barriers / 阅读 / 详情

谁懂迭代加权最小二乘法,能否给讲下原理

2023-08-22 18:13:55
共2条回复
牛云
就是最小二乘法的计算量一般是矩阵阶数的三次方倍数的加法次数,三阶,四阶还能算,如果一百阶呢,所以用迭代最小二乘,迭代最小二乘是通过矩阵引理来计算,就是说比如原来有三个数据 用最小二乘法算出所求的系数矩阵,如果再来一个数据变成四个数据的时候,前三个不动然后通过矩阵原理算出新的所求系数矩阵,这样只需要一步的计算量,每出现一个新的数据就只需要计算一步,相比于最小二乘极大的减少了运算量
贝贝

最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配.  最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小.  最小二乘法通常用于曲线拟合.很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达.  比如从最简单的一次函数y=kx+b讲起   已知坐标轴上有些点(1.1,2.0),(2.1,3.2),(3,4.0),(4,6),(5.1,6.0),求经过这些点的图象的一次函数关系式.  当然这条直线不可能经过每一个点,我们只要做到5个点到这条直线的距离的平方和最小即可,这这就需要用到最小二乘法的思想.然后就用线性拟合来求.

相关推荐

最小二乘法的原理

最小二乘法原理:找出一条直线使得所有图上面的点纵坐标的差值的平方和最小,其实也是方差最小。最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。最小二乘法在交通运输学中的运用:交通发生预测的目的是建立分区产生的交通量与分区土地利用、社会经济特征等变量之间的定量关系,推算规划年各分区所产生的交通量。因为一次出行有两个端点,所以我们要分别分析一个区生成的交通和吸引的交通。交通发生预测通常有两种方法:回归分析法和聚类分析法。回归分析法是根据对因变量与一个或多个自变量的统计分析,建立因变量和自变量的关系,最简单的情况就是一元回归分析,一般式为:Y=α+βX式中Y是因变量,X是自变量,α和β是回归系数。若用上述公式预测小区的交通生成,则以下标 i 标记所有变量;如果用它研究分区交通吸引,则以下标 j 标记所有变量。
2023-08-14 06:02:041

简述最小二乘估计原理。

参差平方和最小
2023-08-14 06:04:041

最小二乘法的基本原理是什么??

使每个采样点的拟合值与实际值之差的平方为最小。
2023-08-14 06:04:203

谁能通俗的讲解一下偏最小二乘法的原理

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
2023-08-14 06:04:451

声速测量怎么用最小二乘法处理数据

最小二乘法原理 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1). Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”. 你测的数据 是时间X和距离Y, 用所测数据确定a0,a1
2023-08-14 06:05:101

用最小二乘法处理数据的优点

它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。实际应用中,常用一堆数据来得到优化或相对理想的参数值。
2023-08-14 06:05:202

普通最小二乘估计量b1的方差 var(b1)=(∑X^2/n∑x^2)*σ2公式怎么推导?

首先这里需要用到几个OLS的假定:E(u)=0, cov(ui,uj)=0, var(u)=σ^2; 在这里用大写表示估计量, k=(x-X u0305)/∑((x-X u0305)^2) B2=b2+∑ku, B1=Y u0305-B2*X u0305=Y u0305-(b2+∑ku)*X u0305=b1+(∑u)/n-X u0305*∑ku, E(B1)=b1 var(B1)=E[(B1-b1)^2]=E{[(∑u)/n-X u0305*∑ku]^2}=E((∑u)^2)/n^2+X u0305^2*E((∑ku)^2)-2(X u0305/n)*E[(∑u)(∑ku)] 分开来证明 cov(ui,uj)=E(ui*uj)-E(ui)*E(uj)=0, so E(ui*uj) =0; E[(u)^2]=Du+E(u)^2=σ^2; E((∑u)^2)=∑E(u^2)+2∑E(ui*uj)=n*σ^2E((∑ku)^2)=∑(k^2)*E(u^2)=σ^2/(∑((x-X u0305)^2)); E[(∑u)(∑ku)]=∑k*E(u^2)+∑k*E(ui*uj)=σ^2*∑k=0; 汇总在一起 var(B1)=σ^2/n+(σ^2)(X u0305^2)/(∑((x-X u0305)^2)) 你最后合并一下就能得出这个公式
2023-08-14 06:06:362

