度最高的gene节点 module.degreeStat的部分截图: 软件链接: https://github.com/songw01/MEGENA
2023-08-14 06:14:391

老料龙血金丝竹玉竹面包圈要盐水煮吗?

需要。因为为了老料龙血金丝竹玉竹面包圈能快速上色,所以要用盐水煮。龙血金丝竹采用10年以上精选的老料油性密度都很大,鱼子纹密集,满钉鱼子纹的疏密代表竹子的密度,越密代表密度越高。
2023-08-14 06:14:451

"我的朋友给我打电话"用英语怎么说?

表示这件事在过去发生:My friend called me.My friend rang me.My friend gave me a call.表示这件事情正在发生:My friend is calling me.My friend is ringing me.My friend is giving me a call.表示事情在未来...
2023-08-14 06:14:461

wire+transfer+on+receipt是什么意思

wire transfer on receipt收货的电汇receipt 英[ru026au02c8si:t]美[ru026au02c8sit]n. 收据,发票; 收入;vt. 开收据; [美国英语] 给…开收据,承认收到;[网络] 收据; 收到; 发票;[例句]I wrote her a receipt for the money.我给她写了一张收钱的收条。[其他] 复数:receipts 形近词: receive
2023-08-14 06:14:471

成矿预测的理论方法

一、成矿预测的理论基础成矿预测是应用地质成矿理论和科学方法综合研究地质、地球物理、地球化学和遥感地质等方面的地质找矿信息,剖析成矿地质条件,总结成矿规律,建立成矿模式,应用“由已知到未知”的原则评价未知区的资源量或圈定不同级别预测区,提出勘查工作重点区段或布置具体的勘查工程,达到提高找矿工作的科学性、有效性和提高成矿地质研究程度的一项综合性工作(赵鹏大等,2006)。矿产资源预测评价的理论归纳起来有以下几个方面。1.地壳矿产资源富有度理论该理论的要点是:地壳内元素的分布是非均匀的,元素的局部富集形成有经济价值的矿产资源,地壳内不存在完全没有矿产资源或资源完全枯竭的地区,也不存在各种资源完全集中的地区(朱裕生,1984)。资源量评价就是要确定某一地区存在何种资源、有多少资源量。这一理论阐明了矿产资源在地壳内存在的客观事实和对其作出评价的可能性。2.相似类比理论在相似地质环境中应该有相似的矿床产出。这是建立矿产资源同地质环境之间定量关系的理论指导原则。在此理论原则指导下,矿产资源预测采用“由已知到未知”的方法,即在已知区建立矿产资源量与地质条件之间关系的评价模型,外推到与已知区地质构造条件相似的预测区,对预测区的资源量作出估算(朱裕生,1984)。3.矿产资源预测的模型理论、成矿作用的随机函数理论和控矿因素与成矿作用的函数联系理论这是数学地质研究领域获得的成果之一。矿产资源预测评价都是直接或间接使用矿床模型。在实际工作中,应用地质数据(资料)和经验综合,建立矿产资源与地质条件之间关系评价的数学模型,根据模型预测矿产资源量。地质理论是建立矿产资源评价数学模型的基础(朱裕生,1984)。4.地质变量的综合和分解理论地质变量是建立矿产资源预测评价模型的基础。在各类原始地质数据中选取与矿产资源有关信息的地质变量,建立矿产资源预测评价模型,运用综合信息进行矿产资源预测评价。这就是数据综合的意义。现代流行的综合信息成矿预测、矿床模型综合地质信息预测技术是地质变量综合理论的深化发展。综合信息成矿预测是在地质理论为先验前提的条件下,以地质体和矿产资源体为单元,从地质演化的角度,研究地质、地球物理、地球化学、遥感等多元信息,对它们进行综合解释,进而建立综合信息找矿模型和综合信息预测模型,用综合信息预测模型作为工具,对研究区进行系统的评估。对某一类型地质变量来说,评价使用的数据都经历了漫长的地质时期,是其地质历史行为的综合;对于同一时间过程而言,该变量又可看成是若干个更局部的不同地质作用的综合。从表示一系列地质作用最终结果的地质变量中分析它在各个不同时间和空间过程中的地质作用行为,特别是与资源成因有关的行为,预测矿产资源种类、位置或数量。