barriers / 阅读 / 详情

分式的符号法则为什么是分式基本性质

2023-05-20 01:55:39
TAG: 分式
共1条回复
陶小凡

分式的符号法则是分式基本性质的原因是性质。根据查询相关公开信息显示,分式的符号法则是基本性质,因为它们是用来表示分数的一种简明有效的方法。它们提供了一种简单的方式来表示分数,从而使分数运算更加容易。它们也帮助我们更好地理解分数和分数之间的关系。

相关推荐

分式有什么性质?

分式基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:(A,B,C为整式,且B、C≠0)。来自百科。希望对你有所帮助。
2023-01-13 20:03:041

分式中的等比性质法是什么呢?

忘了都
2023-01-13 20:03:093

分式及其性质

1、约分(1)负的2ab的平方分之6a的平方b= -b分之3a(2)15a的三次方b分之负的3ab的平方= -5a²分之b(3)-24m的四次方n的二次方分之6m的三次方n的四次方= -4m分之n²(4)12(b-a)的平方分之-3(a-b)= -4(a-b)分之12、不改变分式的值,将下列分式中分子与分母的各项系数都化为整数(1)0.5b分之a =b分之2a (2)1.2x+0.5y分之0.1x-0.3y=12x+5y分之x-3y3、填空(1)a的平方-b的平方分之2a-2b=(a+b)分之2(2)a的平方-2ab+b的平方分之3a-3b=(a-b)分之3(3)x的平方-6x+9分之2x-6=(x-3)分之2(4)16a的平方+8ab+b的平方分之16a的平方-班的平方=(4a+b)分之4a-b
2023-01-13 20:03:121

分式的性质:分式的分子和分母乘或除以同一个非零整式,为什么一定非得是整式呢?

不一定。分式的性质是:分式的分子和分母乘或除以同一个非零的代数式,分式的值不变。利用这个性质,我们可以给分式进行约分或通分。
2023-01-13 20:03:151

分式的变号法则是什么?不是分式的基本性质!!!!!!

整式a除以整式b,可以用表示成a/b的形式,如果除式b中含有字母,那么称a/b为分式分式的基本性质分式的分子与分母都乘以(或除以)同一个不等与零的整式,分式的值不变
2023-01-13 20:03:222

初二数学。分式子的基本性质

这样的带入具体数字容易算
2023-01-13 20:03:255

分式及其性质

解:1、当x取什么值时,下列各式有意义(1)x分之1 (2)3x+1分之x+3 (3)0.2x+1分之x有意义,则分母不等于0,则(1)x≠0 (2)3x+1≠0得x≠-1/3 (3)0.2x+1≠0得x≠-52、在下列各式中,当x取什么值时,分式的值等于0(1)x+2分之2x-3 (2)x+1分之x的平方-1分式的值等于0,则分子为0,分母不等于0,于是(1)2x-3 =0得x=3/2 (2)x²-1=0解得x=1 x=-1(舍去)3、当x取什么值时,下列各式有意义(1)x的平方+3分之2x (2)x的平方分之2x+1 (3)x-3分之2x-5 (4)5x+3分之4-x有意义,则分母不等于0,则(1)x²+3≠0 x为任意数 (2)x²≠0得x≠0 (3)x-3≠0得x≠3 (4)5x+3≠0得x≠-3/54、当x取什么值时,下列分式的值等于0(1)x-1分之x (2)x-2分之x的平方-4 (3)x+1分之|x|-1分式的值等于0,则分子为0,分母不等于0,于是(1)x=0 (2)x²-4=0解得x=-2 x=2(舍去) (3)|x|-1=0解得x=1 x=-1(舍去)
2023-01-13 20:03:341

分式及其性质

1,(1)ab..(2)a方-b方。。后面太多了 不想写 差不多行了吧
2023-01-13 20:03:372

分式及其性质

一:14是整式,24是分式二x不等于-3,x不等于零三x等于1/3,x等于-2
2023-01-13 20:03:412

小学数学中的几个基本性质

一.等式的基本性质: 1、等式两边同加减同一个数,等式的符号不变。 2、等式两边同乘除同一个不为0的数,等式的符号不变。 二.分式基本性质: 分式分子分母同乘(除)同一个不为0的数,分式的值不变。 三.分数加减性质: 1、同分母分数相加减,分母不变,分子相加减。 2、异分母分数相加减,先通分,再按同分母分数相加减进行运算。
2023-01-13 20:03:501