时间序列最小二乘估计结果怎么算

一.特征估计和模型检验1、均值估计[1]估计量 u0302= u0305_n[2]性质无偏性: u0302是 的无偏估计相合性:若 _ → 0,则 u0302是 的相合估计;如果{ }严遍历则是强相合估计收敛性:若若{ _ }正态/独立同分布白噪声,则2、自协方差[1]估计量[2]性质(若 { 1 = 0} = 0,则 正定)3、偏相关函数[1]定义[2]性质如果{ }是正态平稳序列,则当 > 时,4、独立白噪声检验[1]正态检验[2]卡方检验5、特殊序列检验[1]季节序列检验[2]求和模型检验
2023-08-14 06:06:431

在回归分析中,估计回归系数的最小二乘法的原理是( )。

【答案】:C对于给定的n组观测值,可用于描述数据的直线有很多条,究竟用哪条直线来代表两个变量之间的关系。需要有一个明确的原则。我们自然会想到距离各观察点最近的一条直线,即实际观测点和直线间的距离最小。根据这一思想对回归模型进行估计的方法称为最小二乘法。最小二乘法就是使得因变量的观测值与估计值之间的离差平方和最小来估计参数的方法。
2023-08-14 06:06:511

最小小的原理

最小二乘法是一种用于拟合数据的最常用的统计学方法。它的基本原理是,通过最小化拟合数据的误差平方和,来求解拟合参数的最优解。最小二乘法的基本思想是,在拟合数据的时候,要使拟合数据的误差平方和最小,从而得到最优的拟合参数。具体来说,就是要求解一个函数,使得该函数的误差平方和最小。最小二乘法的解决方法是,首先,根据拟合数据,建立拟合函数,然后,求解拟合函数的最优参数,使得拟合函数的误差平方和最小。最后,根据拟合函数和最优参数,得到拟合数据的最优拟合曲线。最小二乘法的实现步骤主要有:1)根据拟合数据,建立拟合函数;2)求解拟合函数的最优参数;3)根据拟合函数和最优参数,得到拟合数据的最优拟合曲线。最小二乘法的实现过程中,需要用到微积分、线性代数等数学知识,以及梯度下降算法等机器学习算法。
2023-08-14 06:07:241

最小二乘法原理认为最可信赖值应是什么最小

我用括号把层次分开,简单的说就是: 让(((采样的点)跟(拟合的曲线)的距离)总和)最小. 楼上的说法有问题,不是非要直线不可,任何曲线都可以的. 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2。
2023-08-14 06:07:342

最小二乘法拟合圆原理

最小二乘法拟合圆原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差最小二乘法,是一种数学优化技术。它通过最小化误差的平方和找到一组数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据、并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法拟合圆的方法;第一步,根据已知点,描图X=[。。。],Y=[。。。],plot(X,Y,"p")第二步,根据已知点拟合圆的一般式方程,利用公式求出圆心和半径首先,用方程x^2+y^2+Dx+Ey+F=0,拟合出其系数D、E、F,求出圆心(-D/2,-E/2),半径0.5√(D^2+-E^2-4F)第三步,根据圆的参数方程,求出x,y的点,描点plot(x,y,"r-"),得到拟合圆的图形利用仿真的得来的数据、选取某一截面,用最小二乘法进行拟合,得到其拟合效果图,如上图所示在1809年高斯对最小二乘估计进行的误差分析中发现。在线性模型的所有无偏估计类中,最小二乘估计是唯一的方差最小的无偏估计。进入20世纪后,哥色特、费歇尔等人还发现。在正态误差的假定下、最小二乘估计有较完善的小样本理论、使基于它的统计推断易于操作且有关的概率计算不难进行与此同时。对最小二乘法误差分析的研究也促进了线性模型理论的发展.如今。线性模型已经成为理论结果最丰富、应用最广泛的一类回归模型.
2023-08-14 06:07:431