这就是矿产资源预测评价中对变量分解的含义(朱裕生,1984)。5.成矿系列理论矿床成矿系列概念的全面论述是我国地质学家在长期以来找矿勘探工作和矿床地质研究过程中总结提出来的。它将在一个区域中与某一地质成矿作用有关,在空间、时间、成因上有联系的一组矿床,作为一个整体加以研究。这对于深入认识成矿规律,指导矿床勘查工作,有重要意义。就某一区域找矿而言,在详细研究区域地质构造背景基础上,运用成矿系列的概念可以对该区的成矿环境、控矿因素、成矿作用和可能出现的矿床类型有一个全面的分析和认识,即建立整体观念,根据已知矿床,找寻未知矿床,因而能起到扩大找矿思路,明确找矿方向的作用。6.地质异常理论地质异常是在成分、结构、构造和成因序次上与周围环境有着明显差异的地质体或地质体组合。如果用一个数值(或数值区间)作为阀值来表示背景场的话,凡超过或低于该阀值的场就构成地质异常。地质异常经常表现在地球物理场、地球化学场及遥感影像异常的不同,往往都是综合异常。不同尺度的地质异常,不仅具有不同的圈定标志和不同级别的范围大小特征,而且与成矿的关系各不相同。全球性地质异常是地壳圈层结构的异常,区域性地质异常是控制跨省区的成矿带、成矿省和成矿区分布的地质异常,局部性地质异常是控制成矿区内矿田、矿床和矿体产出的地质异常(赵鹏大等,2006)。7.惯性原理惯性原理是指客观事物在发展变化过程中常常表现出的延续性。成矿事件及其产物———矿床的惯性现象表现为在时间、空间上具有稳定的变化趋势。这种变化趋势越稳定,即惯性越强,则越不易受外界因素的干扰而改变本身的变化趋势(赵鹏大等,2006)。例如一些大的成矿带和脉状矿体的规模及延伸方向一般都比较稳定。成矿预测中常用的趋势外推法就是依据地质体的有关特征在空间上的惯性现象而发展起来的。8.相关原理相关原理是指任何成矿事件的发生变化都不是孤立的,而是在与其他地质作用的相互影响下发展的,并且这种相互影响常常表现为一种因果关系(赵鹏大等,2006)。例如成矿预测的对象———矿产资源通常是与各种岩石和构造有着密切的联系,一定类型的矿床是特定的地质作用的特殊产物。相关原理有助于我们全面、深入地分析与成矿有关的各种地质因素,从而正确认识矿床的有关特征及总结成矿规律,进而进行正确的预测。9.地质解释的理论地质解释就是把评价模型转化为地质成因和资源特征(期望的矿床数、吨位或品位)的概念(朱裕生,1984)。其重点是用地质专家掌握的地质理论和积累的经验补充已经建立的矿产资源评价模型中没有包括的矿产资源信息,并把它转化为地质和资源量概念。二、成矿预测的主要方法(一)成矿预测的基本原则和特点1.由已知到未知的原则对未知区进行矿产资源预测,常常是应用在已知区建立的某种模型评价未知区的资源。因此,未知区的地质构造条件要与已知区高度相似。这实际上是类比理论的具体应用。2.建立矿产资源数量与地质条件的定量关系这是矿产资源评价模型建立的必要条件,对未知资源预测评价具有决定作用,是预测评价工作中较困难的一环。有些预测评价模型,表面看来仅研究数据参数的分布和变化而不涉及地质条件,但实际上这种分布和变化是受地质条件支配的,隐含了地质条件的作用(朱裕生,1984)。3.地质专家的知识和经验影响矿产资源预测评价有些评价模型是建立在地质专家的知识和经验基础上的,实际上也是建立在矿产资源同各种地质条件之间的关系上,各种地质条件隐含在地质专家的经验和知识中(朱裕生,1984)。这种情况下,地质专家的知识和经验对矿产资源预测评价起决定作用,要求有不同专业高水平专家进行综合研究论证。4.尽可能丰富的输入信息与尽可能简单的评价结果矿产资源预测评价应该利用尽可能多的有用地质信息,以确保预测结果的准确度。但在结论上,则应尽可能的简单,这样才有利于地质人员识别和有关部门应用。5.矿产资源定量估算的结果具有概率性由于成矿作用的复杂性,我们所掌握的地质知识还远远不足以概括出一个准确的预测评价数学模型,我们所建立的各种矿产资源评价模型多带有随机性,预测的相应矿产资源量也具有随机性(朱裕生,1984)。因此,预测的矿产资源具有概率性,也就是说,所估计的矿产资源量不是绝对的,是在一定概率意义下的判断。6.最小风险和最大含矿率原则要求提交的预测成果在最小漏失隐伏矿床可能性的前提下,以最小的面积圈定找矿靶区的空间位置。7.