抽屉原理

阅读 / 问答 / 标签

求高人帮忙解决抽屉原理,本人不了解奥数类的,求解析!!!

去书店买啊

小学六年级数学抽屉原理

1.应是40本2.至少3个(494=2.....1,2+1=3)3.取3次

抽屉原理问题(六年级)

去百度找行了

六年级数学广角抽屉原理

(34-1)*(4*2)+1=67(人),考虑极限状况。

抽屉原理应用题

1、中午食堂有五种不同的菜,每人只能买两种菜,共5*4/2=10种买法,21名学生买,每种买法有2个学生。那么第21个学生不管怎么买,至少有3名学生的菜是相同的2、一个人的头发最多有20多万根,那么20多万小学生的头发根数可以有20多万种,如果是40多万小学生,那么必然有重复,所以会有2人的头发根数是完全相同

抽屉原理的问题(较难)请注备解题答案

一.图形分割例1.在边长为1的正方形内任意放13个点.证明:必定存在4点,使得以这4点为顶点的四边形面积不超过.证:如图,将正方形分成4个面积是的矩形,13个点必有4点落在同一个矩形中,其面积不超过.例2.半径为1的圆内任意放7个点,证明:必有2点,它们间的距离不大于1.证:如图,将圆分成6个相等的扇形,7点中必有2点落在同一个扇形中,易知它们的距离不大于1.例3.在3×4的长方形中,任意放6个点.证明:必有2点,它们间的距离不大于.证:如图,将长方形分成5块,6点中必有2点落在同一块中,易知它们的距离不大于.二.数的问题例4.任意给出7个不同整数.证明:必有2个整数,其和或差是10的倍数.证:按除以10的余数将整数分成10类,将这10类分成如下6组:{0}(表示除以10余0的所有整数);{1}、{9};{2}、{8};{3},{7};{4},{6};{5}.7个数中必有2个来自同一组,若它们同类,则差是10的倍数;若不同类,则和是10的倍数.例5.证明:存在一个这样的正整数,其各位数码是0或1,并且是1993的倍数.证明:考虑如下1993个数:10,110,1110,…,.若其中有数是1993的倍数,则证毕;否则它们除以1993的余数只能是1,2,…,1992,必有两数除以1993余数相同,它们的差是1993的倍数,显然此差的各位数码是0或1.例6.任意写一个数码由1、2、3组成的30位数,从这个30位数中任意截取相邻的3位数字,可组成一个3位数.证明:按上述方式一定可以得到两个相同的3位数.证:一共可截取28个3位数,而数码由1、2、3组成的三位数有33=27个,必有两数相同.例7.任意给定n+1个小于2n的不同正整数,证明:必可从中选出3个数,使其中两个之和等于第三个.证:设这n+1个正整数是a0评论00加载更多

抽屉原理问题

买两种菜的种类(4个中选两个)=6买饭种类=3菜和饭种类=386=18根据抽屉原理124/18=6……16那么至少有7个人买的菜和主食相同

一道抽屉原理的小学题,请高手帮帮忙!

概率问题 C55+A53=?自己酸

数学抽屉原理

7

抽屉原理练习题

10个

抽屉原理练习题

HYFTRUTYUIRTYMLREIUGIOREHYKUI

小学六年级数学一道基础练习题(抽屉原理)

8种。7+1=8

抽屉原理练习题 有一盒彩球,最多可以取7个,最少可以取1个。至少几个同学中有2个同学取的彩球一样多?

考虑最不利的情况,前7个人分别去了1,2,3,4,5,6,7个,那么第8个人随便取几个都会和之前某个人一样多,所以是8个人一样,前28人中,分别各有4人取了1-7个,那么第29个人随便取几个都会和之前某4个人一样多,所以是29个人

抽屉原理练习题 六个人进行射击训练,共射中了121环,那么必定有一个人至少射中几环?

121÷6=20余1所以至少有一个人射中了21环

抽屉原理练习题:任意取多少自然数,才能保证至少有两个自然数的差是7的倍数?

你好,应该是任意取8个数,这样才能保证至少有两个自然数的差是7的倍数。

六年级抽屉原理练习题

12个球

抽屉原理练习题!急求啊!

运用抽屉原理。2双一共是4只,红,黑,白三种袜子是3个抽屉,每个抽屉都放3只的时候,再任意抽出一只放进其中的一个抽屉,就是4只,所以至少要摸出3×3+1=10只袜子才能保证一定有2双同颜色的。 不知道是不是对的

抽屉原理练习题

42张

抽屉原理练习题:在一个半径为10m的圆形旱冰场上有7个人溜冰,至少有( )个人之间的距离不大于10m?

3.142×10=6.28×107人

抽屉原理练习题

瑞特瑞特让他

抽屉原理练习题(有答案)

根据题干分析可得:认识人数情况有9种,可以分别看做9个抽屉,10个人放在9个抽屉,考虑最差情况:1个抽屉都有1个人,那么剩下的1个人,无论放到哪个抽屉,都会出现一个抽屉有2个人,那么就说明这10位代表中,至少有2位认识人的个数相同.