最小二乘法公式的案例分析

使用年数1 2 3 4 5 6 7 8 9 10平均价格2651 1943 1494 1087 765 538 484 290 226 204(1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征?(2) 令 , 绘出数据 的散点图, 注意观察有何特征?(3) 利用“Line”函数, 将散点连接起来, 说明有何特征?(4) 利用最小二乘法, 求 与 之间的关系;(5) 求 与 之间的关系;(6) 在同一张图中显示散点图 及 关于 的图形.思考与练习1. 假设一组数据 : , , …, 变量之间近似成线性关系, 试利用集合的有关运算, 编写一简单程序: 对于任意给定的数据集合 , 通过求解极值原理所包含的方程组, 不需要给出 、 计算的表达式, 立即得到 、 的值, 并就本课题 I /(3)进行实验.注: 利用Transpose函数可以得到数据A的第一个分量的集合, 命令格式为:先求A的转置, 然后取第一行元素, 即为数据A的第一个分量集合, 例如(A即为矩阵)= (数据A的第一个分量集合)= (数据A的第二个分量集合)B-C表示集合B与C对应元素相减所得的集合, 如 = .2. 最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.
2023-08-14 06:08:061

根据最小二乘法估计回归方程参数的原理是( )。

【答案】:A最小二乘法就是使得因变量的观测值和估计值之间的离差(又称残差)平方和最小来估计回归方程参数的方法。
2023-08-14 06:08:211

在回归分析中,估计回归系数的最小二乘法的原理是使得( )的离差平方和最小。

【答案】:D此题考查最小二乘法。最小二乘法就是使得因变量观测值与估计值之间的离差平方和最小来估计参数β0和β1的方法。
2023-08-14 06:08:291

什么是“最小二乘法原理”?

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:08:592

最小二乘法的原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:09:082

最小二乘法的原理是什么?

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。   Y计= a0 + a1 X (式1-1)   其中:a0、a1 是任意实数   为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。   令: φ = ∑(Yi - Y计)2 (式1-2)   把(式1-1)代入(式1-2)中得:   φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)   当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。   (式1-4)   (式1-5)   亦即:   m a0 + (∑Xi ) a1 = ∑Yi (式1-6)   (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)   得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:   a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)   a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)   这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。   在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。   R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *   在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
2023-08-14 06:09:205

最小二乘法的原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:09:532

最小二乘原理是什么

设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x n,我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。 最小二乘法是处理各种观测数据进行测量平差的一种基本方法。 如果以不同精度多次观测一个或多个未知量,为了求定各未知量的最可靠值,各观测量必须加改正数,使其各改正数的平方乘以观测值的权数的总和为最小。因此称最小二乘法。所谓“权”就是表示观测结果质量相对可靠程度的一种权衡值。 法国数学家勒让德于1806年首次发表最小二乘理论。事实上,德国的高斯于1794年已经应用这一理论推算了谷神星的轨道,但迟至1809年才正式发表。此后他又提出平差三角网的理论,拟定了解法方程式的方法等。为利用最小二乘法测量平差奠定了基础。 最小二乘法也是数理统计中一种常用的方法,在工业技术和其他科学研究中有广泛应用。 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计= a0 + a1 X)的离差(Yi - Y计)的平方和‘〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) (见附图)亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值
2023-08-14 06:10:081

什么叫最小二乘法原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:10:322

简答题 简述最小二乘法基本原理

完全最小二乘法(Total Least Squares),又称总体最小二乘法。可参考:总体最小二乘法。基本原理:求解Ax=b的最小二乘法只认为b含有误差,但实际上系数矩阵A也含有误差。总体最小二乘法就是同时考虑A和b二者的误差和扰动,令A矩阵的误差扰动为E,向量b的误差向量为e,即考虑矩阵方程:(A+E)x=b+e (1)的最小二乘解。上式(1)可写作:(B+D)z=0 (2)式中B=[-b|A],D=[-e|E],z=[1/x]。求解方程组的总体最小二乘法(TLS)就是求解向量z,使得扰动矩阵D的F-范数最小。
2023-08-14 06:10:431

最小二乘法

我用括号把层次分开,简单的说就是:让(((采样的点)跟(拟合的曲线)的距离)总和)最小.楼上的说法有问题,不是非要直线不可,任何曲线都可以的. 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.
2023-08-14 06:10:561

最小二乘法的优缺点是什么?