优化评价原则优化评价是指预测人员根据对成矿规律和成矿控制因素的认识,有意识的干预模型的构成,对模型作有利成矿(或强化成矿信息)的定向转换(但要在不改变模型预测目标的前提下),使模型突出一些其中重要的预测标志(或控矿因素)的信息,抑制某些成矿意义不明显或干扰较强的信息,迫使模型向成矿有利方向浓缩信息,突出找矿标志,逐步逼近潜在矿床,实现模型的定量化转换,最后提出最优找矿靶区(赵鹏大等,2006)。(二)成矿预测评价方法简介成矿预测是对过去发生的成矿事件的未知特征进行的估计或推断。预测的过程是一种严密的科学逻辑思维过程,包括观察、分析、归纳及推理等认识环节(赵鹏大等,2006)。具体的成矿预测方法有数十种,根据成矿预测评价的范围不同,可分为区域矿产资源预测评价、矿区预测评价和矿床预测评价三类,每类采用的具体方法有所区别(朱裕生,1984)。1.区域矿产资源总量预测评价方法(1)非地质标志的评价方法,包括齐波夫定律、历史产量法、拉斯基定律、赫威特曲线、空间分布统计模型等。(2)主观评价方法,包括地质类比法、简单主观概率法、复杂主观概率法、主观网络法、德尔菲法等。(3)简单地质标志模型评价方法,如体积估计法、区域价值评估法、趋势面分析法、丰度估计法等。(4)定性地质标志模型评价方法,如模糊数学、逻辑信息法、特征分析法、数量化理论、概率回归、秩相关分析、蒙特卡罗法等方法。2.矿区矿产资源总量预测评价方法(1)主观评价方法,同区域评价方法(2)。(2)成矿标志评价模型,如判断分析法、聚类分析法、回归分析法、因子分析法、对应分析法、矿床模型法、成因地质模型法等。(3)定性成矿地质标志评价模型,同区域评价方法(4)。(4)趋势外推法,包括矿体外部特征变化趋势外推法、矿体内部特征变化趋势外推法、成矿物化条件变化趋势外推法、控矿因素变化趋势外推法、预测标志变化趋势外推法、成矿规律趋势外推法等(赵鹏大等,2006)。3.矿床矿产资源总量预测方法(1)地质几何法。(2)地质-地球化学法。(3)地质-地球物理法。(4)趋势外推法,同矿区评价(4)。不同区域矿产资源预测评价方法是相对的,在具体预测评价中可以灵活地选用各种方法。各种矿产资源预测评价方法真正的基础是地质类比法。现代的矿产资源预测评价方法是与传统地质方法既有联系,又有发展的定量评价方法,是在地质研究的基础上围绕着矿产资源预测评价这个总目标应用数学方法建立各种模型,对一个地理区域、成矿区(带)或更小地区(矿床)作出潜在资源量的估计。三、本项目金矿预测采用的方法(一)胶西北区域金矿总量定量预测方法胶西北金矿成矿地质条件复杂,找矿信息多元,因此难以用单一简单的预测方法对其资源总量进行正确评价。本次工作在前人工作的基础上,采用以综合信息成矿预测为基础的多种预测评价方法对胶西北地区进行金矿资源总量预测。1.综合信息成矿预测应用数学地质方法,借助于计算机将各种与矿产有关的地质要素、物探、化探和重砂异常等找矿信息加以综合解译而进行的矿产预测工作。综合信息成矿预测强调以地质为前提,以地质体为单元提取综合信息建立综合信息模型,以类比法进行矿产预测。本次预测在典型矿床、区域成矿规律、成矿条件研究的基础上,提取与成矿有关的有用信息,进行信息之间及信息与金矿资源之间统计对比,确定有用信息与金矿的关联。在有用信息分析基础上进行地质变量选择和赋值,并将变量分为定位变量和定量变量两种类型。(1)定位变量选择。定位变量的选择,主要考虑有用信息与资源特征的关系、在单元中有无统计性规律及信息的性质等因素。为实现对矿产资源的定位预测,建立了三态和二态两个变量系统,变量取自地层、构造、岩浆岩、重力、航磁、地球物理推断、重砂、化探、遥感九方面信息。二态变量系统共选择了49个变量:地层:①太古宙变质岩系;②荆山群、粉子山群;③地层成片出露;④地层呈残留体出露。构造:⑤主构造为Ⅱ级构造;⑥主构造为Ⅲ级构造;⑦主构造方向为NE向、NNE向;⑧次级构造发育;⑨构造破碎带发育;⑩韧性变形发育;ue583瑏瑡Ⅱ级构造从单元中间通过;瑏ue583瑢单元位于Ⅱ级构造下盘;瑏Aue583构造蚀变带为完全分带;瑏ue583A蚀变类型为绢英岩化、硅化、黄铁矿化。岩浆岩:ue583瑏瑥太古宙TTG岩系、侏罗纪玲珑花岗岩(九曲、云山、崔召岩体);ue583瑏瑦白垩纪郭家岭、文登、伟德山花岗岩;ue583瑏瑧岩体相带为边缘相;瑏瑨ue583片麻状、似斑状中粗粒花岗岩;瑏莹ue583接触带为断层接触;瑐ue583瑠接触带为侵入接触;瑐ue583瑡石英脉、煌斑岩、辉绿玢岩岩脉发育。