分式的基本性质 化简分式时 通常要使结果成为什么形式

通常要使结果成为最简形式
2023-01-13 20:03:551

分式的基本性质。

分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
2023-01-13 20:04:022

分式基本性质

分式基本性质:1、分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。字母表示为a/b=ac/bc=(a/c)/(b/c)2、约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。3、分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。4、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式。5、通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。6、分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。注:(1)约分和通分的依据都是分式的基本性质。(2)分式的约分和通分都是互逆运算过程。
2023-01-13 20:04:051

分式的基本性质

2023-01-13 20:04:143

分式的基本性质

  一般如果A、B(B不等于零)表示两个整式且B中含有字母,那么式子A / B 就叫做分式其中A称为分子,B称为分母,分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化 ,那么分式有哪些性质呐?   1、分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。   2、分式是两个整式相除的商式,其中分子为被除数分母为除数,分数线起除号(或括号)的作用。   3、分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。   4、在任何情况下,分式的分母的值都不可以为0,否则分式无意义,这里,分母是指除式而言,而不是只就分母中某一个字母来说的。
2023-01-13 20:04:301

等式,不等式,方程,分式的性质

一、等式的性质性质1:等式两边同时加上(或减去)同一个数(或式子),结果仍相等。性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。二、不等式性质:性质1:不等式两边同时加或减去同一个整式,不等号方向不变,性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变,性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变。三、分式性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
2023-01-13 20:04:321

分式的基本性质的介绍

分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变。即整式A除以整式B,可以表示成A/B的形式(B≠0)。如果除式B中含有字母,那么称为分式(fraction)。
2023-01-13 20:04:352

分式和分式方程和小学哪方面知识

分式和分式方程和小学分数的基本性质等方面知识有关系。一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。分式条件1.分式有意义条件:分母不为0。2.分式值为0条件:分子为0且分母不为0。3.分式值为正(负)数条件:分子分母同号得正,异号得负。4.分式值为1的条件:分子=分母≠0。5.分式值为-1的条件:分子分母互为相反数,且都不为0。代数式分类整式和分式统称为有理式。带有根号且根号下含有字母的式子叫做无理式。无理式和有理式统称代数式。分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
2023-01-13 20:04:421

分式及其基本性质

分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。除式是指A/B这一整体为除式,而除式中的被除数是指A,除数是指B。
2023-01-13 20:04:541

分式的基本性质可用字母表示为:ba=bcac(c≠0);ba=b÷ca÷c(c≠0)ba=bcac(c≠0);ba=b÷ca÷c(c

分式的基本性质用字母表示为:ba=bcac(c≠0);ba=b÷ca÷c(c≠0).故答案是:ba=bcac(c≠0);ba=b÷ca÷c(c≠0).
2023-01-13 20:05:011

分式的性质及有关运算法则与分数有什么异同?举例说明

分式是复杂的分数只是有一个未知数按照分数的性质
2023-01-13 20:05:041

x+1÷2-2=x÷4如何利用分式的性质解方程?