一、最小二乘法的优点:1、最小二乘法能通过最小化误差的平方和寻找数据的最佳函数匹配。2、利用最小二乘法能简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。3、最小二乘法可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。当自变量和因变量同时存在均值为零,相同方差的随机误差时,此方法能给出在统计意义上最好的参数拟合结果。二、、最小二乘法的缺点:XTX不可逆时,不能用最小二乘估计。最小二乘法是线性估计,已经默认了是线性的关系,使用有一定局限性。在回归过程中,回归的关联式不可能全部通过每个回归数据点。扩展资料最小二乘法的原理:研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如:其中:a0、a1 是任意实数为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和最小为“优化判据”。参考资料来源:百度百科-最小二乘法
2023-08-14 06:11:191

高中以上知识,最小二乘法的公式ab怎么算???在线等

a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)b=y(平均)-a*x(平均)b 是截距a 是斜率
2023-08-14 06:11:472

求“最小二乘法”拟合曲线的原理

最小二乘法目的是根据n个离散的点,拟合出一条曲线y=F(x),每个点到F(x)的距离两两相乘的积最小。
2023-08-14 06:11:552

为什么最小二乘回归的残差和是0? 急 !!急!!

对于n个样本 残差和=yi-(bxi+a)(i=[1,n])=ny-n(bx+a),这里x,y为均值,因为y=a+bx,所以n(y-bx-a)=0
2023-08-14 06:12:404

加权最小二乘法克服异方差的主要原理

加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度。加权最小二乘法是对原模型进行加权,使之成为一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数的一种数学优化技术。线性回归的假设条件之一为方差齐性,若不满足方差齐性(即因变量的变异程度会随着自身的预测值或者其它自变量的变化而变化)这个假设条件时,就需要用加权最小二乘法(WLS)来进行模型估计。加权最小二乘法(WLS)会根据变异程度的大小赋予不同的权重,使其加权后回归直线的残差平方和最小,从而保证了模型有更好的预测价值。在多重线性回归中,我们采用的是普通最小二乘法(OLS)估计参数,对模型中每个观测点是同等看待的。但是在有些研究问题中,例如调查某种疾病的发病率,以地区为观测单位,地区的人数越多,得到的发病率就越稳定,因变量的变异程度就越小,而地区人数越少,得到的发病率就越大。在这种情况下,因变量的变异程度会随着自身数值或者其他变量的变化而变化,从而不满足残差方差齐性的条件。
2023-08-14 06:13:071

用极为专业的数学语言来解释下 “最小2乘法”

注意;在残差满足VPV为最小的条件下解算测量估值或参数估值并进行精度估算的方法。其中V为残差向量,P为其权矩阵。最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。最小二乘法原理  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1.x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。   Y计= a0 + a1 X (式1-1)   其中:a0、a1 是任意实数   为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。   令: φ = ∑(Yi - Y计)2 (式1-2)   把(式1-1)代入(式1-2)中得:   φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)   当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。   (式1-4)   (式1-5)   亦即:   m a0 + (∑Xi ) a1 = ∑Yi (式1-6)   (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)   得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:   a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)   a1 = [m∑Xi Yi - (∑Xi ∑Yi)] / [m∑Xi2 - (∑Xi)2 )] (式1-9)   这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。   在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1. x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。   R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *   在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
2023-08-14 06:13:202

最小二乘法怎么算

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
2023-08-14 06:13:422

什么是小二乘法有什么用呀?

最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.
2023-08-14 06:14:011

最小二乘原理使用的前提条件

设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x n,我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。 最小二乘法是处理各种观测数据进行测量平差的一种基本方法。
2023-08-14 06:14:091

极为简单的最小二乘法问题

  最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。  最小二乘法公式  ∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平  ∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2  最小二乘法的原理:  用各个离差的平方和M=∑(i=1到n)[yi-(axi+b)]^2最小来保证每个离差的绝对值都很小。解方程组?M/?a=0;?M/?b=0,整理得(∑xi^2)a+(∑xi)b=∑xiyi;(∑xi)a+nb=∑yi。解出a,b。  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中, 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。  Y计= a0 + a1 X (式1-1)  其中:a0、a1 是任意实数  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化数据”。  令: φ = ∑(Yi - Y计)2 (式1-2)  把(式1-1)代入(式1-2)中得:  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。  (式1-4)  (式1-5)  亦即:  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
2023-08-14 06:14:281