重力:ue583瑐瑢等值线为缓梯度带、鼻状区、扭曲区,速率小于1.5×10-5m/(s2·km);ue583瑐A等值线为较缓的梯度带,有弯曲,速率为(1.5~2.5)×10-5m/(s2·km);瑐Aue583重力场值在0~30×10-5m/s2之间。磁场:ue583瑐瑥低缓交变场、低正场、低负场;瑐瑦ue583有NE、NNE向磁场轴向。地球物理推断:瑐瑧ue583EW向基底构造≥10km;ue583瑐瑨EW向基底构造为5km;瑐ue583莹NE、NNE向构造>5km;瑑瑠ue583NE、NNE向构造为3km;瑑瑡ue583NNE、NE与近EW向构造交汇;瑑瑢ue583岩体的超覆、港湾状、舌状部位;瑑Aue583隐伏岩体存在。重砂:ue583瑑AⅠ、Ⅱ级金重砂异常;ue583瑑瑥以金为主Ⅰ、Ⅱ级组合异常;ue583瑑瑦重砂异常与构造吻合程度较好;ue583瑑瑧异常规模(与单元面积之比)>50%。化探:ue583瑑瑨金化探组合异常;ue583瑑莹其他组合异常;瑒ue583瑠化探异常规模(与单元面积之比)>50%;瑒ue583瑡化探异常与构造吻合程度较好;ue583瑒瑢金异常值>4×10-9;ue583瑒A金异常值(2~4)×10-9。遥感:瑒ue583A环形构造发育;瑒瑥ue583环形构造存在;瑒瑦ue583EW向线性构造发育;ue583瑒瑧其他方向线性构造发育;瑒ue583瑨环线交、切程度复杂;ue583瑒莹环线交、切程度简单。三态变量系统共选择了31个地质变量,变量名称及与成矿的关系见表9-1。(2)定量变量选择。定量预测变量,是描述性定量变量,能表达预测目标在规模上的差异,可以反映资源规模级别。同时,这些变量也是连续性变量,是用于回归预测模型进行地质单元资源量预测的变量。描述性变量共包括7项25个变量:1)预测单元与Ⅱ级断裂的距离:①随距离的增大,资源量规模变小,但二者不具有明显的线形关系;②赋存特大型、大型矿床的单元,多位于断裂带附近;赋存小型矿床的单元,多离主断裂4km以上;赋存中型矿床的单元其规律性不明显,即可近可远。说明这个信息对大型以上和小型矿具有区分能力。因此构置:①0km;②<4km;③≥4km三个变量。表9-1 三态变量类型一览表2)单元与构造交汇点的距离:随着远离构造交汇点,单元矿床规模呈变小趋势。赋存特大型矿床的单元多在交点上,赋存小型矿床的单元则在远离交点的10km以上范围内,而赋存中型矿床的单元多数在5~10km范围内。据此设置①<5km;②5~10km;③>10km三个变量。3)控矿断裂带的宽度:胶西北金矿资源储量规模有随断裂带宽度增大而变大的趋势,赋存中、小型矿床的单元其控矿断裂带宽度多数不大于10m,赋存特大型矿床的单元其控矿断裂带都在100m以上,赋存大型矿床的单元其控矿断裂带宽度变化较大。据此确定①≥50m;②50~10m;③<10m三个变量。4)金分散流异常面积与单元面积比:单元矿床规模同金分散流异常面积与单元面积的比值具有一定线形关系,仅个别单元摆动较大,不同规模单元有相对集中性。可以分为①>90%;②70%~90%;③25%~70%;④<25%四种区间,即为四种变量。5)金异常面积:分为①>70km2;②30~70km2;③10~30km2;④<10km2四个类型,构置为四个变量。6)金异常浓度:分为①>200×10-9;②(50~200)×10-9;③(20~50)×10-9;④<20×10-9四级,构置为四个变量。7)面金属量与单元面积比:分成①>200;②100~200;③10~100;④<10四个比值区间,构置为四个变量。2.定性地质标志模型评价方法本次胶西北金矿资源总量预测评价使用的具体方法类型是区域矿产资源总量预测中的定性地质标志模型评价方法。在地质单元划分和变量提取基础上,建立模型单元,通过模型单元研究,建立数学模型,进行矿田的定位定量预测,优选找矿靶区。涉及4种数学预测评价方法:特征分析法———判断金矿资源的分布位置,逻辑信息法———评价资源量规模级别,蒙特卡罗法———预测成矿带(田)的资源量,回归分析法———确定资源量的空间分布。特征分析法又称决策模拟,一种用于矿产统计预测的数学地质方法,其原理为由多个矿产统计预测变量中提取综合特征,根据综合特征建立模拟区和预测区之间的定量关系,并达到对未知区预测的目的。