物理

阅读 / 问答 / 标签

投影仪工作原理图解初中物理

投影仪成的是正立放大的像,要用到凸透镜和平面镜先经过凸透镜折射,在经过平面镜反射,投影片距离凸透镜越近,像越大

初二物理投影仪的原理

一、投影仪的像其实可以认为是胶片旋转180度得到的,是不是叫颠倒我不清楚,或许应该叫颠倒吧!二、首先要精细的调节镜头,其次要保证室内的“暗度”,屏幕尽量用标准屏幕,仪器内的照明灯要有足够的亮度。(不知道你是问哪方面的调节)三、可以适当加大像距(到屏幕的距离),同时收缩镜头到影片的距离(物距)可以使像变大。一般透镜实验,调节的是物距与像距。

初二物理:说明投影仪的工作原理

利用凸透镜成像原理f<U<2f V>2f 倒立 放大 实像

【初二物理】求放大镜,照相机,投影仪的原理【图】

在透镜成像中你需要知道两句话:第一句话无论实像虚像都适用1、像大像距大,像小像距小(或者:像距大像大,像距小像小)第二句话分两种情况2、成实像时:反向变化,即:像距变大物距变小,像距变小物距变大(也可以是:物距变小像距变大,物距变大像距变小)成虚像时:正向变化,即:像距变大物距变大,像距变小物距变小(也可以是:物距变小像距变小,物距变大像距变大)所以你的问题中:照相机,投影仪,放大镜所成的像想变大,根据第一句话:要让像距变大。再根据第二句话:照相机,投影仪成实像,像距变大,则物距变小,因此方法是:调大像距的同时减小物距。而放大镜是虚像,像距变大物距也要变大。故方法是:像距增大的同时放大镜远离物体,即调大物距。把像变小与之相反。希望对你有帮助,透镜成像中熟记这两句话可以解决几乎所有的像和像距、物距的变化和大小问题了

物理知识点投影仪的成像原理

投影仪中的镜头相当于一个凸透镜,当物体位于凸透镜的二倍焦距与一倍焦距之间时,最后再经过平面镜改变光的传播方向,使其在屏幕中成像。我为大家整理了详细的内容。 成像原理 谈及投影仪成像原理,基本都大同小异,无论哪一种类型的投影仪,都是先将其光线分成红绿蓝三种颜色,再产生各种颜色的图像。因为元件本身只能进行单色显示,首先要生成3色成分,然后通过棱镜将3色图像合成为一个图像,再通过镜头投影到屏幕上。 而投影仪中的镜头相当于一个凸透镜,当物体位于凸透镜的二倍焦距与一倍焦距之间(2f>u>f)时,来自投影片上物体的光,通过凸透镜形成物体的倒立的、放大的实像。最后再经过平面镜改变光的传播方向,使其在屏幕中成像。 投影仪简介 投影仪是一种利用光学元件将工件的轮廓放大,并将其投影到影屏上的光学仪器。它可用透射光作轮廓测量,也可用反射光测量不通孔的表面形状及观察零件表面。投影仪特别适宜测量复杂轮廓和细小工件,如钟表零件、冲压零件、电子元件、样板、模具、螺纹、齿轮和成型刀具等,检验效率高,使用方便;广泛应用于计量室、生产车间,对仪器仪表和钟表行业会议场合尤为适用。 凸透镜成像 物体放在焦点之外,在凸透镜另一侧成倒立的实像,实像有缩小、等大、放大三种。物距越小,像距越大,实像越大。物体放在焦点之内,在凸透镜同一侧成正立放大的虚像。物距越大,像距越大,虚像越大。在焦点上时不会成像。在2倍焦距上时会成等大倒立的实像。

聚全氟乙烯有什么样的物理化学性质?

聚四氟乙烯因氢原子被氟原子取代,具有很强的耐酸耐碱性,耐溶剂性很强。另外,抗老化性好,摩察系数低。希望能帮到你。

千斤顶和杠杆的区别是物理守?

千斤顶和杠杆的区别如下:。千斤顶原理属于抽象原理,杠杆原理属于实在原理。.千斤顶是杠杆原理的抽象产物。、千斤顶利用杠杆原理来回移动,省力省力,杠杆省力省力。

什么叫核磁共振?物理学是怎么理解的?医学上是怎样应用的?

核磁共振全名是核磁共振成像(MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。 核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。 并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。 核磁共振(MRI)又叫核磁共振成像技术。是后继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。核磁共振的原理核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。 根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 质量数和质子数均为偶数的原子核,自旋量子数为0 质量数为奇数的原子核,自旋量子数为半整数 质量数为偶数,质子数为奇数的原子核,自旋量子数为整数 迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P 由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。 原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.核磁共振的应用NMR技术核磁共振频谱学 NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。 对于孤立原子核而言,同一种原子核在同样强度的外磁场中,只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。 耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。 最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。 早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。 近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。 MRI技术核磁共振成像 核磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。 与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改编的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。 核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。 MRS技术核磁共振测深 核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某一地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。 目前核磁共振探测技术已经成为传统的钻探探测技术的补充手段,并且应用于滑坡等地质灾害的预防工作中,但是相对于传统的钻探探测,核磁共振探测设备购买、运行和维护费用非常高昂,这严重地限制了MRS技术在地质科学中的应用。

中石油东方地球物理公司大港分院是干什么的

为石油、天然气、煤层气、地热能及其他矿产品的勘察、勘探等。中石油东方地球物理公司大港分院主要经营项目有为石油、天然气、煤层气、地热能及其他矿产品的勘察、勘探、开发及开采提供工程技术服务等。

高中物理

电磁感应现中,感应电动势和磁感应强度无直接关系只与其变化快慢有关

红色警戒中的磁暴线圈和光棱塔,请从物理的角度解释一下原理?详细的,双倍回报!!

磁暴线圈 利用超声波的

灭火器的物理原理

干粉..

灭火器的物理原理

四类灭火器的灭火原理喝使用方法一、二氧化碳灭火器灭火原理和使用方法.二氧化碳灭火剂是一种具有一百多年历史的灭火剂,价格低廉,获取、制备容易,其主要依*窒息作用和部分冷却作用灭火。二氧化碳具有较高的密度,约为空气的1.5倍。在常压下,液态的二氧化碳会立即汽化,一般1kg的液态二氧化碳可产生约0.5立方米的气体。因而,灭火时,二氧化碳气体可以排除空气而包围在燃烧物体的表面或分布于较密闭的空间中,降低可燃物周围或防护空间内的氧浓度,产生窒息作用而灭火。另外,二氧化碳从储存容器中喷出时,会由液体迅速汽化成气体,而从周围吸引部分热量,起到冷却的作用。二氧化碳灭火器主要用于扑救贵重设备、档案资料、仪器仪表、600伏以下电气设备及油类的初起火灾。在使用时,应首先将灭火器提到起火地点,放下灭火器,拔出保险销,一只手握住喇叭筒根部的手柄,另一只手紧握启闭阀的压把。对没有喷射软管的二氧化碳灭火器,应把喇叭筒往上扳70—90度。使用时,不能直接用手抓住喇叭筒外壁或金属连接管,防止手被冻伤。在使用二氧化碳灭火器时,在室外使用的,应选择上风方向喷射;在室内窄小空间使用的,灭火后操作者应迅速离开,以防窒息。二、干粉灭火器的灭火原理和使用方法.干粉灭火器内充装的是干粉灭火剂。干粉灭火剂是用于灭火的干燥且易于流动的微细粉末,由具有灭火效能的无机盐和少量的添加剂经干燥、粉碎、混合而成微细固体粉末组成。它是一种在消防中得到广泛应用的灭火剂,且主要用于灭火器中。除扑救金属火灾的专用干粉化学灭火剂外,干粉灭火剂一般分为BC干粉灭火剂和ABC干粉两大类。如碳酸氢钠干粉、改性钠盐干粉、钾盐干粉、磷酸二氢铵干粉、磷酸氢二铵干粉、磷酸干粉和氨基干粉灭火剂等。

亚里士多德在物理学方面的具体成就?

