容斥原理公式

阅读 / 问答 / 标签

三集合容斥原理公式该怎么理解?

∪并集(比如集合a有1357集合b有1234a并b为123457)∩交集(a交b为13)三个圆为abca∪b∪c为总面积a∩b+b∩c+c∩a为灰色面积a∩b∩c为最中间面积其实就是三个圆的总面积(不重叠的圆的总面积)

容斥原理公式是什么 容斥原理公式的含义是什么

1、在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 2、例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 3、分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。为15+12-4=23。

容斥原理公式中各符号的含义是什么?

U代表全集,也就是所有的元素包含在一起,当然也包含AB。你说的口朝下的代表“交”,也就是他左右两边两个集合的公共元素。如果写成口朝上代表并集,就是AB中所有不重复的元素的集合。不知道你问的U是“由”还是并集。

容斥原理公式是什么?

容斥极值公式是:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C。容斥原理是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是A类又是C类的元素个数-既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

三个集合容斥原理公式区别

后面一个不认识。

n个集合的并集(容斥原理公式)

n(A1∪A2∪...∪Am)=∑n(Ai)1≤i≤m-∑n(Ai∩Aj)1≤i≤j≤m+∑n(Ai∩Aj∩Ak)-…+(-1)m-1n(A1∩A2…∩Am)1≤I,j,k≤m注:m-1是-1的指数这种公式的形式是很复杂的重在理解理解了就很好用了甚至不用背就可以自己写出公式来解题的时候就得心应手不过这个公式已经超出了高中的范畴了高中最多也就讨论m=3的情形用语言表达似乎很困难就是说求几个集合的并集可以先把他们统统加起来但是这样做有些地方就多加了那么就要减掉一些(由公式来判断什么需要减去)但是这样做有些地方就多减了那么就要加上一些(由公式来判断什么需要加上)......如此重复继续下去最后得到的结果就是这几个集合的并集举个例子吧集合a1,a2,a3a1={1,2,3,4}a2={2,3,4,5}a3={3,4,5,1}求三个集合的并集按照这个公式∑n(Ai)1≤i≤m=a1+a2+a3={1,2,3,4,2,3,4,5,3,4,5,1}∑n(Ai∩Aj)1≤i≤j≤m=(a1∩a2+a2∩a3+a3∩a1)={2,3,4}+{3,4,5}+{3,4,1}∑n(Ai∩Aj∩Ak)1≤i≤j≤m=(a1∩a2∩a3)={3,4}代入公式三个集合的并集=a1+a2+a3-(a1∩a2+a2∩a3+a3∩a1)+(a1∩a2∩a3)={1,2,3,4,2,3,4,5,3,4,5,1}-({2,3,4}+{3,4,5}+{3,4,1})+({3,4})={1,2,3,4,5}以上就是这个公式的具体应用我的表达不是很规范但是这个公式的方法就是这样的重在理解我举的例题的答案其实可以一眼看穿但是这个公式揭示了普遍原理,是用来解决复杂的问题的

容斥原理公式的符号含义

u代表全集,也就是所有的元素包含在一起,当然也包含ab。你说的口朝下的代表“交”,也就是他左右两边两个集合的公共元素。如果写成口朝上代表并集,就是ab中所有不重复的元素的集合。不知道你问的u是“由”还是并集。

小学的容斥原理公式不要太复杂

我认为正确,主要是小学生不理解高中公式,小学生可以做简单的容斥原理问题,利用面积关系求阴影部分面积就行了。

容斥原理公式

50-[(16+15+21)-(7+8+10)+5]=18[这三种花都没有的花束有(18束)。]