抽屉原理练习题

84=2……12+1=3

抽屉原理练习题:有5只鸽子飞进2个笼子,共有多少种飞法

1.5个鸽子都在一个笼子里2.1只在一个笼子里,4只在另一个笼子里3.2只在一个笼子里,3只在另一个笼子里还有两种和2、3相反至少有3只鸽子在同一个笼子里

小学数学题抽屉原理练习 在线等要精确算式或者解答

1 红黄蓝绿为抽屉,21个为苹果,4*5+1=21至少有5+1=6个同色.保证有5个要(5-1)*4+1=17个,2个红球要3*10+2=32个。2 红黄白蓝花为抽屉,配成5双袜子,一双两只,要3*4+2=14只。同一种颜色袜子3双,既6只。要(6-1)*5+1=26只。必有一双红色要4*10+2=42只。3 ABCD为抽屉,每一件一本书至少4*2+1=9人借书一定有三人借的书相同.每人可借1-2本至少需要4*1+1=5人借书一定有2人借的书相同.每人可借1-4本31人借书至少有7+1=8人借的书相同。4 42名学生,男女人数比为1:1,选取42/2+1=22人,才能保证男女生都有。5 2种花色不同的牌要1*13+1=14张,保证有2张梅花要3*13+2=41。6 最小的学生6岁,最大13岁,不同年龄的有8人,要取8*2+1=17人一定能保证有3名学生同龄。7 至少取出8+1=9根.

小学抽屉原理练习题!

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5……5 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人) 7、 证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。 解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49 ,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。 8. 某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。 解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。 9. 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。 解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。 10. 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。 解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。 11.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍. 证明:把前25个自然数分成下面6组: 1; ① 2,3; ② 4,5,6; ③ 7,8,9,10; ④ 11,12,13,14,15,16; ⑤ 17,18,19,20,21,22,23, ⑥ 因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍. 12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? 解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。   13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?  【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。 15.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 16.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 17.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。  订一种杂志有:订甲、订乙、订丙3种情况;  订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;  订三种杂志有:订甲乙丙1种情况。  总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。 18.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的? 分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。  81÷10=8……1(个)。  根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。 19.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同? 分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生 7×(5-1)+1=29(名)。 20. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。 分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。 解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。 21. 任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。 分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉。 解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。 22. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8. 解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 。把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。显然,以这三个点为顶点的三角形的面积不超过1/8 。 反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而构造出4个抽屉,是解决本题的关键。我们知道。将正方形分成面积均为1/4 的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4 ,但这样构造抽屉不能证到结论。可见,如何构造抽屉是利用抽屉原理解决问题的关键。 23. 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 解:把50名学生看作50个抽屉,把书看成苹果 ,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本. 24. 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。 解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 ,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 ,即至少有一段有两棵或两棵以上的树 . 25. 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜.试证明:一定有两个运动员积分相同 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 ,以这49种可能得分的情况为49个抽屉 ,现有50名运动员得分 则一定有两名运动员得分相同 . 26.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种: {足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝} 以这9种配组方式制造9个抽屉,将这50个同学看作苹果=5.5……5 由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的。 【欢迎你来解】 1.某班37名同学,至少有几个同学在同一个月过生日?2.42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?3.口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有4个颜色相同的球?4.饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?5.一个班有40名同学,现在有课外书125本。把这些书分给同学,是否有人会得到4件或4件以上的玩具?

关于抽屉原理的题

抽屉原理练习题 六个人进行射击训练,共射中了121环,那么必定有一个人至少射中几环?一副扑克牌(取取出两张王牌)在余下的52张牌中,一次至少要拿出多少张,才能保证有两张花色相同的?要列式抽屉原理练习题:在一个半径为10m的圆形旱冰场上有7个人溜冰,至少有( )个人之间的距离不大于10m?

小学六年级奥数专题:抽屉原理

2.跳绳练习中,一分钟至少跳多少次才能保证在某一秒钟内,至少跳了两次? 3.一个正方体有六个面,给每个面都涂上红色或白色。证明:至少有三个面是同一颜色。 4.袋里有红、白、蓝、黑四种颜色的单色球,从袋中任意取出若干个球。问:至少要取出多少个球,才能保证有三个球是同一颜色的? 5.一只鱼缸里有很多条鱼,共有五个品种。问:至少捞出多少条鱼,才能保证有五条相同品种的鱼? 6.某小学五年级的学生身高(按整厘米计算),最矮的为138厘米,的为160厘米。如果任意从这些学生中选出若干人,那么,至少要选出多少人,才能保证有五人的身高相同? 7.体育组有足球、蓝球和排球,上体育课前,老师让一班的11名同学往操场拿球,每人最多拿两个。试证明:至少有两个同学拿球的情况完全一样。 8.口袋里放有足够多的红、白、兰三种颜色的球,现有31个人轮流从袋中取球,每人各取三个球。证明:至少有4个人取出球的颜色完全相同。 9.蓝子里有苹果、梨、桃和桔子,如果每个小朋友都从中任意拿两个水果,问至少有多少个小朋友,才能保证至少有两个小朋友拿的水果完全一样? 10.学校开办了语文、数学、美术和音乐四个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少在多少个学生中,才能保证有两个或两个以上的同学参加学习班的情况完全相同? 11.为了丰富暑假生活,学校组织甲、乙两班进行了一次军棋对抗赛,每班各出五人,同时对弈。比赛时天气很热,学校给选手们准备了两种饮料,有可乐,有汽水,每个选手都选用了一种饮料。 试证明:至少有两对选手,不但甲班选手选用的饮料相同,而且乙班选手选用的饮料也相同。 12.在上题中,如果学校为比赛准备了可乐、汽水和果汁三种饮料,那么比赛时每班至少出多少人,才能保证至少有两对选手,甲班选手选用的饮料相同,乙班选手选用的饮料也相同? 13.100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票。 问:在尚未统计的选票中,甲至少再得多少票就一定当选? 14.有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。证明:在200个信号中至少有4个信号完全相同。 15.库房里有一批蓝球、排球、足球和手球,每人任意搬运两个。证明:在41个搬运者中至少有5人搬运的球完全相同。 16.库房里有一批蓝球、排球、足球和手球,每人任意搬运三个。问:在61个搬运者中至少有几人搬运的球完全相同? 17.六年一班27个同学排成三路纵队外出参观,同学们都戴着红色或白色的太阳帽。求证:在9个横排中,至少有两排同学所戴帽子的颜色顺序完全相同。 18.有n个队参加的足球比赛,已经赛了n+1场。证明:必有一个队少赛了3场。