曲线拟合的最小二乘法

对于曲线拟合函数ψ(x),不要求其严格的通过所有数据点,也就是说拟合函数ψ(x)在xi处的偏差(亦称残差)不都严格的等于零,即为矛盾方程组:为了是近似曲线能尽量反映所给数据点的变化趋势,要求偏差按照某种度量标准最小。这后面的分析用到了范数的概念。这种方法就叫做曲线拟合的最小二乘法。我们新建并打开一个excel表格,在excel中输入或打开要进行最小二乘法拟合的数据。此时按住“shift”键,同时用鼠标左键单击以选择数据。单击菜单栏上的“插入”-“图表”-“散点图”图标。此时,我们选择第一个“仅带数据标记的散点图”图标,随后我们可以在窗口中间弹出散点图窗口。鼠标左键单击上边的散点,单击鼠标右键,弹出列表式对话框,再单击“添加趋势线(R)”。右侧就会弹出“设置趋势线格式”对话框。利用最小二乘法将上面数据所标示的曲线拟合为二次曲线,使用c语言编程求解函数系数;最小二乘法原理 原理不再赘述,主要是解法采用偏微分求出来的。
2023-08-14 06:14:351

选择题:用最小二乘法确定直线回归方程的原则是什么

B 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。参见百度百科 最小二乘法
2023-08-14 06:14:572

图像分类处理原理

1. 图像分类处理的依据图像分类处理的依据就是模式识别的过程,即通过对各类地物的遥感影像特征分析来选择特征参数,将特征空间划分为互不重叠的子空间并将图像内各个像元划分到各个子空间区,从而实现分类。这里特征参数是指能够反映地物影像特征并可用于遥感图像分类处理的变量,如多波段图像的各个波段、多波段图像的算术/逻辑运算结果、图像变换/增强结果、图像空间结构特征等; 特征空间是指由特征变量组成的多维空间。遥感影像中同一类地物在相同的条件下 ( 纹理、地形、光照及植被覆盖等) ,应具有相同或相似的光谱信息特征和空间信息特征,从而表现出同类地物的某种内在的相似性。在多波段遥感的数字图像中,可以粗略地用它们在各个波段上的像元值的连线来表示其光谱信息 ( 图 4-22a) 。在实际的多维空间中,地物的像元值向量往往不是一个点,而是呈点群分布 ( 集群) 。同类地物的特征向量将集群在同一特征空间域,不同地物的光谱信息或空间信息特征不同,因而将集群在不同的特征的空间域 ( 图 4-22b) 。在实际图像中,不同地物的集群还存在有交叉过渡,受图像分辨率的限制,一个像元中可能包括有若干个地物类别,即所谓 “混合像元”,因此对不同集群的区分要依据它们的统计特征来完成。2. 图像分类处理的关键问题图像分类处理的关键问题就是按概率统计规律,选择适当的判别函数、建立合理的判别模型,把这些离散的 “集群”分离开来,并作出判决和归类。通常的做法是,将多维波谱空间划分为若干区域 ( 子空间) ,位于同一区域内的点归于同一类。子空间划分的标准可以概括为两类: ①根据点群的统计特征,确定它所应占据的区域范围。例如,以每一类的均值向量为中心,规定在几个标准差的范围内的点归为一类。②确定类别之间的边界,建立边界函数或判别函数。不论采取哪种标准,关键在于确定同一类别在多维波谱空间中的位置 ( 类的均值向量) 、范围 ( 协方差矩阵) 及类与类边界 ( 判别函数) 的确切数值。按确定这些数据是否有已知训练样本 ( 样区) 为准,通常把分类技术分为监督和非监督两类。非监督分类是根据图像数据本身的统计特征及点群的分布情况,从纯统计学的角度对图像数据进行类别划分的分类处理方法。监督分类是根据已知类别或训练样本的模式特征选择特征参数并建立判别函数,把图像中各个像元点划归至给定类中的分类处理方法。图 4-22 某地数字图像上主要几种地物的光谱反射比曲线和集群分布3. 监督分类与非监督分类的本质区别监督分类与非监督分类的本质区别在于有无先验知识。非监督分类为在无分类对象先验知识的条件下,完全根据数据自身的统计规律所进行的分类; 监督分类指在先验知识( 训练样本的模式特征等先验知识) 的 “监督”之下进行分类。非监督分类的结果可作为监督分类训练样本选择的重要参考依据,同时,监督分类中训练样本的选择需要目视解译工作者、专家的地学知识与经验作为支撑。4. 遥感图像分类的工作流程①确定分类类别: 根据专题目的和图像数据特性确定计算机分类处理的类别数与类特征; ②选择特征参数: 选择能描述各类别的特征参数变量; ③提取分类数据: 提取各类别的训练 ( 样本) 数据; ④测定总体统计特征: 或测定训练数据的总体特征,或用聚类分析方法对特征相似的像元进行归类分析并测定其特征; ⑤分类: 用给定的分类基准对各个像元进行分类归并处理; ⑥分类结果验证: 对分类的精度与可靠性进行分析。
2023-08-14 06:14:221