(x+1)/2=x/42(x+1)=x2x+2=x2x-x=-2X=-2
2023-01-13 20:05:201

八年级下册数学知识点总结归纳

八年级数学下册主要有分式、二次根式、轴对称、函数等重要章节,我整理了一些重要知识点。 分式 一、分式的概念 1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。 2、对于分式概念的理解,应把握以下几点: (1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用; (2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式; (3)分母不能为零。 3、分式有意义、无意义的条件 (1)分式有意义的条件:分式的分母不等于0; (2)分式无意义的条件:分式的分母等于0。 二、分式的基本性质 1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。 通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是: (1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。 (2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。 3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。 在约分时要注意: (1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂; (2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分; (3)约分一定要把公因式约完。 二次根式 一般地,式子√a,(a≥0)叫做二次根式。 注意:(1)若a<0这个条件不成立,则 a不是二次根式;(2)a是一个重要的非负数,即a ≥0。 1、二次根式的乘法法则:√a X√b=√ab 2、二次根式比较大小的方法 (1)利用近似值比大小; (2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小。 3、二次根式的除法法则: (1)商的算术平方根等于被除式的算术平方根除以除式的算术。 (2)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。 4、最简二次根式 (1)满足下列两个条件的二次根式,叫做最简二次根式。 ① 被开方数的因数是整数,因式是整式;② 被开方数中不含能开的尽的因数或因式。 (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。 (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。 (4)二次根式计算的最后结果必须化为最简二次根式。 轴对称 1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线成轴对称。 2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。 3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 函数及其图象 一、一次函数 如果函数的关系式都是用自变量的一次整式表示的,我们称它们为一次函数,一次函数通常可以表示为y=kx+b的形式,其中k,b为常数且k≠0。形如y=kx(常数k≠0)的函数叫做正比例函数,它是特殊的一次函数。 1、一次函数的图象 (1)一次函数y=kx+b(k≠0)的图象是一条直线。特别地,当b=0时,该函数图象经过原点。 (2)当k>0,b>0时,直线y=kx+b经过第一、二、三象限; 当k>0,b<0时,直线y=kx+b经过第一、三、四象限; 当k<0,b<0时,直线y=kx+b经过第一、二、四象限; 当k<0,b<0时,直线y=kx+b经过第二、三、四象限; 2、一次函数的性质 一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随着x的增大而减小。 3、求一次函数的表达式 (1)先设待求函数表达式,再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法。 (2)用待定系数法求一次函数的解析式:可以先设出一次函数解析式为y=kx+b(k≠0),然后利用题中给出的两个条件,代入所设的解析式。列出关于k、b的二元一次方程组,求出k,b的值即可。 二、反比例函数 一般地,形如(k是常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0,函数值y的取值范围是y≠0。 1、反比例函数的图象:双曲线 2、反比例函数的性质:对于反比例函数,当k>0时,图象在一、三象限,在每隔象限内,y随着x的增大而减小;当k<0时,图象在第二、四象限,在每个象限内,y随着x的增大而增大。 以上是我整理的八年级下册数学知识点,希望能帮到你。
2023-01-13 20:05:231

分式中的等比性质法是什么呢?

分子比分子等于分母比分母(相等的分数)
2023-01-13 20:05:262

类比分数的基本性质,你能猜想分式有什么性质吗?

分式(fraction),是形如A/B(A、B是整式),B中含有字母且B不等于0的式子。其基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变,约分和通分的依据都是分式的基本性质。
2023-01-13 20:05:291

数学中的e等于多少?

e = 2.71828183自然常数,是数学中一个常数,是一个无限不循环小数,且为超越数,约为2.71828,就是公式为 Iim (1+1/ x ) x , x →< X >或 Iim (1+z)1/ z , z →0,是一个无限不循环小数,是为超越数。在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。欧拉也听说了这一常数,所以在27岁时,用发表论文的方式将e“保送”到微积分。已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。用e表示的确实原因不明,但可能因为e是“指数”一字的首字母。另一看法则称a,b,c和d有其他经常用途,e则是第一个可用字母。还有一种可能是,字母“e”是指欧拉的名字“Euler”的首字母。
2023-01-13 20:03:481