数学广角抽屉原理ppt

抽屉原理评课

抽屉原理评课如下:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理怎么做?

1,即使每个笼子放1个,都还剩4个;所以一定有一个笼子至少放2只兔子。2.假设每个抽屉都放一个,还剩2个;所以总有一个抽屉里至少放2个苹果。3.即使每个瓶子插一朵,还剩2朵;所以至少有一个花瓶中有2朵或2朵以上的花。抽屉原理:把N+1个物品放进N个抽屉里,至少有一个抽屉里有2个以上的物品。“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”

小学数学 抽屉原理

8支极端求解,假设先取出3个红、1个黑、1个黄、1个绿、1个白,现在7个了。再从剩下的任选一个即可

什么是抽屉原理

1、桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。2、抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”。3、抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

小学数学抽屉原理

忘了

抽屉原理是什么重要原理

抽屉原理一、 知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.其中 k= (当n能整除m时)〔 〕+1 (当n不能整除m时)(〔 〕表示不大于 的最大整数,即 的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.二、 应用抽屉原理解题的步骤第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业.证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球.例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本.例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本试证明:必有两个学生所借的书的类型相同证明:若学生只借一本书,则不同的类型有A、B、C、D四种若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种共有10种类型把这10种类型看作10个“抽屉”把11个学生看作11个“苹果”如果谁借哪种类型的书,就进入哪个抽屉由抽屉原理,至少有两个学生,他们所借的书的类型相同例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同证明:设每胜一局得一分由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能以这49种可能得分的情况为49个抽屉现有50名运动员得分则一定有两名运动员得分相同例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2.根据规定,多有同学拿球的配组方式共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方式制造9个抽屉将这50个同学看作苹果=5.5……5由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的

关于抽屉原理的2道题

1)0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10 共21名学生共110本的最小分配,接下来4名同学分配剩下的20本(比如3,4,6,7),故答案为32)这个答案是错的,正确答案应该是230命题一:每次都至少有5个小正方形内点数量相同44个箱子中,每四个箱子分别放0,1,2,3,4,5,6,7,8,9,10个点最后一个箱子放11个点这是使得命题一不成立的最小的点数,此点数为231,所以使命题一成立的最大的点数是230不清楚的话可以补充问我

抽屉原理(2)的几道题

1.8+1=9.2.比它的半数多1个。3.假设1个同学订了第一种,1个同学订了第二种,则其他同学都要订第三种;这时,有43个同学订的相同。若订第三种的少1人,则订相同报刊的就多1人。所以,最少有43人订的相同报刊。4.5同上。以上供参考。

关于抽屉原理的数学日记该怎么写呢?

原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。其中k=(当n能整除m时)〔〕+1(当n不能整除m时)(〔〕表示不大于的最大整数,即的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、应用抽屉原理解题的步骤第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

六年级抽屉原理2

0列

抽屉原理2的公式

总本数÷抽屉数=每个抽屉要平均分到的本书······剩下的本数 也就是每个抽屉要平均分到的本书﹢1=有一个抽屉至少放的本数

第二抽屉原理

字母不好理那几个数往里代一代 就理解了 比如:现在有物体:3×4-1=11个 放到4个盒子里 其中必有一个抽屉中至多有3-1=2 要注意是有一个抽屉 不要想成所有的

抽屉原理为什么要突出平均分的思想

  在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。  第一抽屉原理  原理1: 把多于n+k个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。  抽屉原理  证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。  原理2 :把多于mn(m乘以n)(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。  证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。  原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。  原理1 、2 、3都是第一抽屉原理的表述。  第二抽屉原理  把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

抽屉原理2道题

悬赏分太少!!