存托凭证是什么意思

存托凭证(DepositoryReceipts,简称DR〕,又称存券收据或存股证,是指在一国证券市场流通的代表外国公司有价证券的可转让凭证,由存托人签发,以境外证券为基础在境内发行,代表境外基础证券权益的证券。属公司融资业务范畴的金融衍生工具。存托凭证一般代表公司股票,但有时也代表债券。扩展资料:优点存托凭证之所以能够取得较快发展,除资本市场国际化这个大背景之外,对发行人和投资者而言,均具有一定的吸引力。对发行人对发行人而言,发行存托凭证能够带来下列好处:1、市场容量大,筹资能力强。以美国存托凭证为例,美国证券市场最突出的特点就是市场容量极大,这使在美国发行ADR的外国公司能在短期内筹集到大量的外汇资金,拓宽公司的股东基础,提高其长期筹资能力,提高公司证券的流动性并分散风险。2、避免直接发行股票与债券的法律要求,上市手续简单,发行成本低。除此之外,发行存托凭证还能吸引投资者关注,增强上市公司曝光度,扩大股东基础,增加股票流动性;可以通过调整存托凭证比率将存托凭证价格调整至美国同类上市公司股价范围内,便于上市公司进入美国资本市场,提供新的筹集渠道。对于有意在美国拓展业务、实施并购战略的上市公司尤其具有吸引力;便于上市公司加强与美国投资者的联系,改善投资者关系;便于非美国上市公司对美国雇员实施员工持股计划等。对投资者与直接投资外国股票相比,投资ADR给投资者也能带来好处。1、以美元交易,且通过投资者熟悉的美国清算公司进行清算;2、上市交易的ADR须经美国证券与交易委员会(SEC)注册,有助于保障投资者利益;3、上市公司发放股利时,ADR投资者能及时获得,而且是以美元支付;4、某些机构投资者受投资政策限制,不能投资非美国上市证券,ADR可以规避这些限制。
2023-08-14 06:14:281

新鲜竹子水煮多久(新鲜竹子水煮多久熟)

1、要煮30分钟左右。 2、竹子要煮30分钟左右不会开裂。刚开始使用竹制品的时候不能直接倒入开水,以免竹子内外受热不均而开裂,竹制品不能长期存放积水,因为竹子不能长时间浸泡,过分吸水会导致其变形。 3、竹子煮4到6小时后不会开裂。竹子的稳定性较差,比较容易开裂和生虫,要防止竹子开裂,常用的方法是用盐水煮沸。煮好后,可将竹子放在阴凉通风的位置晾干。高温煮过的竹子结构更坚固,不易变形。
2023-08-14 06:14:311

大数据挖掘方法有哪些

直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。数据挖掘的方法神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。统计分析方法在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。模糊集方法即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。数据挖掘任务关联分析两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。聚类分析聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。分类分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。预测预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。时序模式时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。偏差分析在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。
2023-08-14 06:14:321

卧室有大蒜味找不到根源

可能是氨的气味。可能是氨的气味,房屋施工时是否在冬季?混凝土里加了防冻剂会有这个问题,可以找室内空气检测单位来检测一下,确认后治理。大蒜的简介大蒜(英文名称Garlic;拉丁名称Allium sativum L),为百合科(Liliaceae)葱属(Allium)植物的地下鳞茎。大蒜整棵植株具有强烈辛辣的蒜臭味,蒜头、蒜叶(青蒜或蒜苗)和花薹(蒜薹)均可作蔬菜食用,不仅可作调味料,而且可入药,是著名的食药两用植物。大蒜鳞茎中含有丰富的蛋白质、低聚糖和多糖类、另外还有脂肪、矿物质等。大蒜具有多方面的生物活性,如防治心血管疾病、抗肿瘤及抗病原微生物等,长期食用可起到防病保健作用。
2023-08-14 06:14:341

ottd穿搭是什么意思?

OTTD指的是Outfit of the Day,意思是今日穿搭。这个词常常被用于时尚圈,特别是在社交媒体上,人们会晒出自己的最新穿搭照片,并使用OTTD作为标签。
2023-08-14 06:14:363

气动隔膜泵的工作原理及使用特点?