由于使用的计算方法不同,特征分析有不同的模型,常用的3种模型为:乘积矩阵矢量长度法模型、乘积矩阵主分量法模型和概率矩阵主分量法模型。特征分析法能帮助我们减少因原始数据不完备所引起的资源评价结果不确定性。它应用矿床的三维环境(包括地质环境、物理特征、化学特征和卫星影像特征)以及矿床产地和形成作用(即成因)的数据建立,检查和运用矿床模型,快速确定评价区的评价对象(单元或矿点)同已知模型的相似程度,或产出矿床的有利程度。逻辑信息法是使用定性地质资料进行矿产资源评价的方法之一。该法是以数理逻辑、组合分析及概率统计为基础的一种综合性数学分析方法。借助组合分析和逻辑运算,比较观测对象结构关系的相似性,并确定这种结构中个别元素的作用。逻辑信息法的实质是对比预测对象的观测数据在构形上的变化和结构上的相似性。逻辑信息法是预测资源规模的有效方法,它通过对已知模型矿田单元的合理分级,建立变异序列筛选变量,计算标志权、模型及预测单元的对象权而达到预测资源量规模的目的。蒙特卡罗法又称统计实验法、随机模拟法,是一种通过随机变量的统计实验、随机模拟求解数学问题的近似解的方法。它是一种应用较多的地质问题随机模拟方法。蒙特卡罗法模拟资源量大体分为以下过程:①构造概率模型,即建立资源量与参数之间的关联;②建立参数的统计分布;③产生随机数;④抽样,形成资源量分布;⑤用资源量分布模型估计预测区资源量,从而做出评价。回归分析法,又称因子分析法,经济预测中最常用的预测方法之一。找出一个经济变量与某些视作主变化原因的变量(解释变量)之间的数学关系,即建立数学模型,然后用某种方法给出未来期间外生变量(即受模型中变量影响小,由外部条件决定的变量)的数值,将这些数值带入数学模型,计算出要预测的经济变量的未来数值,即预测值。该方法在矿产资源评价中也普遍使用,主要原因:一是它不仅能研究变量与变量之间的关系,而且能根据一个或几个变量值(自变量)估计另一个变量(因变量)的值,并且可以推断变量之间的关系;二是它能找到影响因变量的主要自变量和次要自变量,并确定这些变量之间的关系;三是回归分析中的逐步回归能自动从数量众多的可供选择的自变量中选出与因变量关系“最密切”的一组自变量,建立资源量与地质条件之间关系的评价模型,较直接地估算预测区的资源量。回归分析的数学模型较多,主要有:一元线性回归、多元线性回归、逐步回归、主成分回归、非线性回归、事件概率回归、偏相关和多元回归、岭回归、典型回归分析和多重回归。(二)焦家带深部金矿预测方法对焦家带深部金矿预测采用了矿区和矿床相结合的矿产资源评价方法,力求做出矿床数、位置、质量及相应数量的描述。这项工作是建立在大量翔实数据基础上的评价工作,评价方法置于地质条件分析基础之上,是对成矿控制因素的综合研究。主要涉及5种预测评价方法:地质类比法、趋势外推法、地质几何法、地质-地球物理法、地质-地球化学法。地质类比法是以某些勘查程度较高的矿区作为类比的标准,通过对关键参数的比较,对未知区进行评价的一种方法。本项目主要是通过比较已发现深部矿与浅部矿的关系、深部矿的分布产出特点,研究矿化富集规律,建立矿床模式和区域成矿模式,预测未知区矿床存在的位置、规模。趋势外推法是成矿预测中应用最早的一类较成熟的方法。立足于矿床(体)的已知特征,根据矿床(体)有关特征的自然变化趋势从已知地段外推相邻未知地段内的有关特征。该方法使用简便、直观,效果又较好,在矿区深部及外围的成矿预测中得以广泛应用。本书运用趋势外推法,根据矿体外部特征变化外推深部矿体延深及规模,根据矿体内部特征变化外推深部矿体品位、体重等参数,根据成矿规律外推深部尖灭再现矿体。地质几何法是采用几何方法估算预测矿床的资源量,即把形状复杂的矿体预测描绘成简单的几何形体,并将矿化复杂状态转变为在影响范围内的均匀化状态,达到快速、大致估算其体积和资源量的目的。本次工作采用块段法估算预测的资源量。地质-地球物理法是在地质勘查研究的基础上,通过研究地球物理场或某些物理现象,以推测、确定预测对象的物性特征,进而推断预测对象的地质属性。本项目主要根据CSAMT、SIP法所建立的地球物理模型和预测的矿体位置,推测未知区矿床分布。地质-地球化学法是在地质勘查研究的基础上,以地球化学分散晕为主要研究对象,通过调查有关元素在地壳中的分布、分散及集中的规律,结合地质分析,达到预测矿床(体学)的目的。本项目根据井中构造地球化学晕,分析判断所处矿体位置,预测深部矿体学分布。
2023-08-14 06:14:491