亚里士多德 一、生平简介 亚里士多德(公元前384—322)是古希腊著名的科学家和哲学家.公元前384年诞生于爱琴海北岸的斯特基拉城. 亚里士多德是马其顿王室医师的儿子,从小对自然科学特别爱好,也很钻研.父亲经常教给他一些解剖和医学的知识,他有时也帮助父亲作一些外科手术.亚里士多德17岁那年前往雅典,成为古希腊著名哲学家柏拉图(前427—前347)的大弟子,从事学习和研究长达20年之久.他好学多问,才华横溢,成绩突出,柏拉图夸他是“学院之灵”.公元前343年,亚里士多德担任了年仅13岁的王子亚历山大的宫廷教师.公元前340年亚历山大摄政,亚里士多德回到家乡.公元前335年他重返雅典,创办了一所吕克昂学院,独树一个新的哲学学派.由于这个学派的老师和学生,常常在花园里散步的时候讨论问题,当时人们就称它为逍遥学派. 公元前323年夏天,亚历山大大帝从印度回师巴比伦的途中病故.从此,亚里士多德在政治上开始不得志.他决定离开雅典,离开吕克昂学院回到母亲的故地过隐居生活.公元前322年因病逝世,葬在卡尔基,终年62岁. 二、科学成就 1.亚里士多德是希腊古典文化的集大成者,恩格斯称他是最博学的人.他的著作是古代的百科全书,据说有四百到一千部,主要有《工具论》、《形而上学》、《物理学》、《伦理学》、《政治学》、《诗学》等.与物理学关系较多的有:《物理学》(8卷,有中译本,张竹明译,商务印书馆,北京,1982)、《天论》(4卷)、《起源与衰灭》(2卷)、《气象学》(4卷).另有一本《力学问题》为后人伪作. 2.在物理学方面,亚里士多德最重要的贡献是创造了这门学科的名称,“物理”一词的现代拉丁文“Physica”,是他从希腊字φνσιζ(自然)一词推演而来的.此外,他对地球的大小作出了在当时条件下比较合理的估计. 3.亚里士多德运用科学的方法,对奇妙的生物世界进行了大量调查.他带领助手周游各地,搜集标本,分门别类,并且尽可能了解同动物和植物有关的各种知识.他是一位当之无愧的伟大生物学家.他一生最有价值的科学贡献,也正是在动物学和解剖学方面.他对五百多种不同的动植物进行了分类,解剖过几十种动物,正确地指出了鲸鱼是胎生的,描述了反刍动物的胃、鸡胎的发育、头足纲动物的再生现象等. 4.此外,亚里士多德还对虹、视觉、管长与乐音的关系等物理现象作过一些初步的观察和解释,他还从月食和星座的变迁推证了地球是圆形等. 历史的局限性 对亚里士多德在物理学和自然科学发展中的作用和影响以及其局限性,应进行历史的分析.对物理学的发展来说,亚里士多德初步提出以物质运动及其与时间、空间、与周围物体的关系及物质本原为研究对象以形成一门独立的自然学科,重视对近身事物的具体观察,强调思维逻辑的作用,首先引用数学方法来考察具体物理定律,从而引起众多的讨论与研究等等;这些都在一定程度上为欧洲文艺复兴以后物理科学在实验基础上的奠基起了某些先导的作用.这一成就不应被抹煞.另一方面,他在理论和方法上的重大缺陷,又造成了被教会加以神圣化的条件,成为继后物理学发展的严重障碍.当伽利略等纠正了亚里士多德的错误,把物理学牢固地建立在观察与实验的基础上,恢复与发展了他重视逻辑推理和运用数学工具的传统以后,物理学在西欧的社会生产力蓬勃发展的条件下得到了迅速的发展. 亚里士多德的物理学,今天看来,有几条根本性的缺陷. 第一,在方法论上,他只注意简单的观察和严格的推理.他认为研究“应从我们最明白易知的事物开始”,但却错误地过分引伸,以为从简单的感性知觉通过理性活动可以一下子到达普遍抽象的顶点,从而对所谓的封闭而有限的宇宙给出一幅最终的科学图像.他这样的推断过程是错误的,不可避免地导致将生产水平很低的社会中人们积累的一些原始直觉经验和哲学思想,上升为绝对化的真理.因此,亚里士多德的物理学实质上只是一种经验科学性质的自然哲学体系. 第二、他这种根据人的感觉经验和逻辑理性建立起来的体系,力图用生物机体(包括人体)有目的的运动现象来统一解释无生命物质的运动及其原因,例如他列举出物质的运动变化有“四因”:质料因、形式因、动力因和目的因.一切物体都具有某种天赋的目的或“自然本性”:天体永远围绕地球这一宇宙中心作匀速圆周运动;组成地上物体的四种基本元素(水、火、气、土)都“趋向于自己特有的空间”,具有寻找自己“天然处所”并停留在那里的本性,从而形成重者向下,轻者向上的“天然运动”(因本性运动”).由此可见,亚里士多德的自然观带有浓厚的目的论的拟人色彩,正是这一内在因素导致他的原始型理论很容易为后来的宗教势力利用来宣扬宇宙和谐和神的意志. 第三,亚里士多德在总结前人的具体成就时,抛弃了原子论,主张地心说.他首先利用直觉经验和数学比例关系来研究物体的位移运动,建立了两条影响深远但不准确的比例定律.其一,他认为“下落运动的快慢有两个原因:①运动所通过的媒质不同(如通过水或空气),②运动物体自身轻或重的程度不同,如果运动的其他条件相同的话”.因此他关于落体运动的定律是:“物体下落的时间与重量成反比,如一物重量是另一物的两倍,则在同一下落中只用一半的时间.”“如果空气比水稀两倍,则同一运动物体在水中运动时要耗费两倍时间.”其二,除上升下落外,地上物体的其他一切运动,他都认为是强迫运动:“任何运动着的事物都必然有推动者”.这种强迫运动的比例定律为:“设动力为α,运动物体为β,经过距离为γ,发生位置移动的时间为δ,则同一动力α在同一时间内将使β/2移动2γ,或在δ/2内使β/2移动距离γ.”由于教会的吹捧,这些定律在16~17世纪以前还是神圣不可侵犯的教条.

电冰箱制冷原理物理

这是一个能量转换的过程,制冷剂能够在一定压力条件下吸热蒸发成气体,然后压缩机会吸入蒸发器中的低温、低压的制冷剂蒸汽,当压缩机内的温度低于制冷剂的临界温度达到需要的压力之后,制冷剂就会被液化,液化过程中散发出大量的热量到空气中,此时液化的制冷剂温度降低,经过缓冲器再次到蒸发室里,继续蒸发,重新吸收大量的热,将蒸发器的周围的温度降低,就实现了冰箱的制冷。简单来说,就是制冷剂蒸发吸热,然后液化回收后,再次蒸发吸热的能量转化的过程。

空气开关结构原理初中物理

空气开关是一种由空气压力操作的开关,它的结构原理是:空气开关由一个空气压力腔体、一个弹簧、一个阀门和一个控制装置组成。当空气压力腔体内的空气压力达到一定值时,弹簧会把阀门推开,从而使控制装置接通,从而控制电路的开关。当空气压力腔体内的空气压力降低到一定值时,弹簧会把阀门关上,从而使控制装置断开,从而控制电路的开关。