六年级抽屉原理(二)

先确定有几个物体,几个抽屉,然后用物体数除以抽屉数,余下多少,用物体数除以抽屉数加上余数(只取1),就等于至少有几个物体要在要在同一个抽屉

抽屉原理(2)的几道题

1.把数按与3整除的关系分类,只有三种,除三余一设A,,除三余二设B,和整除设C,解设五个数中没有三个数之和能整除三,则这五个数中一定没有三个A或都三个B,三个C,同时显然也不能有C,因为一定没有C,则,一个A和一个B,加上一个C满足整除三,与条件不合,所以此五个数中只有A和B,但是又不能有三个A或者三个B,这显然不可能,所以原命题成立.2.显然盒子中存的情形越多,则盒子中相同棋子的数目则越少,所以可以先解设有这样四个盒子,分别放1,2,3,4个棋子,则棋子总和为10个,要不出现5个盒子中的棋子数目相同,则最多只能有40粒子.所以原命题不成立.

第二抽屉原理怎么理解

  抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。   原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。   原理2:把m个元素任意放入n,且n<m,则一定有一个集合呈至少要有k个元素。   原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

是谁发现的抽屉原理????????????????????????????????????????

狄里克雷

抽屉原理 有52张扑克牌

2有四张 至少的情况是要最坏的 所以 用52-4=48(张)

抽屉原理!

1.15种 2.16朵(我的理解是去掉颜色只有一个的,剩下的就是同色的,所以最少16朵)

请问,抽屉原理,最不利原则,最值问题三者有什么区别?

抽屉原理,实际上就是平均原理。a个物体,分配到b个抽屉里,必有一个里面≥a/b;如果a<b,只有有一个抽屉是空的。最不利原则,是对策论中的原则,对策的收益≥最不利收益。相当于最不利时达到最小值。最值问题,数学概念,当自变量在某范围变化时,函数在最大、最小值。相当于,求函数自变量在某区域的时的值域。

抽屉原理、最不利原则和最值问题三者有什么区别?

有时候抽屉原理不能解决的最不利原则就能解决.

究竟什么是“蝴蝶定理”、“抽屉原理”和“燕尾定理”

蝴蝶定理(Butterfly theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。燕尾定理:因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。证明:利用分比性质(若a/b=c/d,则(a-b)/b=(c-d)/d,[1]b≠0,d≠0,)[2](注:∵(a-b)/b=a/b-b/b=a/b-1,(c-d)/d=c/d-d/d=c/d-1,a/b=c/d∴(a-b)/b=(c-d)/d∵△ABD与△ACD同高∴S△ABD:S△ACD=BD:CD同理,S△OBD:S△OCD=BD:CD利用分比性质,得S△ABD-S△OBD:S△ACD-S△OCD=BD:CD即S△AOB:S△AOC=BD:CD命题得证。

究竟什么是“蝴蝶定理”、“抽屉原理”和“燕尾定理”

蝴蝶定理(Butterflytheorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。”抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。燕尾定理:因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB上点,满足AD、BE、CF交于同一点O)。S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。证明:利用分比性质(若a/b=c/d,则(a-b)/b=(c-d)/d,[1]b≠0,d≠0,)[2](注:∵(a-b)/b=a/b-b/b=a/b-1,(c-d)/d=c/d-d/d=c/d-1,a/b=c/d∴(a-b)/b=(c-d)/d∵△ABD与△ACD同高∴S△ABD:S△ACD=BD:CD同理,S△OBD:S△OCD=BD:CD利用分比性质,得S△ABD-S△OBD:S△ACD-S△OCD=BD:CD即S△AOB:S△AOC=BD:CD命题得证。

抽屉原理

4

抽屉原理

25个因为当大于25个数的时候必定有奇偶性不同的两个数(抽屉原理),那其中肯定有一个数是其他两个数的和。因为奇数=偶数+奇数,偶数=奇数+奇数 或者偶数+偶数这个不是很好解释,你可以自己想想抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 一. 抽屉原理最常见的形式 原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 [证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能. 原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。 [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能. 原理1 2都是第一抽屉原理的表述 第二抽屉原理: 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能 二.应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.) 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 (一) 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。 例1 证明:任取8个自然数,必有两个数的差是7的倍数。 分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。 例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除. 证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: [0],[1],[2] ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除. ②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数. ③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除. 例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除. 证明:设这11个整数为:a1,a2,a3……a11 又6=2×3 ①先考虑被3整除的情形 由例2知,在11个任意整数中,必存在: 3|a1+a2+a3,不妨设a1+a2+a3=b1; 同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2; 同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3 ②再考虑b1、b2、b3被2整除. 依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2 则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6 ∴任意11个整数,其中必有6个数的和是6的倍数. 例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数. 分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数. (二)面积问题 例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点. 证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点. (三)染色问题 例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色. 例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。 例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色? 解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。 例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 三.制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答 我们用题目中的15个偶数制造8个抽屉: 凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。 分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。 另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。 例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。 分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。 从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。 抽屉原理 把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。 形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有: a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。 形式二:设把nu2022m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有: a1+a2+…+an≤m+m+…+m=nu2022m<nu2022m+1 n个m 这与题设相矛盾。所以,至少有存在一个ai≥m+1 高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”. 例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1 形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有: a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =ku2022[n/k]≤ku2022(n/k)=n k个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k] 形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。 所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi 形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。 例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同. 例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除. 证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数. 若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确. 例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同. 证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里. (用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有: 4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同. 练习:1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点. 2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于 . 3.求证:任意四个整数中,至少有两个整数的差能够被3整除. 4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多. 5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同. “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ... ... 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