天罗地网的成语接龙

天罗地网、网开一面、面目一新、新亭对泣、泣不成声、声泪俱下、下里巴人、人定胜天
2023-01-13 20:03:483

数学根号估算题

用导数知识
2023-01-13 20:03:494

关于海阔天空的成语接龙

  海阔天空这个成语大家都不陌生,你会用这个成语做接龙吗?接下来请欣赏我给大家带来的海阔天空的成语接龙相关内容,希望对大家有所帮助。   海阔天空的解释   【成语】:海阔天空   【拼音】:hǎi kuò tiān kōng   【解释】:象大海一样辽阔,象天空一样无边无际。形容大自然的广阔。比喻言谈议论等漫无边际,没有中心。   【出处】:唐·刘氏瑶《暗离别》诗:“青鸾脉脉西飞去,海阔天高不知处。”   海阔天空的成语接龙   空洞无物 → 物极必反 → 反败为胜 → 胜友如云 → 云消雾散 → 散马休牛 → 牛毛细雨 → 雨过天青 → 青红皂白 → 白日做梦 → 梦寐以求 → 求志达道 → 道听途说 → 说白道绿 → 绿水青山 → 山穷水尽 → 尽善尽美 →美中不足 → 足智多谋 → 谋事在人 → 人定胜天→ 天外有天 → 天伦之乐 → 乐不可支 → 支支吾吾 → 吾膝如铁 → 铁证如山 → 山穷水尽 → 尽善尽美 → 美中不足 → 足智多谋 → 谋事在人 → 人命关天 → 天壤之别 → 别有洞天 → 天翻地覆 → 覆地翻天 →天经地义 → 义薄云天 → 天涯海角 → 角立杰出→ 出生入死 → 死声啕气 → 气吞山河 → 河倾月落 → 落落大方 → 方枘圆凿 → 凿壁偷光 → 光采夺目 → 目中无人 → 人定胜天 → 天外有天 → 天伦之乐 → 乐不可支 → 支支吾吾 → 吾膝如铁 → 铁证如山 →山穷水尽 → 尽善尽美 → 美中不足 → 足智多谋   用海阔天空造句   1) 退一步,海阔天空,别尽往牛角尖钻。   2) 这位姑娘虽是细针密缕的一个心思,却是海阔天空的一个性气。   3) 怒火攻心,忍一忍或许海阔天空。   4) 平日待人处事,最好抱著息事宁人的态度,所谓退一步海阔天空嘛!   5) 既然双方损失不大,假如各退一步,岂不海阔天空?   6) 退一步,海阔天空,别尽往牛角尖钻。   7) 这个人海阔天空谈了半天,主题内容至今令人摸不着边。   8) 他讲起话来海阔天空,常常忘了时间。   9) 这本书,说古道今,海阔天空,很值得一读。   10) 在同学会上,大家一见面就海阔天空地聊个没完。   11) 李老师喜欢海阔天空地长谈。   12) 东营市海阔天空酒店有限公司。   13) 他们几个同学久别重逢,海阔天空地聊了一晚。   14) 怎么跟"忍一时风平浪静,退一步海阔天空"相比。   15) 那天晚上,大家海阔天空地聊到半夜。   16) 几个人坐在一起海阔天空,谈天说地,连本来要睡觉的也不觉得困了。   17) 海阔天空奔放不羁对吗?   18) 退一步海阔天空,量大福大,那有解不了的事情?   19) 他会津津乐道地说电影谈苏格兰,海阔天空。   20) 站在鼻头角的灯塔上,放眼望去,真是海阔天空。   21) 同学们说话不要海阔天空,漫无边际,要抓住重点,突出中心。   22) 这篇散文说古道今,海阔天空,饶有趣味。  看了海阔天空成语接龙的人还看: 1. 海阔天空怎样成语接龙 ​ 2. 关于日新月异的词语接龙 3. 阔字开头的成语接龙集锦 4. 海阔天空开头的成语接龙二组
2023-01-13 20:03:521

什么是初等函数和非初等函数?

『非初等函数』:无法完全由基本初等函数进行有限次的四则运算和复合步骤表达成显函数或隐函数形式的函数。(这是以本人当前学识水平来表达的,可能有更标准的说法。。。)举个例子: ,它还包含了积分运算,而且这个积分是积不出来的,即被积函数的原函数无法表达成初等函数(虽然可以利用泰勒展开把积分符号去掉,但是泰勒展开出来的不是初等函数因为有无限次四则运算。。。)。这种是“积不出型”的非初等函数。来个彪悍的“积不出型”非初等函数:其他答主提及的函数项级数就是一种非初等函数。比如幂级数 、傅里叶级数 等。应该还有很多,比如拿一些奇怪的地方做自变量,复合各种非初等结构(比如极限、各类积分、求和符号、求乘积符号、n阶导符号等(脑洞不够大想不到更多的了。。。),这样就能产生非初等函数,比如:我都快不知道自己在写什么了 (╯°Д°)╯︵ ┻━┻复杂数列递推式应该可以使其通式成为非初等函数吧?(猜测.jpg)比如:,随便给上所需初值,感觉通式不是初等函数。。。
2023-01-13 20:03:524

因式分解a(m+n)-b(m+n)十字交叉法 急急急急急

a(m+n)-b(m+n)=(a-b)(m+n)
2023-01-13 20:03:531

e等于多大?

e约等于2.718281828。e是自然常数,自然常数是自然对数函数的底数;有时被称为欧拉数,也是一个无限不循环小数。数学中e是无理数,在数学中是代表一个数的符号,其实还不限于数学领域。在大自然中,建构,呈现的形状,利率或者双曲线面积及微积分教科书、伯努利家族等。相关信息e是自然对数的底数,是一个无限不循环小数,其值是2.71828...,它是这样定义的:当n→∞时,(1+1/n)^n的极限。e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔(John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
2023-01-13 20:03:541

初中数学的 正弦余弦正切那些知识有点忘了,请帮助。

直角边为C的直角三角形,角a,b,c所对的边为A,B,C则sina=A/C cosa=B/C tana=A/B cota=B/C sinb=B/C cosb=A/C tanb=B/A cotb=A/C高中的不清楚了...
2023-01-13 20:03:563