矿物的其他物理性质

1.矿物的密度和相对密度矿物单位体积的质量称作矿物的密度(density),也称真密度,单位为g/cm3。密度值可依据晶胞体积、晶胞内所含原子种类及其数量计算得出。矿物的相对密度(relative density)是指矿物在空气中的质量与4℃时同体积水的质量之比,量纲为一。由于4℃时水的密度是1g/cm3,所以矿物相对密度与真密度数值相等。实践中相对密度的测定常常忽略水在4℃时和室温下的差,其方法是:用极细线将待测矿物样品钓挂于天平钩上,称出其质量(W1),然后把悬着的样品放入盛满水的容量瓶,求得排出水的质量(W2)。相对密度D=W1/W2。矿物的相对密度分为轻、中、重3个级别:轻级 相对密度小于2.5。石墨(2.09~2.23)、石盐(2.1~2.2)和石膏(2.3)等属轻矿物。中等 相对密度在2.5~4之间。绝大多数非金属矿物如石英(2.65)、萤石(3.18)和金刚石(3.52)等具中等密度。重级 相对密度大于4。自然金属元素和多数硫化物类矿物如自然金(15.6~19.3)、黄铁矿(4.9~5.2)等属重矿物。矿物的相对密度与其组成元素的相对原子质量、原子或离子的半径及结构的紧密程度有关。在等型结构的矿物中,一般来说,组成元素的相对原子质量越大而原子或离子半径越小,矿物的相对密度越大;但通常原子或离子的相对原子质量与半径正相关,矿物的相对密度变化趋势便依优势因素而异。在同质多象各变体间,配位数较高、质点排列紧密者,其相对密度较大。当矿物在较高温结晶时,形成配位数较低的晶体结构,其相对密度较小;而当矿物在较高压力下结晶时,形成配位数较高的晶格,结构堆积较为紧密,其相对密度较大。矿物肉眼鉴定时,可用掂量比较的方法进行粗略的密度分级。相对密度是矿物分选、鉴定的主要依据之一,它在地质作用判别和矿物标型找矿以及矿物材料开发应用方面均有重要意义。2.矿物的磁性矿物的磁性(magnetism)是指矿物在外磁场作用下被磁化而表现出被外磁场吸引、排斥或对外界产生磁场的性质。矿物磁性的大小以其单位体积的磁化强度与外磁场强度之比即磁化率来表示。从本质上讲,矿物的磁性是由其所有原子或离子中核外电子的自旋磁矩和电子绕核旋转形成的电子轨道磁矩的总和所决定的。在外磁场作用下,如果所有小磁场全部定向排列,矿物获得较高的磁化率,表现出强的磁性;如果矿物内只有少数小磁场作定向排列,表明磁化率较低,显示弱磁性。强磁性包括铁磁性(ferromagnetism)和亚铁磁性(ferrimagnetism),弱磁性包括反铁磁性(antiferromagnetism)、顺磁性(paramagnetism)和抗磁性(亦称逆磁性、反磁性,diamagnetism)。其中,抗磁性矿物(自然银、方铅矿、金刚石、方解石、萤石等)的磁化方向与外磁场方向相反,在外磁场中略被排斥;其他矿物的磁化方向都与外磁场相同,在外磁场中被吸引,而铁磁性矿物(自然铁等)和亚铁磁性矿物(磁铁矿、磁黄铁矿等)在外磁场中既能被吸引,又能吸引铁质,合称为磁性矿物;反铁磁性矿物(自然铂、赤铁矿、方锰矿等)和顺磁性矿物(黑钨矿、普通辉石、普通角闪石、黑云母等)只能被大强度的外磁场如电磁铁所吸引,合称电磁性矿物。磁性和电磁性矿物都含有具不成对电子的过渡型离子,且不成对电子数与矿物磁性强度正相关;由惰性气体型离子和铜型离子组成的矿物都呈抗磁性。矿物肉眼鉴定时,常用永久磁铁或磁化小刀与矿物相互作用,将矿物粗略地分为以下3级:强磁性矿物(stronger magnetism mineral)较大颗粒或块体能被永久磁铁所吸引的矿物,如磁铁矿。弱磁性矿物(weaker magnetism mineral)粉末才表现出能被永久磁铁所吸引的矿物,如铬铁矿。无磁性矿物(non-magnetism mineral)粉末也不能被永久磁铁吸引的矿物,如黄铁矿。磁性是矿物十分重要的物理性质参数,它不仅是许多矿物鉴定、分选以及磁法找矿的重要依据,还是古陆和岩石圈演化、交代蚀变作用和地球表层系统环境变化的重要依据。3.矿物的电学性质(1)导电性和介电性矿物的导电性(electric conductivity)是表征矿物传导电流能力的性质,以电阻率表征。导电能力的强弱主要取决于化学键类型。一般地说,具有金属键的矿物或多或少会表现出导电性。一些自然元素矿物和金属硫化物矿物,如自然金、自然铜、石墨、辉铜矿、镍黄铁矿等,由于其结构中存在大量自由电子而成为电的良导体。矿物的介电性(dielectricity)是指不导电或导电性极弱的矿物,在外电场作用下被极化而产生感应电荷的性质,常用介电常数(即电容率,dielectric constant)来表征。介电常数的大小与组成矿物的阴阳离子类型、半径、被极化的难易程度及内部结构有关。具离子键或共价键的非金属矿物,如多数氧化物、含氧盐和卤化物矿物(石英、石棉、白云母、石膏等)介电常数较大,属非导体(non conductor)或绝缘体(insulator)。(2)热电性有些矿物常温下呈弱导电性,温度升高时导电性增强,为半导体(semiconductor),如黄铁矿、闪锌矿等。对半导体矿物不均匀加热时,其冷、热端产生温差电动势(也称热电动势)。半导体矿物这种由热差而产生电势的性质称为热电性(thermoelectricity),以热电系数(thermoelectric coefficient)(a,单位μV/℃)表示。矿物的热电性主要受其结构中杂质元素的种类、赋存状态和晶格缺陷(如空穴、自由电子等)等因素的影响,而后者则与其形成介质的物理化学条件密切相关,因此矿物热电性的研究能够揭示其成因信息,成为许多矿床规模大小、剥蚀程度和深部远景判别的重要依据。(3)压电性和焦电性当矿物受到定向压应力或张应力作用时,垂直于应力的两侧表面产生等量相反电荷,应力方向反转时,两侧表面的电荷易号,这种性质称为矿物的压电性(piezoelectricity)。具有压电性的矿物在定向压应力或张应力交替作用下将产生交变电场,这种现象称压电效应(piezoelectric effect)。若将这类矿物晶体置于交变电场中,它便发生机械伸缩,称电致伸缩(electrostriction),即反压电效应。矿物的焦电性(pyroelectricity)是指某些电介质矿物晶体被加热或冷却时在特定结晶学方向的两端表面产生相反电荷的性质。压电性和焦电性是晶体因应力作用或热胀冷缩,晶格发生变形,导致正、负电荷的中心偏离重合位置,引起晶体极化而荷电的现象。因此,压电性和焦电性都只见于无对称中心而有极轴(两极无对称关系)的极性介电质晶体中。焦电性晶体包括对称型为L1,L2,L3,L4,L6,P,L22P,L44P,L33P,L66P的10个晶类。除对称型为3L44L36L2的晶类外,其他所有无对称心的介电质晶体都具压电性(共20个晶类)。显然,具有焦电性的晶体必有压电性,反之则未必。例如,电气石(3 m点群)、异极矿和方硼石(均为mm2点群)既具焦电性,又具压电性;而石英(32点群)则仅有压电性。压电性和焦电性除了可用于判断矿物晶体的真实对称外,压电性还广泛用于钟表、无线电、雷达和超声波探测技术,焦电性则广泛用于红外探测和热电摄像。4.矿物的放射性等性质除了上述的物理性质外,矿物的放射性、吸水性、可塑性、膨胀性、挥发性、导热性,以及嗅觉、味觉、触觉、熔点等性质,在矿物鉴定、核工业和材料工业上的利用有极其重要的意义,将在涉及的矿物中加以介绍。思考题及习题1)矿物呈色的机制是什么?试述矿物致色的四种主要机理。2)何谓条痕?一般来说,如何鉴定矿物的条痕色?3)影响矿物透明度的主要因素有哪些?4)何谓矿物的光泽?光泽分几级?光泽分级的依据是什么?什么是特殊光泽?举出四种特殊光泽并予以表述。5)从本质上讲,某些矿物能够发光的机理是什么?何谓磷光和荧光?试述热发光的机制及其意义。6)什么是矿物的解理?它是如何分级的?哪些结晶学方向容易发育解理?如何正确区分解理面与晶面?解理和裂理有何不同?7)什么叫断口?举出四种常见断口并描述其特征。8)如何鉴定矿物的硬度?影响矿物硬度的主要因素是什么?写出摩斯硬度计10种标准矿物的名称。指甲、小刀、玻璃、陶瓷各相当于几级摩斯硬度?9)试述矿物脆性和延展性、弹性和挠性的本质。10)何谓矿物的磁性?如何鉴定矿物的磁性?简要阐述矿物导电性、压电性、焦电性和放射性的概念。

水银血压计测量原理与物理流体的关系

大气压+液体压强(原来用水银柱的高度表示,现在换算成pa)=血压+大气压就是液体压强,与流体什么的没有关系。

高一物理问题

1秒乘以初速度

求解释以下物理化学反应原理以及方程式,谢谢

第二个应该是硫酸与炭的反应,生成CO2膨胀

八年级物理:验电器的原理是什么?