请问彩田小学数学周抽屉原理的题是什么?(要答案)急!!!下午2;00前回复

这个保密

抽屉原理的题

抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 一. 抽屉原理最常见的形式 原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 [证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能. 原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。 [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能. 原理1 2都是第一抽屉原理的表述 第二抽屉原理: 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能 二.应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.) 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 (一) 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。 例1 证明:任取8个自然数,必有两个数的差是7的倍数。 分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。 例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除. 证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: [0],[1],[2] ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除. ②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数. ③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除. 例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除. 证明:设这11个整数为:a1,a2,a3……a11 又6=2×3 ①先考虑被3整除的情形 由例2知,在11个任意整数中,必存在: 3|a1+a2+a3,不妨设a1+a2+a3=b1; 同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2; 同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3 ②再考虑b1、b2、b3被2整除. 依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2 则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6 ∴任意11个整数,其中必有6个数的和是6的倍数. 例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数. 分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数. (二)面积问题 例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点. 证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点. (三)染色问题 例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色. 例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。 例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色? 解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。 例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 三.制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答 我们用题目中的15个偶数制造8个抽屉: 凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。 分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。 另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。 例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。 分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。 从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。 抽屉原理 把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。 形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有: a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。 形式二:设把nu2022m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有: a1+a2+…+an≤m+m+…+m=nu2022m<nu2022m+1 n个m 这与题设相矛盾。所以,至少有存在一个ai≥m+1 高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”. 例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1 形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有: a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =ku2022[n/k]≤ku2022(n/k)=n k个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k] 形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。 所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi 形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。 例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同. 例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除. 证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数. 若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确. 例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同. 证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里. (用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有: 4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同. 练习:1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点. 2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于 . 3.求证:任意四个整数中,至少有两个整数的差能够被3整除. 4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多. 5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同. “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ... ... 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

抽屉原理:6!(a+b+c)是什么意思?

抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。一. 抽屉原理最常见的形式原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.二.应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。例1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.)抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。(一) 整除问题把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。例1 证明:任取8个自然数,必有两个数的差是7的倍数。分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: [0],[1],[2] ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除. ②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数. ③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.证明:设这11个整数为:a1,a2,a3……a11 又6=2×3 ①先考虑被3整除的情形 由例2知,在11个任意整数中,必存在: 3|a1+a2+a3,不妨设a1+a2+a3=b1; 同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2; 同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3 ②再考虑b1、b2、b3被2整除. 依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2 则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6 ∴任意11个整数,其中必有6个数的和是6的倍数.例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.(二)面积问题例1 在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过(假定四点在一直线上构成面积为零的四边形)证明(如图)把正方形分成四个相同的小正方形.因13=3×4+1,根据原理2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的例1′:边长为1的正方形中,任意放入9个点,求证这9个点中任取3个点组成的三角形中,至少有一个的面积不超过.解:将边长为1的正方形等分成边长为的四个小正方形,视这四个正方形为抽屉,9个点任意放入这四个正方形中,据原理2,必有三点落入同一个正方形内.现把落在这个正方形中的三点记为D、E、F.通过这三点中的任意一点(如E)作平行线,如图可知:例2:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点. 证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.(三)染色问题例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。三.制造抽屉是运用原则的一大关键例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。分析与解答 我们用题目中的15个偶数制造8个抽屉:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。 从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。抽屉原理把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。形式二:设把nu2022m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有:a1+a2+…+an≤m+m+…+m=nu2022m<nu2022m+1n个m 这与题设相矛盾。所以,至少有存在一个ai≥m+1高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”.例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =ku2022[n/k]≤ku2022(n/k)=nk个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k]形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同.例题2:边长为1的正方形中,任意放入9个点,求证这9个点中任取3个点组成的三角形中,至少有一个的面积不超过1/8.解:将边长为1的正方形等分成边长为 的四个小正方形,视这四个正方形为抽屉,9个点任意放入这四个正方形中,据形式2,必有三点落入同一个正方形内.现特别取出这个正方形来加以讨论.把落在这个正方形中的三点记为D、E、F.通过这三点中的任意一点(如E)作平行线,如图可知:S△DEF=S△DEG+S△EFG≤ ×h+ = = 例题3:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数.若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确.例题4:九条直线中的每一条直线都将正方形分成面积比为2∶3的梯形,证明:这九条直线中至少有三条经过同一点.证明:如图,设PQ是一条这样的直线,作这两个梯形的中位线MN∵这两个梯形的高相等∴它们的面积之比等于中位线长的比,即|MH|∶|NH|∴点H有确定的位置(它在正方形一对对边中点的连线上,并且|MH|∶|NH|=2∶3).由几何上的对称性,这种点共有四个,即,图中的H、J、I、K.已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个苹果,即可得出必定有3条分割线经过同一点.例题5:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同.证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里.(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有:4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同.练习:1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点.2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于 .3.求证:任意四个整数中,至少有两个整数的差能够被3整除.4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多.5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同.

抽屉原理的研究目的和意义,国内外的研究现状

不知

什么叫抽屉原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。

小学六年级抽屉原理,写过程,急!