卧室有大蒜味找不到根源

可能是氨的气味。可能是氨的气味,房屋施工时是否在冬季?混凝土里加了防冻剂会有这个问题,可以找室内空气检测单位来检测一下,确认后治理。大蒜的简介大蒜(英文名称Garlic;拉丁名称Allium sativum L),为百合科(Liliaceae)葱属(Allium)植物的地下鳞茎。大蒜整棵植株具有强烈辛辣的蒜臭味,蒜头、蒜叶(青蒜或蒜苗)和花薹(蒜薹)均可作蔬菜食用,不仅可作调味料,而且可入药,是著名的食药两用植物。大蒜鳞茎中含有丰富的蛋白质、低聚糖和多糖类、另外还有脂肪、矿物质等。大蒜具有多方面的生物活性,如防治心血管疾病、抗肿瘤及抗病原微生物等,长期食用可起到防病保健作用。
2023-08-14 06:14:341

大数据挖掘方法有哪些

直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。数据挖掘的方法神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。统计分析方法在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。模糊集方法即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。数据挖掘任务关联分析两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。聚类分析聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。分类分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。预测预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。时序模式时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。偏差分析在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。
2023-08-14 06:14:321

新鲜竹子水煮多久(新鲜竹子水煮多久熟)

1、要煮30分钟左右。 2、竹子要煮30分钟左右不会开裂。刚开始使用竹制品的时候不能直接倒入开水,以免竹子内外受热不均而开裂,竹制品不能长期存放积水,因为竹子不能长时间浸泡,过分吸水会导致其变形。 3、竹子煮4到6小时后不会开裂。竹子的稳定性较差,比较容易开裂和生虫,要防止竹子开裂,常用的方法是用盐水煮沸。煮好后,可将竹子放在阴凉通风的位置晾干。高温煮过的竹子结构更坚固,不易变形。
2023-08-14 06:14:311