验电器接触带电体后,由于接触起电而带电,使两片金属箔带上同种电荷,产生斥力而分开,带电体电量越多,金属箔张开角度越大不带电,闭合;带任何一种电都有张角,因为两片薄片带同种电荷相排斥。若不带电,与任何带电体接触都张开,因为有电流流向验电器而带电。若带电,①与不带电物接触,张角变小,但不会闭合。因为电荷会流向不带电物体,有损失,排斥力变小,但还是有排斥。②与带同种电荷物体接触,张角:a,可能变大(因为带电体带的电荷比验电器多而有电荷流向验电器,排斥力加大),b,可能变小,(因为带电体带的电荷比验电器少而有电荷流向带电体,排斥力减小),c,也可能不变,(因为带电体带的电荷恰好与验电器相同,没有电流,排斥力不变)③与带异各电荷物体接触,张角一定变小,但小到什么程度还要看带电体带多少电。a,若只带少量异种电荷,尚不足以中和验电器本身的电荷,则张角只是变小,还不闭合;b,若带足量异种电荷,则先中和验电器本身的电荷,继而使验电器带上异种电荷,则张角先变小至闭合,再因重新带电(异种电荷)而张开;c,若恰好带异种电荷数与验电器电荷数相同,则电荷恰好完全中和,此时张角逐渐减少至恰好闭合。同种电荷相互排斥。验电器上两张金属叶片与金属球相接,带同种电荷,发生排斥

微机原理与接口技术和物理关系大么?和数电关系大么? 是偏理还是偏工?

工科

在物理学里,snap,jerk和minimum snap trajectory各是指什么

物理学里 jerk 为加加速度snap 为加加加速度minimum snap trajectory 可以理解为最小化加加加速度轨道有牛二律深度理解:Jerk: 所受力的变化率。(如每秒增加一牛顿)snap: 所受力的变化率的变化。(如前一秒增加一牛顿,接下来一秒增加两牛顿,第二秒受力与最初相比增加了三牛顿)最小snap,就让jerk变化比较小。如果snap为0,就代表每秒加速度稳定增加(受力稳定增加)

关于物理 刚度 硬度 强度 有什么区别 还有他的英语问题

强度:其法定单位是:牛/平方毫米(N/mm^2),即金属单位面积上所能承受的力的大小。指金属材料抵抗外力破坏作用的能力。强度是指零件承受载荷后抵抗发生断裂或超过容许限度的残余变形的能力。也就是说,强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。强度是机械零部件首先应满足的基本要求。机械零件的强度一般可以分为静强度、疲劳强度(弯曲疲劳和接触疲劳等)、断裂强度、冲击强度、高温和低温强度、在腐蚀条件下的强度和蠕变、胶合强度等项目。强度的试验研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。 可分为:抗拉强度、抗压强度、抗弯强度、抗剪强度。 硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。硬度试验根据其测试方法的不同可分为静压法(如布氏硬度、洛氏硬度、维氏硬度等)、划痕法(如莫氏硬度)、回跳法(如肖氏硬度)及显微硬度、高温硬度等多种方法。 刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的了或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。

物理电磁炮,是不是直接用安培

是的,除了安培外还有牛顿的,亲!!

孔明灯的物理原理

孔明灯上升的主要原理是孔明灯受到的浮力大小并不变化,加热灯内空气,使灯内空气密度减小,从而使灯内气体重力减小,使得灯的总重力小于所受的浮力,于是孔明灯就会上升。孔明灯又称文灯、天灯,它是用白结方纸糊制而成的,是根据热气球原理,空气受热膨胀产生的热力升空的,它携带的燃料可升空漂浮约1小时,开始时像不明飞行体,升到一定高度后就仿若星星。相传它是由大陆流传到海南的,演变至今已成为当地的一种很有特色的民间风俗。每逢喜庆日子或盛大的节日,人们都点起文灯来表达他们的美好心愿。在文昌、万宁、儋州一带的村庄里,至今民间有扎孔明灯,放天灯的习俗。由于文昌口音“天灯”与“添丁”谐音,男孩家拿着写有吉祥词语的公灯、人丁灯、首牌灯、花篮灯、鲤鱼灯、珍古灯等各式花灯自发组成“送灯”队伍,敲锣打鼓,绕村行进到村中的庙宇前,表示送去“人丁兴旺,家景兴隆”之意。放天灯时,给碎布浇上油,桶口朝下,点燃油布后,整个纸桶就会被热气充满,家家的天灯如同热气球一样冉冉上升,带上你的祝福与心愿,飘上夜空。

英国物理学家牛顿资料简介

牛顿,英国著名 物理 学家,被誉为“近代 物理学 之父”。下面是我为你搜集牛顿资料简介,希望对你有帮助!牛顿资料简介 牛顿,全名艾萨克·牛顿,原名Isaac Newton,在十七世纪出生于英国,又于该世纪二十年代逝世于肯信顿这个小地方,逝世之时已有84岁高龄。他儿时在当地有名的格兰萨姆中学,大学 毕业 于剑桥。牛顿从小就显示出过人的 智商 ,小时候因为一个苹果便研究出了万有引力定律。 牛顿在物理学、天文学、科学、 数学 等方面都有所涉猎,他信仰 自然 神论,晚年又研究神学,可惜无果而终。光辉的一生中创造了许多新颖的观点,这些观点大多基于别人研究的基础上,加上自己的想法,最终提出牛顿各种定律,与另外一位伟人共同发明了微积分。此外在发现了光的色散原理的基础上发明了反射式望远镜,被誉为近代物理学之父。 牛顿简历中令人侧目的当属他也写出了属于自己的代表作品,众多作品中有 论文 也有草稿。他晚年有众多任职,也荣获众多殊荣,其中将牛顿比作现当代什么之父。牛顿对世界的贡献不是牛顿简历简简单单就可以涵盖的,我们必将记功于他时长千秋万代。 牛顿的成就 牛顿的成就几乎改变了人类的生活,在物理界将人们带入了一个新纪元,所以牛顿被称为“近代物理学之父”。尽管他的性格不讨喜,但是牛顿的成就无人敢否认。英国的女王都亲自授予他爵位,长年代理英国皇家学院院长。所以牛顿作为一个科学家,日子过得是不错。 牛顿的成就咱们细细说来,在力学方面,牛顿发现的力学定律完全适用于所有力学现象,牛顿以此为基础建立了牛顿力学;还有著名的万有引力,就是那颗苹果掉到他头上而产生的学说,几乎解释了整个宇宙;在光学方面,牛顿的成就在那个简单易操作的三棱镜实验,直接解释了白光其实是彩虹色,而牛顿从现象看到本质,创立了微粒说;在数学方面,牛顿建立二项式定理,从而创造了微积分学说,如今微积分成了大学的一门课程;最后,在天文学方面,牛顿发明了反射望远镜,利用行星定律解释潮汐现象。这些内容都是牛顿建立在前人的基础上研究出来的,但是我们一样不可否认牛顿的天才。 牛顿在晚年的时候因为在物理学上的研究瓶颈,遇到很多无法解释的事情,所以他转向了神学研究,甚至创立出“神的第一推动力”学说。同样,牛顿也通过演算解除《圣经密码》,预言世界末日。虽然现在看来是无稽之谈,但也只能算是牛顿失败的成就。 牛顿是什么之父 牛顿一生辉煌,在物理学、天文、力学、神学等方面都有所涉猎,所以他荣获了很多殊荣和称号,例如说牛顿是“力学之父”“现代科学之父”以及“近代物理学之父”。 关于第一种说法是因为他仅在力学方面就达到了相当高的水平。牛顿在毕业后尚未工作留校,就在此时他研究了许多的书籍,并运用其知识发现了众多力学理论,这些规律被众人认定成定律。关于牛顿的第二种说法说与科学有着千丝万缕的联系,其原因是牛顿都以有理论依据的操作和方式为基础进行科学实验的,一定程度上推动了科学发展,以至于在以后的几个世纪里都有所影响。关于牛顿是什么之父第三种说法,对牛顿赞誉极佳。这种说法与其说是一种称呼,不如说是一种赞誉。因为他在力学方面的成就,使得其引领了物理学研究进程。 总结三种牛顿是什么之父的说法,各有各的道理。但三种说法字面不同,但实质相同。无论是物理学还是科学的方面的说法都是在赞誉牛顿人生中的成果,我们看到这些成果,在发出赞叹的同时也深受其蒙泽。猜你喜欢: 1. 法拉第生平简介 2. 九年级历史资料期末 3. 霍金的资料简介 4. 数学家刘徽生平资料简介 5. 牛顿的简介资料