两集合容斥原理公式

两集合容斥原理的公式是A∪B=A+B-A∩B,容斥原理是指先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。

n个集合的并集(容斥原理公式)

n(A1∪A2∪...∪Am)=∑n(Ai)1≤i≤m-∑n(Ai∩Aj)1≤i≤j≤m+∑n(Ai∩Aj∩Ak)-…+(-1)m-1n(A1∩A2…∩Am)1≤I,j,k≤m 注:m-1是-1的指数 这种公式的形式是很复杂的 重在理解 理解了就很好用了 甚至不用背就可以自己写出公式来 解题的时候就得心应手 不过这个公式已经超出了高中的范畴了 高中最多也就讨论m=3的情形 用语言表达似乎很困难 就是说求几个集合的并集可以先把他们统统加起来 但是这样做有些地方就多加了 那么就要减掉一些 (由公式来判断什么需要减去) 但是这样做有些地方就多减了 那么就要加上一些 (由公式来判断什么需要加上) ...... 如此重复继续下去 最后得到的结果就是这几个集合的并集 举个例子吧 集合 a1 , a2 , a3 a1={ 1 , 2 , 3 ,4 } a2={ 2 , 3 , 4 ,5 } a3={ 3 , 4 , 5 ,1 } 求三个集合的并集 按照这个公式 ∑n(Ai)1≤i≤m = a1 + a2 + a3 = { 1 , 2 , 3 ,4 , 2 , 3 , 4 ,5 , 3 , 4 , 5 ,1 } ∑n(Ai∩Aj)1≤i≤j≤m = (a1∩a2 + a2∩a3 + a3∩a1) = { 2 , 3 , 4 } +{ 3 , 4 , 5 } + { 3 ,4 , 1} ∑n(Ai∩Aj∩Ak)1≤i≤j≤m = (a1∩a2∩a3) = { 3 , 4 } 代入公式 三个集合的并集= a1 + a2 + a3 - (a1∩a2 + a2∩a3 + a3∩a1) + (a1∩a2∩a3) = { 1 , 2 , 3 ,4 , 2 , 3 , 4 ,5 , 3 , 4 , 5 ,1 } - ( { 2 , 3 , 4 } +{ 3 , 4 , 5 } + { 3 ,4 , 1 } ) + ( { 3 , 4 } ) = { 1 , 2 , 3 , 4 , 5 } 以上就是这个公式的具体应用 我的表达不是很规范 但是这个公式的方法就是这样的 重在理解 我举的例题的答案其实可以一眼看穿 但是这个公式揭示了普遍原理,是用来解决复杂的问题的

两集合容斥原理公式

两集合容斥原理公式:A∪B∪C=A+B+C。先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 计数是一个重复加(或减)1的数学行为,通常用于算出对象有多少个或放置想要之数目个对象(对第一个对象从一算起且将剩下的对象和由二开始的自然数做一对一对应)。

二集合容斥原理公式

  二集合容斥原理公式:W=FV。先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。   集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。

三集合容斥原理公式

三集合容斥原理公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。因为A、B、C与A交B两两的交集它们中都含A交B交C,然而ABC两两交集中应减两次,然而却将ABC两两交集中的A交B交C减了三次,所以应该加上多减的一次ABC的交集。三集合容斥问题的核心公式:标准型:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|。非标准型:|A∪B∪C|=|A|+|B|+|C|,只满足两个条件的-2×三个都满足的。列方程组:|A∪B∪C|=只满足一个条件的+只满足两个条件的+三个都满足的。|A|+|B|+|C|=只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。

四个集合的容斥原理公式怎么解决?

我在你身边

三集合容斥原理公式该怎么理解?

你是怎么理解的 哪里不懂 说出来

容斥原理公式

粉笔三者容斥问题3个公式如下:1、标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。2、非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条件的- 2×三个都满足的。3、列方程组:|A∪B∪C | =只满足一个条件的+只满足两个条件的+三个都满足的。在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。容斥原理的定义:如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C)。例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。为15+12-4=23。以上内容参考:百度百科-容斥原理

两集合容斥原理公式是什么?

两个集合的容斥关系公式:AUB=A+B-A∩B(∩为重合的部分)三个集合的容斥关系公式:AUBUC=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。详细推理如下:1、等式右边改造={-C∩A}+A∩B∩C。2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C3、等式右边()里指的是下图的1+2+3+4+5+6六部分:那么AUBUC还缺部分7。4、等式右边【】号里+C(4+5+6+7)后,相当于AUBUC多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。5、等式右边{}里减去C∩A(即4+5两部分)后,AUBUC又多减了部分5,则加上A∩B∩C(即5)刚好是AUBUC。扩展资料:三集合容斥问题的核心公式如下:标准型:|A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条件的-2×三个都满足的。列方程组:|A∪B∪C | =只满足一个条件的+只满足两个条件的+三个都满足的。| A | + | B | + | C | =只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。

容斥原理公式中各符号的含义是什么?