1、压缩空气为动力。2、是一种由膜片往复变形造成容积变化的容积泵,其工作原理近似于柱塞泵,由于隔膜泵工作原理的特点,因此隔膜泵具有以下特点:泵不会过热:压缩空气作动力,在排气时是一个膨胀吸热的过程,气动泵工作时温度是降低的,无有害气体排出。不会产生电火花:气动隔膜泵不用电力作动力,接地后又防止了静电火花可以通过含颗粒液体:因为容积式工作且进口为球阀,所以不容易被堵。对物料的剪切力极低:工作时是怎么吸进怎么吐出,所以对物料的搅动最小,适用于不稳定物质的输送流量可调节,可以在物料出口处加装节流阀来调节流量。具有自吸的功能。可以空运行,而不会有危险。可以潜水工作。可以输送的流体极为广泛,从低粘度的到高粘度的, 从腐蚀性得到粘稠的。没有复杂的控制系统,没有电缆、保险丝等。体积小、重量轻,便于移动。无需润滑所以维修简便,不会由于滴漏污染工作环境。泵始终能保持高效,不会因为磨损而降低。百分之百的能量利用,当关闭出口,泵自动停机,设备移动、磨损、过载、发热没有动密封,维修简便避免了泄漏。工作时无死点。永嘉正海泵阀有限公司的 隔膜泵使用效果不错还有不懂可以追问。望楼主采纳
2023-08-14 06:14:381

你可以在任何时候给我打电话 用英语翻译这句话

Youcancallmeatanytime还可以用另一种形式说:你可以在需要我的时候随时打电话给我。Pleasegivemeacallwhenyouwillneedme.望采纳O(∩_∩)O
2023-08-14 06:14:391

葱、蒜头、洋葱、姜英文怎么说?搞懂这四个下厨常见蔬菜单字

葱、蒜头、洋葱、姜英文 怎么说? 葱、蒜头、洋葱、姜是下厨时,常常会用到的四种蔬菜或配料,如果你还不知道葱、蒜头、洋葱、姜的英文怎么说,那就赶快学起来吧! 下面整理了「葱、蒜头、洋葱、姜」的英文例句与中文意思,赶快学起来吧! 1.spring onion 葱、青葱 spring onion的意思是指「a long, thin, green and white onion that is often eaten uncooked」,也就是青葱的意思啦,常常用于做汤或是其他料理的配料。 下面列出spring onion 英文例句与中文意思。 例: We have spinach, Chinese cabbage, onion and spring onion. 我们有菠菜,大白菜,洋葱和青葱。 2.garlic 蒜头 garlic的意思是指「蒜头」。 下面列出garlic 英文例句与中文意思。 例: We have garlic, Chinese cabbage, onion and spring onion. 我们有蒜头,大白菜,洋葱和青葱。 3.onion 洋葱 onion的意思是指「洋葱」。 下面列出onion 英文例句与中文意思。 例: We have garlic, Chinese cabbage, onion and spring onion. 我们有蒜头,大白菜,洋葱和青葱。 最后一个单字是姜,姜的英文是ginger。 garlic, garlic 中文, garlic 意思, Ginger, ginger 中文, ginger 意思, onion, onion 中文, onion 意思, spring onion, spring onion 中文, spring onion 意思, 洋葱 英文, 蒜头 英文, 葱 英文, 姜 英文
2023-08-14 06:14:141