存托凭证是什么意思

存托凭证(DepositoryReceipts,简称DR〕,又称存券收据或存股证,是指在一国证券市场流通的代表外国公司有价证券的可转让凭证,由存托人签发,以境外证券为基础在境内发行,代表境外基础证券权益的证券。属公司融资业务范畴的金融衍生工具。存托凭证一般代表公司股票,但有时也代表债券。扩展资料:优点存托凭证之所以能够取得较快发展,除资本市场国际化这个大背景之外,对发行人和投资者而言,均具有一定的吸引力。对发行人对发行人而言,发行存托凭证能够带来下列好处:1、市场容量大,筹资能力强。以美国存托凭证为例,美国证券市场最突出的特点就是市场容量极大,这使在美国发行ADR的外国公司能在短期内筹集到大量的外汇资金,拓宽公司的股东基础,提高其长期筹资能力,提高公司证券的流动性并分散风险。2、避免直接发行股票与债券的法律要求,上市手续简单,发行成本低。除此之外,发行存托凭证还能吸引投资者关注,增强上市公司曝光度,扩大股东基础,增加股票流动性;可以通过调整存托凭证比率将存托凭证价格调整至美国同类上市公司股价范围内,便于上市公司进入美国资本市场,提供新的筹集渠道。对于有意在美国拓展业务、实施并购战略的上市公司尤其具有吸引力;便于上市公司加强与美国投资者的联系,改善投资者关系;便于非美国上市公司对美国雇员实施员工持股计划等。对投资者与直接投资外国股票相比,投资ADR给投资者也能带来好处。1、以美元交易,且通过投资者熟悉的美国清算公司进行清算;2、上市交易的ADR须经美国证券与交易委员会(SEC)注册,有助于保障投资者利益;3、上市公司发放股利时,ADR投资者能及时获得,而且是以美元支付;4、某些机构投资者受投资政策限制,不能投资非美国上市证券,ADR可以规避这些限制。
2023-08-14 06:14:281

图像分类处理原理

1. 图像分类处理的依据图像分类处理的依据就是模式识别的过程,即通过对各类地物的遥感影像特征分析来选择特征参数,将特征空间划分为互不重叠的子空间并将图像内各个像元划分到各个子空间区,从而实现分类。这里特征参数是指能够反映地物影像特征并可用于遥感图像分类处理的变量,如多波段图像的各个波段、多波段图像的算术/逻辑运算结果、图像变换/增强结果、图像空间结构特征等; 特征空间是指由特征变量组成的多维空间。遥感影像中同一类地物在相同的条件下 ( 纹理、地形、光照及植被覆盖等) ,应具有相同或相似的光谱信息特征和空间信息特征,从而表现出同类地物的某种内在的相似性。在多波段遥感的数字图像中,可以粗略地用它们在各个波段上的像元值的连线来表示其光谱信息 ( 图 4-22a) 。在实际的多维空间中,地物的像元值向量往往不是一个点,而是呈点群分布 ( 集群) 。同类地物的特征向量将集群在同一特征空间域,不同地物的光谱信息或空间信息特征不同,因而将集群在不同的特征的空间域 ( 图 4-22b) 。在实际图像中,不同地物的集群还存在有交叉过渡,受图像分辨率的限制,一个像元中可能包括有若干个地物类别,即所谓 “混合像元”,因此对不同集群的区分要依据它们的统计特征来完成。2. 图像分类处理的关键问题图像分类处理的关键问题就是按概率统计规律,选择适当的判别函数、建立合理的判别模型,把这些离散的 “集群”分离开来,并作出判决和归类。通常的做法是,将多维波谱空间划分为若干区域 ( 子空间) ,位于同一区域内的点归于同一类。子空间划分的标准可以概括为两类: ①根据点群的统计特征,确定它所应占据的区域范围。例如,以每一类的均值向量为中心,规定在几个标准差的范围内的点归为一类。②确定类别之间的边界,建立边界函数或判别函数。不论采取哪种标准,关键在于确定同一类别在多维波谱空间中的位置 ( 类的均值向量) 、范围 ( 协方差矩阵) 及类与类边界 ( 判别函数) 的确切数值。按确定这些数据是否有已知训练样本 ( 样区) 为准,通常把分类技术分为监督和非监督两类。非监督分类是根据图像数据本身的统计特征及点群的分布情况,从纯统计学的角度对图像数据进行类别划分的分类处理方法。监督分类是根据已知类别或训练样本的模式特征选择特征参数并建立判别函数,把图像中各个像元点划归至给定类中的分类处理方法。图 4-22 某地数字图像上主要几种地物的光谱反射比曲线和集群分布3. 监督分类与非监督分类的本质区别监督分类与非监督分类的本质区别在于有无先验知识。非监督分类为在无分类对象先验知识的条件下,完全根据数据自身的统计规律所进行的分类; 监督分类指在先验知识( 训练样本的模式特征等先验知识) 的 “监督”之下进行分类。非监督分类的结果可作为监督分类训练样本选择的重要参考依据,同时,监督分类中训练样本的选择需要目视解译工作者、专家的地学知识与经验作为支撑。4. 遥感图像分类的工作流程①确定分类类别: 根据专题目的和图像数据特性确定计算机分类处理的类别数与类特征; ②选择特征参数: 选择能描述各类别的特征参数变量; ③提取分类数据: 提取各类别的训练 ( 样本) 数据; ④测定总体统计特征: 或测定训练数据的总体特征,或用聚类分析方法对特征相似的像元进行归类分析并测定其特征; ⑤分类: 用给定的分类基准对各个像元进行分类归并处理; ⑥分类结果验证: 对分类的精度与可靠性进行分析。
2023-08-14 06:14:221