∪就是所有数字加起来,把重复的只剩1个∩就是两个集合之中重复的数。绝对没抄袭,自己写的。

n个集合的并集(容斥原理公式)

n(A1∪A2∪...∪Am)=∑n(Ai)1≤i≤m-∑n(Ai∩Aj)1≤i≤j≤m+∑n(Ai∩Aj∩Ak)-…+(-1)m-1n(A1∩A2…∩Am)1≤I,j,k≤m 注:m-1是-1的指数 这种公式的形式是很复杂的 重在理解 理解了就很好用了 甚至不用背就可以自己写出公式来 解题的时候就得心应手 不过这个公式已经超出了高中的范畴了 高中最多也就讨论m=3的情形 用语言表达似乎很困难 就是说求几个集合的并集可以先把他们统统加起来 但是这样做有些地方就多加了 那么就要减掉一些 (由公式来判断什么需要减去) 但是这样做有些地方就多减了 那么就要加上一些 (由公式来判断什么需要加上) . 如此重复继续下去 最后得到的结果就是这几个集合的并集 举个例子吧 集合 a1 ,a2 ,a3 a1={ 1 ,2 ,3 ,4 } a2={ 2 ,3 ,4 ,5 } a3={ 3 ,4 ,5 ,1 } 求三个集合的并集 按照这个公式 ∑n(Ai)1≤i≤m = a1 + a2 + a3 = { 1 ,2 ,3 ,4 ,2 ,3 ,4 ,5 ,3 ,4 ,5 ,1 } ∑n(Ai∩Aj)1≤i≤j≤m = (a1∩a2 + a2∩a3 + a3∩a1) = { 2 ,3 ,4 } +{ 3 ,4 ,5 } + { 3 ,4 ,1} ∑n(Ai∩Aj∩Ak)1≤i≤j≤m = (a1∩a2∩a3) = { 3 ,4 } 代入公式 三个集合的并集= a1 + a2 + a3 - (a1∩a2 + a2∩a3 + a3∩a1) + (a1∩a2∩a3) = { 1 ,2 ,3 ,4 ,2 ,3 ,4 ,5 ,3 ,4 ,5 ,1 } - ( { 2 ,3 ,4 } +{ 3 ,4 ,5 } + { 3 ,4 ,1 } ) + ( { 3 ,4 } ) = { 1 ,2 ,3 ,4 ,5 } 以上就是这个公式的具体应用 我的表达不是很规范 但是这个公式的方法就是这样的 重在理解 我举的例题的答案其实可以一眼看穿 但是这个公式揭示了普遍原理,是用来解决复杂的问题的

四个集合的容斥原理公式怎么解决?

用|A|表示集合A的基数,也即集合A中元素的个数。则有|A∪B∪C∪D|=|A|+|B|+|C|+|D|-|A∩B|-|A∩C|-|A∩D|-|B∩C|-|B∩D|-|C∩D|+|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|-|A∩B∩C∩D|。在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。扩展资料:容斥原理中经常用到的有如下两个公式:1、两集合的容斥关系公式:A∪B=A+B-A∩B。如果被计数的事物有A、B两类。那么所有属于A类或属于B类的元素个数总和=A类元素个数+属于B类元素个数-既属于A类又属于B类的元素个数。2、三个集合的容斥关系公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。如果被计数的事物有A、B、C三类,那么所有属于A类或属于B类或属于C类的元素的个数总数=A类元素的个数+B类元素的个数+C类元素的个数-既是A类又是B类元素的个数-既是B类又是C类元素的个数-既是A类又是C类元素的个数+同时是A类B类C类元素的个数。参考资料:百度百科-容斥原理