聚类分析、判别分析、主成分分析、因子分析

来自: 带呀带尾呀 (数据小生、数字营销、新媒体) 主成分分析与因子分析的区别 1. 目的不同: 因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。 2. 线性表示方向不同: 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。 4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。 5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。 6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。 7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。 1 、聚类分析 基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。 常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。 注意事项:1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类; 2. K-均值法要求分析人员事先知道样品分为多少类; 3. 对变量的多元正态性,方差齐性等要求较高。 应用领域:细分市场,消费行为划分,设计抽样方案等 2、判别分析 基本原理:从已知的各种分类情况中总结规律(训练出判别函数),当新样品进入时,判断其与判别函数之间的相似程度(概率最大,距离最近,离差最小等判别准则)。 常用判别方法:最大似然法,距离判别法,Fisher判别法,Bayes判别法,逐步判别法等。 注意事项:1. 判别分析的基本条件:分组类型在两组以上,解释变量必须是可测的; 2. 每个解释变量不能是其它解释变量的线性组合(比如出现多重共线性情况时,判别权重会出现问题); 3. 各解释变量之间服从多元正态分布(不符合时,可使用Logistic回归替代),且各组解释变量的协方差矩阵相等(各组协方方差矩阵有显著差异时,判别函数不相同)。 相对而言,即使判别函数违反上述适用条件,也很稳健,对结果影响不大。 应用领域:对客户进行信用预测,寻找潜在客户(是否为消费者,公司是否成功,学生是否被录用等等),临床上用于鉴别诊断。 3、 主成分分析/ 因子分析 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子。(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系) 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。 (实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计) 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。 注意事项:1. 由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法; 2. 对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分; 3.主成分分析不要求数据来源于正态分布; 4. 在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。 5. 因子分析中各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。 应用领域:解决共线性问题,评价问卷的结构效度,寻找变量间潜在的结构,内在结构证实。 4、对应分析/最优尺度分析 基本原理:利用降维的思想以达到简化数据结构的目的,同时对数据表中的行与列进行处理,寻求以低维图形表示数据表中行与列之间的关系。 对应分析:用于展示变量(两个/多个分类)间的关系(变量的分类数较多时较佳); 最优尺度分析:可同时分析多个变量间的关系,变量的类型可以是无序多分类,有序多分类或连续性变量,并 对多选题的分析提供了支持。 5、典型相关分析 基本原理:借用主成分分析降维的思想,分别对两组变量提取主成分,且使从两组变量提取的主成分之间的相关程度达到最大,而从同一组内部提取的各主成分之间互不相关。
2023-08-14 06:14:131

给竹子用盐是用干盐还是盐水?

盐水不然盐没有用
2023-08-14 06:14:102

(谢谢你给我打电话)用英语怎么说

Thanks for you calling me. 满意加分哦
2023-08-14 06:14:071

离心泵和隔膜泵的区别

离心泵是叶片泵,通过旋转产生离心力输出介质,隔膜泵是容积泵,通过隔膜的直线移动将挤压介质.
2023-08-14 06:14:056

竹料怎么煮

1、竹料需要煮30分钟左右不会开裂。2、刚开始使用竹制品的时候不能直接倒入开水,以免竹子内外受热不均而开裂;竹制品不能长期存放积水,因为竹子不能长时间浸泡,过分吸水会导致其变形,进而开裂;用淡盐水浸泡3个小时,再用清水蒸煮30分钟左右,可防止竹制品霉变、虫蛀和开裂;若长时间不使用时,可晾干后用胶袋密封保存,可放防潮袋,这样可以防止竹制品开裂。
2023-08-14 06:14:001

大蒜头是荤菜还是素菜

在学术界是素的,其他情况特殊对待。大蒜(英文名称Garlic;拉丁名称Allium sativum L.),为百合科(Liliaceae)葱属(Allium)植物的地下鳞茎。大蒜整棵植株具有强烈辛辣的蒜臭味,蒜头、蒜叶(青蒜或蒜苗)和花薹(蒜薹)均可作蔬菜食用,不仅可作调味料,而且可入药,是著名的食药两用植物。扩展资料:大蒜的营养功效:1、抗癌防癌同时也能够抗炎灭菌大蒜能够有效的保护肝脏,能够有效的阻断亚硝酸胺在身体里面的合成,预防肝癌的产生,另外大蒜里面含有的硒和锗能够抑制恶性肿瘤。大蒜里面含有硫化丙烯,具有一定的杀菌功效,能够有效的杀灭寄生虫以及病原菌,只有预防流感的功效,同时也能够防止伤口感染,辅助治疗感染性疾病。2、预防关节炎,调节胰岛素大蒜具有除风湿以及破冷风的功效,同时也能够医治风寒湿性的关节炎。不合理的饮食结构会下降胰岛素的合成能力,大蒜里面含有的硒能够调节胰岛素的功能,能够辅助治疗糖尿病。3、降低血脂延缓衰老大蒜里面含有的有效成分能够预防动脉硬化和冠心病的发生,同时也能够降低血脂,防止血栓。经常吃大蒜能够延缓衰老,因为里面含有的抗氧化性很高,适合于经常吸烟以及铅中毒的人群。参考资料来源:百度百科-大蒜参考资料来源:人民网-大蒜有3大功效 正确吃大蒜会营养翻倍
2023-08-14 06:13:561