葱、蒜头、洋葱、姜英文怎么说?搞懂这四个下厨常见蔬菜单字

葱、蒜头、洋葱、姜英文 怎么说? 葱、蒜头、洋葱、姜是下厨时,常常会用到的四种蔬菜或配料,如果你还不知道葱、蒜头、洋葱、姜的英文怎么说,那就赶快学起来吧! 下面整理了「葱、蒜头、洋葱、姜」的英文例句与中文意思,赶快学起来吧! 1.spring onion 葱、青葱 spring onion的意思是指「a long, thin, green and white onion that is often eaten uncooked」,也就是青葱的意思啦,常常用于做汤或是其他料理的配料。 下面列出spring onion 英文例句与中文意思。 例: We have spinach, Chinese cabbage, onion and spring onion. 我们有菠菜,大白菜,洋葱和青葱。 2.garlic 蒜头 garlic的意思是指「蒜头」。 下面列出garlic 英文例句与中文意思。 例: We have garlic, Chinese cabbage, onion and spring onion. 我们有蒜头,大白菜,洋葱和青葱。 3.onion 洋葱 onion的意思是指「洋葱」。 下面列出onion 英文例句与中文意思。 例: We have garlic, Chinese cabbage, onion and spring onion. 我们有蒜头,大白菜,洋葱和青葱。 最后一个单字是姜,姜的英文是ginger。 garlic, garlic 中文, garlic 意思, Ginger, ginger 中文, ginger 意思, onion, onion 中文, onion 意思, spring onion, spring onion 中文, spring onion 意思, 洋葱 英文, 蒜头 英文, 葱 英文, 姜 英文
2023-08-14 06:14:141

聚类分析、判别分析、主成分分析、因子分析

来自: 带呀带尾呀 (数据小生、数字营销、新媒体) 主成分分析与因子分析的区别 1. 目的不同: 因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。 2. 线性表示方向不同: 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。 4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。 5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。 6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。 7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。 1 、聚类分析 基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。 常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。 注意事项:1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类; 2. K-均值法要求分析人员事先知道样品分为多少类; 3. 对变量的多元正态性,方差齐性等要求较高。 应用领域:细分市场,消费行为划分,设计抽样方案等 2、判别分析 基本原理:从已知的各种分类情况中总结规律(训练出判别函数),当新样品进入时,判断其与判别函数之间的相似程度(概率最大,距离最近,离差最小等判别准则)。 常用判别方法:最大似然法,距离判别法,Fisher判别法,Bayes判别法,逐步判别法等。 注意事项:1. 判别分析的基本条件:分组类型在两组以上,解释变量必须是可测的; 2. 每个解释变量不能是其它解释变量的线性组合(比如出现多重共线性情况时,判别权重会出现问题); 3. 各解释变量之间服从多元正态分布(不符合时,可使用Logistic回归替代),且各组解释变量的协方差矩阵相等(各组协方方差矩阵有显著差异时,判别函数不相同)。 相对而言,即使判别函数违反上述适用条件,也很稳健,对结果影响不大。 应用领域:对客户进行信用预测,寻找潜在客户(是否为消费者,公司是否成功,学生是否被录用等等),临床上用于鉴别诊断。 3、 主成分分析/ 因子分析 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子。(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系) 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。 (实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计) 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。 注意事项:1. 由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法; 2. 对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分; 3.主成分分析不要求数据来源于正态分布; 4. 在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。 5. 因子分析中各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。 应用领域:解决共线性问题,评价问卷的结构效度,寻找变量间潜在的结构,内在结构证实。 4、对应分析/最优尺度分析 基本原理:利用降维的思想以达到简化数据结构的目的,同时对数据表中的行与列进行处理,寻求以低维图形表示数据表中行与列之间的关系。 对应分析:用于展示变量(两个/多个分类)间的关系(变量的分类数较多时较佳); 最优尺度分析:可同时分析多个变量间的关系,变量的类型可以是无序多分类,有序多分类或连续性变量,并 对多选题的分析提供了支持。 5、典型相关分析 基本原理:借用主成分分析降维的思想,分别对两组变量提取主成分,且使从两组变量提取的主成分之间的相关程度达到最大,而从同一组内部提取的各主成分之间互不相关。
2023-08-14 06:14:131