物理n是什么

物理n是一种衡量力的大小的国际单位。牛顿(Newton),简称牛,符号为N。是一种衡量力的大小的国际单位,以科学家艾萨克·牛顿(IssacNewton)的名字而命名。在国际单位制(SI)中,力的计量单位为牛顿。牛顿的定义是:加在质量为1kg的物体上,使之产生1m/s2加速度的力为1N。其量纲为=M?L?T-2,即:1N=1kg×1m/s2。

N(牛顿)的物理单位(基本单位)是什么

牛顿,简称牛

三乙胺的物理性质

危规号:32168UN编号:1296危险性类别:第3.2类中闪点一级易燃液体折射率:1.4010黏度(30℃):0.32mPa·s相对蒸气密度(空气=1):3.48饱和蒸气压(kPa):8.80(20℃)燃烧热(kJ/mol):4333.8临界温度(℃):259临界压力(MPa):3.04辛醇/水分配系数的对数值:1.45爆炸上限%(V/V):8.0引燃温度(℃):249爆炸下限%(V/V):1.2 毒性:有毒,对皮肤和黏膜有刺激性,LD50 460mg/kg。空气中最高容许浓度30mg/m3。

物理原理有哪些

比如:黑色物质可以吸收太阳使雪融化

物理原理有哪些

1、阿基米德原理:浸入静止流体中的物体受到一个浮力,其大小等于该物体所排开的流体重量,方向垂直向上并通过所排开流体的形心;2、功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,就是使用任何机械都不省功;3、连通器原理:上端开口相通,或底部相通的容器叫连通器。几个底部互相连通的容器,注入同一种液体,在液体不流动连通器内各容器的液面总是保持在同一水平面上;4、串联分压的原理:在串联电路,各电阻上的电流相等,各电阻两端的电压之和等于电路总电压。每个电阻上的电压小于电路总电压,结论为串联电阻分压;5、发电机的原理:发电机是由旋转的闭合线圈不断的切割磁场的磁通而产生的磁电感应电流的动能转换电能的能源设备。

Nmc什么物理量?

七个基本单位:长度m,时间s,质量kg,热力学温度(kelvin温度)k,电流单位a,光强度单位cd(坎德拉),物质量mol二个辅助单位:平面角弧度rad,立体角球面...

初中物理扬声器的工作原理是什么?

扬声器应用了电磁铁来把电流转化为声音 。原来,电流与磁力有很密切的关系。试试把铜线绕在长铁钉上,然后再接上小电池,你会发现铁钉可以把万字夹吸起。当电流通过线圈时会产生磁场,磁场的方向就由右手法则来决定。主要种类扬声器的种类很多,按其换能原理可分为电动式(即动圈式)、静电式(即电容式)、电磁式(即舌簧式)、压电式(即晶体式)等几种,后两种多用于农村有线广播网中;按频率范围可分为低频扬声器、中频扬声器、高频扬声器,这些常在音箱中作为组合扬声器使用。按换能机理和结构分动圈式(电动式)、电容式(静电式)、压电式(晶体或陶瓷)、电磁式(压簧式)、电离子式和气动式扬声器等,电动式扬声器具有电声性能好、结构牢固、成本低等优点,应用广泛。

Nmc什么物理量?

NMC (Network manage Centre,网络管理中心)网络管理中心(NMC)是一个用于管理网络资源,如MSC,位置注册和基站等的运转中心。网络管理中心(NMC)网络配置管理与用户管理,日常运行数据的收集与统计。路由选择管理,网路监测,故障告警与网路状态显示。根据交换机提供的计费信息完成计费管理。

求初中物理“扬声器的原理”

扬声器的工作原理是:永磁体通过轭铁在磁路的环形气隙中产生一个磁场,和扬声器纸盆相连的音圈插入环形气隙中,永磁体被外部的轭铁所包围,从而可以免遭外界杂散磁场的干扰,反过来也可以减小永磁体磁场对外界的影响,当声音以电流的形式通过磁场时线圈便会因电流强弱的变化产生不同频率的震动,进而带动纸盆发出不同频率和强弱的声音。

物理学中,扬声器原理是什么能转化成什么能

电能转化成声能

求初中物理“扬声器的原理”

交变电流通过线圈,产生磁性,被扬声器内的磁铁吸引或排斥,从而把纸盘不断震动形成声波发生。这是通电线圈在磁场中的受力作用原理的应用。

物理中的长宽高用什么字母表示?

长貌似是 l ,宽貌似是 W 吧。。。楼上的

不确定度原理和测量问题在物理上有什么关系?

测量问题与不确定度原理并没有那么密切的联系。测量问题是当你试图填补量子力学的“投影假设”是什么时所产生的一系列问题,特别是,它如何能与酉进化相一致。不确定性原理是关于两个非交换QM算子的一种表述。这个原则适用于你在测量问题上的任何立场——即使根本没有测量也适用。它们是非常不同的概念,而且它们之间的关系并不直接。然而,测量和不确定度原理也是一致的,因为不确定度原理对于被测状态和任何其他状态一样适用。为了举例说明,让我们想象一个非常精确的位置测量:将其限制在一个非常窄的峰值:在这种状态下,动量将是一个很宽的峰值。是这样的:反过来也可以。如果你有一个非常灵敏的动量检测器(从而迫使状态在动量中形成一个漂亮的尖峰),那么位置状态的尖峰也会扩散很多。一般规则是:你挤压一个,另一个变宽。如果你用来压缩峰值的过程被称为“测量”,这是成立的,如果你通过任何其他QM过程做它也成立。更准确地说,如果我们用δx(上图中的箭头)表示位置空间中的峰宽,用δp(下图中的箭头)表示动量空间中的峰宽,那么这些量可以通过以下公式联系起来:ΔxΔp≥u210f2有些观点可能会有帮助。不确定性原理适用于QM中的任何状态。你不需要测量任何东西来保持它。有时,通过在测量环境中引入不确定性原理(例如,通过弹射光子来检测原子的位置),这一点就被掩盖了——这是毫无用处的:在测量环境之外,该原理也适用。不确定性原理并没有强加在QM之上。它是由它衍生出来的。QM状态的数学构建了它。所以问题是,如果不确定性原理不成立,QM会是什么样子?“没什么意义。这就像在问“如果没有树木,森林会是什么样子?”“消除不确定性原则意味着我们不再谈论QM:它已经深深嵌入到结构中测不准原理比位置和动量之间的关系更为普遍。它适用于任意两个由正则共轭相关的算子。它适用于角动量,能量,自旋,任何你能想到的东西。