1. 至少5位同学去。即使前4位同学都只买一本,而且都买不同的书,第5位同学也一定与其他四位同学之一买到一样的书。2. 41个数。因为1~50之中只有10个数能被5整除,40个数不能被5整除,所以取41个数,就至少有一个能被5整除。

数学抽屉原理,急急急。。。。。。

2.n个3.xyz

抽屉原理中至少的意思

问题一:抽屉原理中的“至少”是什么意思 这个的意思是不相同的,但如果有这两个词同时在,那么必须是在一定的情况下,做至少。 也就是说做最坏的打算 问题二:抽屉原理中,什么叫至少 比如桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果,最少每个抽屉都有一个苹果。这一现象就是我们所说的抽屉原理 问题三:抽屉原理是什么意思? 抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。 抽屉原理的一般含义为:“如果每个抽屉代表一个 *** ,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个 *** 中去,其中必定至少有一个 *** 里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 一. 抽屉原理最常见的形式 原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 [证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能. 原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。 [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能. 原理1 2都是第一抽屉原理的表述 第二抽屉原理: 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m―1)个物体。 [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能 二.应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.) 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 (一) 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是......>> 问题四:抽屉原理最少什么意思 抽屉原理:把多于n个的苹果放进你个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果,如果把苹果换成鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时把抽屉原理叫做鸽笼原理,用来解决表面看来似乎很难的数学问题 如有13个人,可以断定他们中至少有2个人生肖相同,利用抽屉原理,人数13鼎生肖12多所以至少有2个人生肖相同,应用抽屉原理要注意识别“抽屉”和“苹果”,“苹果的数目要大于抽屉的数目

“任意三个连续自然数中,至少有一个数是偶数.”这句话对吗?请你用抽屉原理来解释.

什么叫抽屉原理? 对,这个证明题好难,我给你举一些例子吧 0、1、2 中,0、2是偶数1、2、3中,2是偶数,2、3、4中2、4都是偶数, 任意三个连续自然数可表示为n-1,n,n+1 若n为奇数,则n-1和n+1为偶数 若n为偶数,结论成立. 所以“任意三个连续自然数中,至少有一个数是偶数.”是正确的.

六年级奥数:抽屉原理

如果运气太差,摸了36只还没配成5副同色的(每种颜色各9只),再摸出一只,随便什么颜色,肯定有一种颜色成5副。所以,最少应摸出37只,才能保证有5副同色的。

抽屉原理中,什么叫至少

比如桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果,最少每个抽屉都有一个苹果。这一现象就是我们所说的抽屉原理。 至少的意思是“也可能多于”。比如6个苹果放入4个抽屉,至少有一个抽屉中苹果超过1个,也有可能2抽屉中多于1个。

什么叫抽屉原理?

个人觉得就是能屈能伸,才有有得有失

为什么狄里克雷原理又叫抽屉原理

因为这一原理是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的,由于有他发现并提出,所以这一原理用发现者狄利克雷的名字命名。抽屉原理-百科名片:  把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。o(∩_∩)o 希望可以帮到你!

抽屉原理最少什么意思

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。

抽屉原理解题时如何区分哪些是抽屉?

抽屉原理又叫鸽笼原理、狄里克雷(P.G.Dirchlet,1805~1895,德国)原理、重叠原理、鞋盒原理。这一最简单的思维方式在解题过程中却可以演变出很多奇妙的变化和颇具匠心的运用。抽屉原理常常结合几何、整除、数列和染色等问题出现,从小学奥数、中学奥数、IMO到Putnam都可以见到它的身影。因此,希望大家深刻理解和熟练掌握它。在国外一般称抽屉原理为鸽笼原理(The Pigeon-Hole Principle),简称PHP。用通俗的话来说就是,把6个苹果放到5个抽屉里,必定有一个抽屉里至少有2个苹果。通常有下列几种表达形式:1。把n+1个元素分为n个集合,那么必定有一集合含有两个或两个以上的元素;2。把nm+1个元素分为n个集合,那么必定有一集合含有m+1或m+1个以上元素;3。把n个元素分为k个集合,那么必定有一个集合中元素的个数大于等于[n/k],也必然有一个集合中元素的个数小于等于[n/k];4。把无穷多个元素分为有限个集合,那么必有一个集合含有无穷多个元素。应用抽屉原理解题的基本思想是,利用抽屉原理把范围缩小,使之能在一个特定的小范围内考虑问题,使问题变得简单而明确。根据不同问题的自身特点,洞察问题本质,先要弄清楚对那些元素分类,在找出分类的规律,即进行所谓的构造抽屉。构造抽屉是用抽屉原理解题的关键,也是难点。一般情况是,把图形分成小区域;把集合化成子集组。在使用抽屉原理时,一般是先确定‘苹果"的数目,再构造出小于‘苹果"数目的抽屉;当构造出来的抽屉不能满足题设要求时,就要挖掘题目的的隐藏条件,使之能顺利运用抽屉原理来解题。余数问题运用抽屉原理的特点是,任意一个整除n被p除时余数有p种情况,从而确定出‘抽屉".