物理学的不确定性原理是否意味着不在存有客观上的宇

不确定性原理由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数(Planck constant)除于4π(ΔxΔp≥h/4π),这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来",所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系,是物理学中又一条重要原理。

如何具体形象的理解量子物理学中的海森堡不确定性原理

其实来说,不确定性原理和薛定谔的猫说的是一个东西的两个不同侧面:所说的同一个东西,那就是粒子具有波粒二象性。波粒二象性会带来什么样的后果呢?其中一个后果就是,如果两个物理量A和B相互是不对易的(你现在不用明白不对易是什么意思),那么这两个物理量(一般)无法同时“测准”(这里解释一下:“测准”的意思并不是实验仪器不先进,精度不高之类的,而是从原理上当A取了一个确定的值之后,B的取值就是不确定的。为什么说一般呢,是因为有一些特例,比如说基态的氢原子,可以知道电子的总角动量为0,三个角动量的分量也为0,是可以同时知道的,然而三个角动量并不对易)。量子力学最基本的对易关系告诉我们同一个方向的坐标和动量是不对易的,于是有了海森堡不确定关系。(事实上呢,为了得到海森堡不确定性关系,一般是对波函数用Fourier带宽定理来做的。上面只是说明了如果坐标和动量是无法同时“测准”的。)[举一个例子,也是一般提到不确定性原理常常举的例子:如果将粒子理解成波的话(这种理解其实并不完全是对的,但是在我们讨论的问题里面是对的),动量完全确定的粒子代表着一束平面波,然而平面波是弥散在整个空间的,所以它的位置不确定;如果粒子的位置完全确定的话,粒子就代表着空间里的一个很尖很尖的波包,然而这个波包所包含的动量就是完全不确定的。]那么薛定谔的猫又是怎么回事呢?这里就要详细地解释一下为什么会“测不准”。首先来说,对于一个量子态的测量会对这个量子态带来“毁灭性”的打击,也就是说一个量子态是很脆弱的,如果你去测量他,他就会发生变化。发生什么样的变化呢?量子态很听话,你测量它的动量的话,他就会变化到和动量有关的许多状态组成的集合(动量的本征态),这些状态都具有确定的动量。按照前面说的,这些状态就不具有确定的位置。所以任意去选择一个测量动量之后的状态,你都会得到一个确定的动量和不确定的位置。现在已经说了足够多可以解释薛定谔的猫了,如果AB两个物理量是不对易的,比如说A是猫的颜色,B是猫是否活着(当然,在日常生活中这两个量肯定是对易的,因为猫是一个宏观的物体)。如果我们把一只猫放到一个暗盒里面,谁也不知道里面的猫到底是什么颜色,活着没有。如果这个时候,有人伸手从盒子里面揪出了一根猫的毛,发现猫是白色的,于是我们就测得了猫的颜色。但是这个时候,猫的死活就是不确定的(有可能你揪了人家一根毛人家就死了,只是我们不知道的)。那么这个时候,如果我们再用红外线成像去测量一下猫是否还活着(注意是在刚才的基础上测量,不是重新测),那么猫的死活就是确定的了,但是猫的毛的颜色又变得不确定了(这个就和宏观的现象有很大的不同了。但猫就是这么自信,没办法)。上面的例子和原来薛定谔猫的例子并不一样。其实重点在于微观的粒子作为有波粒二象性的存在,和宏观上所熟悉的“定域性”和“确定性”有很大的不同的。 本回答由提问者推荐

物理学中的不确定性的根源是什么

不确定性原理是由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除于4倍的圆周率,这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,海森堡说:“在因果律的陈述中,即若确切地知道现在,就能预见未来,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。” 经典的,宏观的不确定性可以归结为信息的缺失。量子的,微观的不确定性的根源目前还没有统一的认识。它集中体现为量子力学,特别是哥本哈根诠释。

费曼讲物理 - 不确定性原理

简单来说,不确定性原理就是: 所以当警察叔叔说海森堡同学你超速了(知道了精确的速度),海森堡才会说“我现在不知道自己在哪里了”(因为速度和位置不可能同时被确定),这之所以是个玩笑是因为这个原理只在量子世界种才适用,如果海森堡同学是个原子、质子、中子或电子什么的,那他就不在开玩笑了。 这个原理能很好解释量子世界里面的一个现象,我们都知道电子围绕着原子核运动,带负电,而原子核由带正电的质子和不带电的中子组成,带正电。正电和负电之间理应产生强大的吸引力,电子理应被紧紧吸在原子核上才对,为什么电子会隔着一定的空间在原子核周围转呢? 让我们用反证法和不确定性原理解释一下这个现象,假设电子被吸在原子核上了,那么它的位置不确定性就很低,甚至为0,根据不确定性原理,电子动量的不确定性就非常大,比如动量甚至 可能是无穷大 ,如果电子的动能巨大的时候,就会摆脱原子核的束缚,离开原子核,这个结论和电子在原子核周围的空间运动矛盾,所以电子不会被吸在原子核上,而是在它的周围运动。

写出不确定性原理,概述其物理意义

又称“测不准原理”、“不确定关系”,是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。

what is absolute uncertainty and relative uncertainty? 要物理解答和中文的学术翻译

absolutely uncertainty是在测量的时候数据有大有小,那个范围就是absolutely uncertainty绝对误差relative uncertainty 就是因为测量工具而产生的误差,比如你的尺子只能测到毫米那多的那一点你是预测的那误差就是±0.5毫米

高压锅运用了哪些物理知识点

高压锅原理就一个,即提高国内压强,使国内水的沸点升高(物理学告诉我们,水的沸点随当地压强的升高而增大),沸点高了,水能达到的最高温度提升了,食物就熟地快

物理 高压锅的原理问题

如是百度百科的话也是人编辑的,你去改下也可以。高压锅是利用液体在不同气压下的沸点不同,。在气压低的高原地区煮饭很难熟也同理!你懂得联系实际生活来实践学习是好样的!

高压锅煮饭属于什么物理原理

高压锅是利用压力越大,里面的液体的沸点就越高。高压锅的限压阀能使里面气压保持在规定范围内(这时里面温度达110摄氏度左右),当然煮的东西要比常压下的接近100摄氏度时快些。

初中物理问题:高压锅的原理是什么

是增大压强,使液体沸点提高。

高压锅的原理物理解释

高压锅的原理很简单,因为水的沸点受气压影响,气压越高,沸点越高.在高山、高原上,气压不到1个大气压,不到100℃水就能沸腾.在气压大于1个大气压时,水就要在高于100℃时才会沸腾.人们现在常用的高压锅就是利用这个原理设计的.高压锅把水相当紧密地封闭起来,水受热蒸发产生的蒸汽不能扩散到空气中,只能保留在高压锅内,就使高压锅内部的气压高于1个大气压,也使水要在高于100℃时才沸腾,这样高压锅内部就形成高温高压的环境,饭就容易很快做熟了.