《抽屉原理》的说课稿

各为评委、老师,大家好: 我说课题目是《抽屉原理》(板书),这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说说这节课。   一、(首先谈谈第一点)从学情出发,确定课时的划分,与文本对话。 本单元共三个例题,例1、例2的内容,教材通过几个直观的例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。例1和例2既可以用一课时完成,又可以分两课时完成,而我选择后者,有如下思考。 数学广角的内容蕴含着丰富的数学思想方法,广角的教学目的主要在于让学生受到数学思想方法的薰陶,发展数学思维能力,因此对大多数学生而言,学起来是存在一些思维难度的。而抽屉原理是数学广角这个皇冠上的明珠,比十一册上的《鸡兔同笼》的学习更具挑战性。在《抽屉原理》中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度,尤其是对“至少”的理解,它不同于以往数学学习中所说的含义,这里的“至少”是指在物体个数最多的抽屉中找到最少的物体个数,这对学生而言是一种全新的思维方式,他们很可能一时转不过弯。另外,让学生用精炼准确的语言来表述自己的思考也是一个难点。 再看看课本,根据例1、例2理出了《抽屉原理》的知识序列。例1描述的是物体数比抽屉数多1的情况,例1的做一做代表的是物体数不到抽屉数的2倍,比抽屉数多2、多3一类的情形,例2描述的是物体数比抽屉数的非1整数倍多1的情况,例2的做一做代表的是物体数比抽屉数的非1整数倍多,且不止多1的情形。可见,例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,他们才可能顺利地进行例2的学习,否则,此内容的学习将只是优生炫酷的天地,他们可能一开课就能说出原理,而其他学生可能一节课下来还弄不清什么是“总有一个”、什么是“至少”,怎样才能很快知道“至少”是几个物体。因此,我选择将例1、例2分成两课时完成。可能有老师说,这样本课的教学内容容量太少了,基于这一点,我在第四个环节有说明的。   二、从文本出发 确定教学目标 根据《数学课程标准》和教材内容,我确定本节课学习目标如下: 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。 3. 通过“抽屉原理”的灵活应用感受数学的魅力。 教学重点是:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。 我把:理解抽屉原理中“总有”“至少”的含义作为本课的教学难点 我之所以这样确定教学目标和重难点,是因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。   三、从学生实际出发 选择合理的教法学法 教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。 学法上学生主要采用了自主、合作、探究式的学习方式。 第四个方面是:以学定教,与课堂对话。 本节课共我设计了四个教学环节:游戏导入——探究新知——反思、呈现——解决问题(游戏)。 下面我分别说说这样设计的意图。 第一环节——游戏导入 由于只把例1作为本课的教学内容,我在设计的时候对例1的教学进行了一些铺垫和补充。在导入部分,设计了猜至少有几个学生是同月生的游戏,拉近数学与生活的关系,激发学生的探究欲望。在例1的教学后加入了5枝铅笔放入4个盒子的问题,目的在于通过两个不同的实例让学生较充分地感受、体验、发现相同的现象,有利于学生进行抽象、概括,使结论的得出更有说服力。然后拓展到7枝铅笔放入5个盒子,8枝铅笔放入5个盒子,9枝铅笔放入5个盒子,这一类余数是2、是3、是4的问题的探究,完成对抽屉原理第一层次的认识。 第二环节,探究新知。 根据学生学习的困难和认知规律,我在探究部分设计了三个层次的教学活动,这三个层次的教学活动由形象思维逐步过渡到抽象思维,层层递进,培养学生的逻辑思维能力。 第一个层出:实物操作,把4枝铅笔放入3个盒子(板书),解决3个问题: 1、怎样放 知道排列组合的方法,明确如果只是放入每个盒中的枝数的排序不一样,应视为一种分法,并引导学生有序思考,为后面的列举扫清障碍。 2、共有几种放法 孕伏对“不管怎样放”的理解。 3、认识“总有一个”的意义。 通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。 第二个层次:脱离具体操作,由抽象到数,进行数的分解——思考把5枝铅笔放入4个盒子(板书包括6支5盒),又会出现怎样的情况,学生直接完成表格。这一层次达成三个目的: 1、理解“至少”的含义,准确表述现象。 通过观察表格中枝数最多的盒子里的数据,让学生在“最多”中找“最少”,学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒” 时,总有一个文具盒里至少放入2枝铅笔的结论。 2、理解“平均分”(板书)的思路,知道为什么要“平均分”。 抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个文具盒里至少是几枝的方法——就是按照盒数平均分,只有这样才能让最多的盒子里枝数尽可能少。 3、抽象概括 小结现象 通过“4枝放入3个盒子”、”5枝放入4个盒子”和练习题“6枝放入5个盒子”,让学生抽象概括出 “当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体” (板书),初步认识抽屉原理。 (三)学生自选问题,探究“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”(板书789物体5抽屉) 这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。 教学流程的第三个环节,将本节课研究过的所有实例进行总体呈现,让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体(板书)。 在最后的练习环节以游戏的形式出现,我设计了几个需要应用“抽屉原理”解决的简单的实际问题,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是“待分的东西”,什么是“抽屉”,同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。 抽屉原理 平均分 4支铅笔放进 3个文具盒 5支 4 个 6支 5个 当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体。 7个物体 5抽屉 8个物体 5抽屉 9个物体 5抽屉 ﹕ ﹕ ﹕ ﹕ “……,不管怎样放,总有一个抽屉,至少放进 2 个物体。” 这是这节课的板书设计。 谢谢大家!我的说课完毕。

抽屉原理: 有1,2,3.....,100个数,分成7组,证明:在其中一组里,存在,有四个数,符合a+b=c+d

  证明:要证明存在4个数a,b,c,d 使:a+b=c+d,可以考虑差:a-c=d-b  在1,2,3.....,100个数中,两两相减所形成的差(这里差>0)的数目一共为99个。  现将1,2,3.....,100个数,分成7组,由抽屉原理,其中至少有一组,至少有15个数。  这15个数两两相减所形成的差(这里差>0),如果不相等的话,共有15*14/2=105个,这与差的总数只有99个矛盾。故这15个数两两相减所形成的差(这里差>0)中,至少有两个相等。  即至少存在4个数,a,b,c,d 使:a+b=c+d。

求助几个抽屉原理数学题目!!!