高压锅易熔片物理原理

易溶片的安装是为了防止安全阀出现故障而起备用保险作用的,它是用熔点较低的铝合金材料制成的。一旦安全阀失效,锅内压强过大,温度也随之升高,当温度达到易溶片熔点时,再继续加热易溶片开始溶化,锅内气体便从易溶片喷出,使锅内压强减小,从而防止爆炸事故的发生。

高压锅原理 高压锅什么物理原理

  高压锅又叫压力锅、压力煲,是一种厨房的锅具。其工作原理是通过液体在较高气压下沸点会提升这一物理现象,对水施加压力,使水可以达到较高温度而不沸腾,以加快炖煮食物的效率。   高压锅最早是由一位叫丹尼斯·帕平的法国医生发明的,起初只是作为消毒用具。后来才慢慢用作烹饪工具。高压锅由锅身、锅盖、易熔片、放气孔、安全阀和密封胶圈、以及其他新形式的放气通道组成。主要分为普通能源压力锅和电压力锅两种。其优点在于省时及节能,缺点在于不正确操作或有瑕疵时,有可能会爆炸造成伤害。

高压锅的原理物理解释

高压锅的原理物理解释如下:高压锅工作原理是采用无沸煮食,利用水的沸点受气压影响这个物理特性,通常在1个大气压状态下烧开水,水会在90-105℃左右沸腾,而压力锅内气压一般是1.5个大气压,水的沸点一般在110-130℃左右。这样高压锅内部就会形成高温、高压的环境,饭很快做熟了。高压锅又叫压力锅,压力煲,是一种厨房的锅具。压力锅通过液体在较高气压下沸点会提升这一物理现象,对水施加压力,使水可以达到较高温度而不沸腾,以加快炖煮食物的效率。用它可以将被蒸煮的食物加热到100℃以上,在高海拔地区,利用压力锅可避免水沸点降低而不易煮熟食物的问题。高压锅的功能和注意事项:功能:高压锅分普通的和现在流行的电压力锅。如是普通的压力锅,功能就少,主要功能是炖东西。要是电压力锅的话,功能就多了,不仅可以炖东西,还可以煮饭、做粉蒸肉、红烧菜、还能做蛋糕。注意事项:注水量、密封情况。在使用高压锅煮食物的时候,注水的量不能超过高压锅的注水线或者高压锅的三分之二,否则容易造成炸锅或者喷汤等危险现象。同时一定要注意将高压锅关好,锅与盖对齐保证密封。

初中物理问题:高压锅的原理是什么

水的温度最高只能升到沸点。正常情况下,一标准大气压水的沸点为100℃,而用高压锅,压强增大了为2个标准大气压,水的沸点差不多可以达到120℃,对水而言是烧开时间更长,因为水温要达到120℃才沸腾,但就是因为温度可以达到更高,对食物而言,就更容易煮熟煮烂了。

谁能用高中学的物理知识解释一下电磁炉的工作原理?

简单的讲就是电磁原理,通过线圈产生磁场,然后加热锅底,在加热食物下面是详细解释:电磁炉是采用磁场感应涡流加热原理, 他利用电流通过线圈产生磁场,当磁场内之磁力通过含铁质锅底部时, 即会产生无数之小涡流,使锅体本身自行高速发热,然后再加热于锅内食物。 电磁炉工作时产生的电磁波,完全被线圈底部的屏蔽层和顶板上的含铁质锅所吸收。 电磁炉加热原理   电磁炉是应用电磁感应原理对食品进行加热的。电磁炉的炉面是耐热陶瓷板,交变电流通过陶瓷板下方的线圈产生磁场,磁场内的磁力线穿过铁锅、不锈钢锅等底部时,产生涡流,令锅底迅速发热,达到加热食品的目的。其工作过程如下:交流电压经过整流器转换为直流电,又经高频电力转换装置使直流电变为超过音频的高频交流电,将高频交流电加在扁平空心螺旋状的感应加热线圈上,由此产生高频交变磁场。其磁力线穿透灶台的陶瓷台板而作用于金属锅。在烹饪锅体内因电磁感应就有强大的涡流产生。涡流克服锅体的内阻流动时完成电能向热能的转换,所产生的焦耳热就是烹调的热源。

电磁炉的物理原理

你可以到中国职业资格考试网上看看

物理中的电磁感应原理是什么

电磁感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。迈克尔u2022法拉第是一般被认定为于1831年发现了感应现象的人。 电磁感应原理定义 电磁感应是指因为磁通量变化产生感应电动势的现象。电磁感应现象的发现,是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 电磁感应现象的规律 电磁感应研究的是其他形式能转化为电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。 楞次定律表述为:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。即要想获得感应电流(电能)必须克服感应电流产生的安培力做功,需外界做功,将其他形式的能转化为电能。法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。

物理电磁感应

制作一个闭合回路,将导线做切割磁感线运动,观察回路中电流表示数。

初二物理电磁感应与电流磁效应的原理及区别

电磁感应是 由磁产生电。 即闭合电路的一部分导体在磁场中做切割磁力线运动,会产生感应电流。 电流的磁效应是通电导线周围存在磁场。

照相机运用了什么物理原理?

凸透镜成像

物理照相机成像特点

运用物理学知识解释为:照相机的原理是运用凸透镜物距大于二倍焦距成倒立缩小的实像,所以它的成像特点是成倒立缩小的实像。 照相机是一种利用光学成像原理形成影像并使用底片记录影像的设备,是用于摄影的光学器械。在现代社会生活中有很多可以记录影像的设备,它们都具备照相机的特征,比如医学成像设备、天文观测设备等。 被摄景物反射出的光线通过照相镜头,摄景物镜和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理,即显影、定影,构成永久性的影像,这种技术称为摄影术,分为一般照相与专业摄像。

请简单的说出初二物理中的

u>2f,缩小和倒立的像

核物理学中,中子等微粒的英文字母各是什么

原子核(nucleus)是由带正电的质子(proton)和不带电的中子(neutron)组成,质子和中子统称为核子(nucleon)。在中性原子中,原子核内的质子数等于核外电子数,也代表核电荷数,称为原子序数,用Z表示。原子核内的质子数与中子数之和称为质量数,用A表示。原子核内的中子数即为A-Z,若以X代表某种元素,则AZX表示元素的原子核组成

核物理学中,中子等微粒的英文字母各是什么

 中子(英文:neutron 日本语:中性子 朝鲜语:875703 泰语:Neutron 俄语:Нейтронный 希伯来语:080100060707 希腊语:Νετρον07ων 印地语:181515141915161118 加利西亚语:Neutrónicos)是组成原子核的核子之一。  1 质子 proton(日文:阳子 朝鲜文:201031 英文:Proton 泰文:242523292323希伯来语:020607000707印地语:10151613191118俄语:"Протон"克罗地亚语:Proton)  一种常见的亚原子粒子,不是基本粒子而是合成粒子,属于费米子,是最早发现的一种重子,是原子核内部的核子之一。  〖符号〗 p,H+电子英文解释:electron,electronicn.电子electrone.lec.tronn.Abbr. e(名词)缩写 e夸克  夸克(英语:quark 日语:クォーク 朝鲜语:4759 希腊语:Quark 希伯来语:Quark 俄语:Кварковые 泰语:23232420282221252524282320282128272123 阿拉伯文: 1712191917 )简介

核物理学中,中子等微粒的英文字母各是什么

 中子(英文:neutron 日本语:中性子 朝鲜语:875703 泰语:Neutron 俄语:Нейтронный 希伯来语:080100060707 希腊语:Νετρον07ων 印地语:181515141915161118 加利西亚语:Neutrónicos)是组成原子核的核子之一。  1 质子 proton(日文:阳子 朝鲜文:201031 英文:Proton 泰文:242523292323希伯来语:020607000707印地语:10151613191118俄语:"Протон"克罗地亚语:Proton)  一种常见的亚原子粒子,不是基本粒子而是合成粒子,属于费米子,是最早发现的一种重子,是原子核内部的核子之一。  〖符号〗 p,H+电子英文解释:electron,electronicn.电子electrone.lec.tronn.Abbr. e(名词)缩写 e夸克  夸克(英语:quark 日语:クォーク 朝鲜语:4759 希腊语:Quark 希伯来语:Quark 俄语:Кварковые 泰语:23232420282221252524282320282128272123 阿拉伯文: 1712191917 )简介

物理共振的原理是什么?要详细点的

物体的固有频率相同时,产生共振 核磁共振的原理 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。 根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 质量数和质子数均为偶数的原子核,自旋量子数为0 质量数为奇数的原子核,自旋量子数为半整数 质量数为偶数,质子数为奇数的原子核,自旋量子数为整数 迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P 由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。 原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.