1:400人中至少有两个人的生日相同. 解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同. “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.3 证明:任取8个自然数,必有两个数的差是7的倍数。 分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。4:对于任意的五个自然数,证明其中必有3个数的和能被3整除. 证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: [0],[1],[2] ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除. ②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数. ③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.5:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除. 证明:设这11个整数为:a1,a2,a3……a11 又6=2×3 ①先考虑被3整除的情形 由例2知,在11个任意整数中,必存在: 3|a1+a2+a3,不妨设a1+a2+a3=b1; 同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2; 同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3 ②再考虑b1、b2、b3被2整除. 依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2 则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6 ∴任意11个整数,其中必有6个数的和是6的倍数.

简单抽屉原理数学奥数题

做对第一题的+做对第二题的+做对第三题的-既做对第一题又做对第二题的-既做对第一题又做对第三题的-既做对第二题又做对第三题的+三题都做对的=参加做题的人数(这里指全班人数)既做对第一题又做对第二题的:25+28-40=13(人)既做对第一题又做对第三题的:25+31-40=16(人)既做对第二题又做对第三题的:28+31-40=19(人)根据上面的公式,就可求出三题都做对的有几人了:25+28+31-13-16-19+三题都做对的=40解得,三题都做对的有4人。

抽屉原理: 有1,2,3.....,100个数,分成7组,证明:在其中一组里,存在,有四个数,符合a+b=c+d??

1、100个数分成7组,则至少有一组个数≥15,否则每组最多14,7组最多98总数不能达到1002、根据等式可得出条件:a-c=d-b,只要在某一组之中找到2对差相等的数就能满足a+b=c+d,两个数的差也可以看作是两个数之间的间距,也就是说只要任意两组数之间的间距不相等,等式就不能成立。根据以上条件我们从1开始保证每相邻的2个数间距都不一样,1、2、4、7、11、16、22、29、37、46、56、67、79、92、106第15个数为106大于100,因此必定满足a+b=c+d

一道抽屉原理问题

自己拿6个碗当抽屉,拿围棋子当颜色,摆一下,看看.这么简单的问题,还是自己动手解决的好.

算式!:任意三个连续自然数中,至少有一个数是偶数。”这句话对吗?请你用“抽屉原理”解答

答案示例:设连续自然数为x,x+1,x+2这里的“抽屉”就是奇和偶若x为偶,则这三数至少有两偶数若x为奇,奇数+1(奇数)=偶数所以两种情况都说明有偶数希望我的回答对你的学习有帮助,谢谢采纳!!

抽屉原理 3×10共30个小正方形的长方形,现把每个方格涂上红、黄两色,请证明无论怎

每列3格,每格两个着色法,一列有2×2×2=8种着色方法,现在有10列。10>8,从抽屉原理 总有两列涂法是相同的。[相当于10个苹果放进8个抽屉里,至少有一个抽屉有两个苹果。]

可恶的数学抽屉原理,拜托大家帮帮忙!

只要把一边都抽出来,再抽就只能抽不同的一边了所以是24

抽屉原理公式m*x+k是什么意思

这个应该是说每个至少有一个抽屉里有m+1个的总数吧 你就这样一句很难回答啊 不知道你到底要问什么

六年级抽屉原理

六年级抽屉原理:即“把多于kn个物体任意分放迸n个室抽屈中(k为正整数),那么一定有一个抽屉中放进了(k+1)个物体”。“抽屈原理”的理论本身并不复杂,甚至可以说显而易见的。例如,要把3个苹果放迸两个抽屈,至少有一个抽屈里要有两个苹果,这样的道理对于小学六年级学生来说,也是很容易理解的。随着数值的增大让学生说理和应用“抽屉原理”解决实际问题就显得有些难度。因迅喊此至于说理不必过于追究其严密性,同时在课堂上要通过引导初步建立起数学模型,准确找到谁是“抽屉”,谁是“物体”,这样就便于学生解决实际问题。抽屉原理的基本表述:1、将多于n个苹果任意放到n个抽屉里,那么至少有一个抽屉中的苹果个数不少于2个(最常用到)。2、将多于m*n个苹果任意放到n个抽屉中,那么至少有一个抽屉中的苹果个数不少于m+1(1理解了,这个就不难)。3、将无穷多个苹果任意放到n个抽屉中,那么至少有一个抽屉中有无穷多个苹果(考试中不太会用到)。通常,使用高弯抽亩念野屉原理的题目,题中都会出现“至少……”“总是……”的表示。
 1 2 3  下一页  尾页