核磁共振有没有核辐射?它背后是哪些物理原理?

肯定是没有核辐射的,否则可能会对人体造成很大的影响。物理原理就是,在拍摄照片的过程中,会通过放射的方式来获得具体的信息。

核磁共振仪的基本物理原理利用的是怎样一种物质与电磁场之间的相互作用

核磁共振仪的基本物理原理利用的是怎样一种物质与电磁场之间的相互作用核磁共振全名是核磁共振成像(MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程.核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁.核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象.通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术.并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋.原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂.在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级.这种过程就是核磁共振.

核磁共振成像的物理原理

核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。医生考虑到患者对“核”的恐惧心理,故常将这门技术称为磁共振成像。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经电脑处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。

初二物理凸透镜成像 原理?

光的折射

物理凸透镜成像规律口诀

物理凸透镜成像规律口诀如下:(1)一倍焦距分虚实,二倍焦距分大小,二倍焦点物像等。实像总是异侧倒。物近像远像变大,物远像近像变小。虚像总是同侧正。物远像远像变大,物近像近像变小。像的大小像距定,像儿追着物体跑,物距像距和在变。(2)一倍焦距分虚实,两倍焦距分大小。物近像远像变大,物远像近像变小。(3) 一倍焦距分虚实,“由虚像变实像刚好一倍不成像。“物像由大变小”倍焦距分大小,刚好两倍一样大物近像远像变大,物远像近像变小。实像倒立在异侧,虚像正立在同侧凸透镜成像原理是:物体放在焦点之外,在凸透镜另一侧成倒立的实像,实像有缩小、等大、放大三种。物距越小,像距越大,实像越大。在2倍焦距上时会成等大倒立的实像。物体放在焦点之内,在凸透镜同侧成正立放大的虚像。

初中物理凸透镜成像投影仪的工作原理

根据凸透镜在f<u<2f时可呈倒立放大实像的原理。

初中物理凸透镜的成像原理

光的折射定理

物理凸透镜成像原理是什么

一个有趣的初中物理问题。我们的眼睛为什么能够看到物体?其实是利用了凸透镜成像的原理。我们眼睛的晶状体相当于凸透镜,视网膜相当于光屏。外界物体的光线经过晶状体之后,在视网膜上呈一个倒立的缩小的实像。那么问题来了既然呈像都是倒立,那么我们看到的世界为什么不是倒立的呢?为什么我们看到的还是正立的世界呢?凸透镜成像规律原理是什么u=物距v=像距f=焦距1.u2f时,f2.u=2f时,v=2f,成倒立等大的实象3.f2f,成倒立放大的实象4.u=f时,不成象5.u成实象时,物距越大,像距越小,像也越小成虚象时,物距越大,像距越大,像也越大凸透镜成像规律-顺口溜凸透镜成像规律的顺口溜:二倍以外,倒小实;一倍二倍,倒大实;一倍以内,正大虚;实则异侧,虚则同。一倍焦距分虚实两倍焦距分大小凸透镜成像的原理??在物理上凹镜和凸镜都是利用光的折射的原理成像光学显微镜和望远镜都是利用光的折射和光的直线传播原理制成的放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。放大镜的成像原理表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y39;的虚像A39;B39;。放大镜的放大率Γ=250/f39;式中250--明视距离,单位为mmf39;--放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值显微镜的成像原理显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。只是显微镜比放大镜可以具有更高的放大率而已图2是物体被显微镜成像的原理图。图中为方便计,把物镜L1和目镜L2均以单块透镜表示。物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像A39;B39;A39;B39;位于目镜的物方焦点F2上,或者在很靠近F2的位置上。再经目镜放大为虚像A39;39;B39;39;后供眼睛观察。虚像A39;39;B39;39;的位置取决于F2和A39;B39;之间的距离,可以在无限远处,也可以在观察者的明视距离处。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像显微镜的重要光学技术参数在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准1.数值孔径数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者性能高低的重要标志。其数值的大小,分别标刻在物镜和聚光镜的外壳上数值孔径是物镜前透镜与被检物体之间介质的折射率和孔径角半数的正弦之乘积。用公式表示如下:NA=nsinu/2孔径角又称镜口角,是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1数值孔径最大值为1。4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1。66,所以NA值可大于1。4这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。2.分辨率显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,又称鉴别率。其计算公式是σ=λ/NA式中σ为最小分辨距离;λ为光线的波长;NA为物镜的数值孔径。可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。NA值越大,照明光线波长越短,则σ值越小,分辨率就越高。要提高分辨率,即减小σ值,可采取以下措施降低波长λ值,使用短波长光源。增大介质n值以提高NA值。增大孔径角u值以提高NA值。增加明暗反差3。放大率和有效放大率由于经过物镜和目镜的两次放大,所以显微镜总的放大率Γ应该是物镜放大率β和目镜放大率Γ1的乘积:Γ=βΓ1显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好。显微镜放大倍率的极限即有效放大倍率分辨率和放大倍率是两个不同的但又互有联系的概念。有关系式:500NAlt;Γlt;1000NA当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。4.焦深焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。焦深大,可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系:焦深与总放大倍数及物镜的数值孔径成反比。焦深大,分辨率降低由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。在显微照相时将详细介绍5.视场直径观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的。视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。视场直径愈大,愈便于观察。有公式F=FN/β式中F:视场直径,FN:视场数,β:物镜放大率。由公式可看出:视场直径与视场数成正比。增大物镜的倍数,则视场直径减小。因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。6.覆盖差显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量国际上规定,盖玻片的标准厚度为0。17mm,许可范围在0。16-0。18mm,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标的0。17,即表明该物镜所要求的盖玻片的厚度7.工作距离WD工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。。凸透镜成像原理是什么1、在物理上凹镜和凸镜都是利用光的折射的原理成像,光学显微镜和望远镜都是利用光的折射和光的直线传播原理制成的。2、其实凸透镜成像原理是很简单的,就是通过光的折射定理,放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的凸透镜。初二物理凸透镜成像原理?在光源、凸透镜和光屏在同一高度、同一直线上时:u2f时,成倒立缩小的实像,u越大,像越小、越靠近焦点

初中物理凸透镜成像规律

他们说的很详细了

照相机的凸透镜成像物理原理?

现在都是自动调教的那能有具体的啊只有范围镜头的焦距是34-102毫米(35毫米传统相机等效值)。二提变大了焦距变大后,物体就离焦点近了,所以就大了

物理电磁学问题,电磁铁的工作原理是什?其优缺点有哪些?

电磁铁的工作原理是电流的磁效应,或电流周围存在磁场与永磁体相比优点:1、磁性有无可以通过通断电来控制2、磁性的大小可以通过改变电流大小或线圈匝数的多少来控制3、磁极的方向可以通过改变电流的方向来控制电磁铁用很多优越性,少有缺点,如果有,就是有电才能有磁性,

初中物理电磁铁的原理

电磁铁磁性强若和线圈匝数,内部是否有铁芯,还有通电的电流大小有关,所以就拿一块电磁铁来说的话,改变电磁铁线圈匝数的话,磁性强弱当然是会变的啊,而且是线圈匝数越多就越强。和另一块电磁铁比的话就还要看其他那两个条件相不相同了。。

物理电磁学问题,电磁铁的工作原理是什?其优缺点有哪些?

电磁铁的工作原理是电流的磁效应,或电流周围存在磁场 与永磁体相比优点:1、磁性有无可以通过通断电来控制 2、磁性的大小可以通过改变电流大小或线圈匝数的多少来控制 3、磁极的方向可以通过改变电流的方向来控制 电磁铁用很多优越性,少有缺点,如果有,就是有电才能有磁性,
 首页 上一页  81 82 83 84 85 86 87 88 89 90 91  下一页  尾页