数学,十字交叉法

要满足b"-4ac>=0,先看c是哪两个数的乘积,再根据情况就可以啦。例如2x‘+11x+12=0,12的约数有1*12、3*4、2*6但只有2 31 4符合
2023-01-13 20:03:592

顶字开头的成语接龙

顶天立地、地久天长 长治久安 安常守分 分文不名 名落孙山 山高水长 长绳系日 日月丽天 天下第一 一步登天 天末凉风 风趣横生 生财有道 道尽途穷 穷山恶水 水涨船高 高傲自大 大得人心 心口如一 一飞冲天 天保九如 如日中天 天无二日 日久天长 长夜难明 明月清风 风虎云龙 龙血玄黄 黄道吉日 日暮途穷 穷形尽相 相惊伯有 有一得一 一手托天 天荒地老 老罴当道 道路以目 目中无人 人定胜天 天下为家 家贫亲老 老大无成 成败论人 人命关天 天下一家 家道中落 落花无言 言行不一 一手遮天
2023-01-13 20:03:594

成语接龙天真烂漫

接龙漫不经心
2023-01-13 20:04:034

一升等于多少立方分米?

一升等于一立方分米呢。
2023-01-13 20:04:0311

奇函数为什么叫做奇函数?

不是的。满足 f(-x) = -f(x)的命名为奇函数,满足 f(-x) = f(x)的命名为偶函数。
2023-01-13 20:04:044

等边三角形ABC内有一点O,OA=4,OB=3,OC=5,求角BOA的度数,怎样解

在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。   这些函数的值参见右图:   三角函数的特殊值同角三角函数关系式  平方关系 sin^2(α)+cos^2(α)=1 cos(2α)=cos^2(α)-sin^2(α)=1- 2sin^2(α)=2cos^2(α)-1 sin(2α)=2sin(α)cos(α) tan^(α)+1=1/cos^(α) 2sin^(α)=1-cos(2α) cot^(α)+1=1/sin^(α) 积的关系  sinα=tanα×cosα cosα=cotα×sinα tanα=sinα×secα cotα=cosα×cscα secα=tanα×cscα cscα=secα×cotα 倒数关系  tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系  sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα ·对称性   180度-α的终边和α的终边关于y轴对称。   -α的终边和α的终边关于x轴对称。   180度+α的终边和α的终边关于原点对称。   90度-α的终边和α的终边关于y=x对称。诱导公式  公式一: 设α为任意角,终边相同的角的同一三角函数的值相等 k是整数  sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系  sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 公式三: 任意角α与 -α的三角函数值之间的关系  sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系  sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系  sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系  sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα 诱导公式的表格以及推导方法(定名法则和定号法则)    sinα cosα  tanα cotα secα cscα 2kπ+α sinα cosα tanα cotα secα cscα (1/2)kπ-α cosα sinα cotα tanα cscα secα (1/2)kπ+α cosα -sinα -cotα -tanα -cscα secα kπ-α sinα -cosα -tanα -cotα -secα cscα kπ+α -sinα -cosα tanα cotα -secα -cscα (3/2)kπ-α -cosα -sinα cotα tanα -cscα -secα (3/2)kπ+α -cosα sinα -cotα -tanα cscα -secα 2kπ-α -sinα cosα -tanα -cotα secα -cscα ﹣α -sinα cosα -tanα -cotα secα -cscα 定名法则    90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”   定号法则   将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”。(或为“奇变偶不变,符号看象限”) 。   2在Kπ/中如果K为奇数时函数名不变,若为偶数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。)还可简记为:sin上cos右tan对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan的正值斜着。   比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~   还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα三角函数对称轴与对称中心  y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)   y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)   y=tanx 对称轴:无 对称中心:(kπ,0)(k∈z)两角和与差的三角函数  cos(α+β)=cosα·cosβ-sinα·sinβ   cos(α-β)=cosα·cosβ+sinα·sinβ   sin(α±β)=sinα·cosβ±cosα·sinβ   tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]   sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]   cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]   cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]   cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]   cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]   sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式  sin(2α)=2sinα·cosα=2/(tanα+cotα)   cos(2α)=cos^2;α-sin^2;α=2cos^2;α-1=1-2sin^2;α    tan(2α)=2tanα/(1-tan^2;α)   cot(2α)=(cot^2;α-1)/(2cotα)   sec(2α)=sec^2;α/(1-tan^2;α)   csc(2α)=1/2*secα·cscα三倍角公式  sin(3α) = 3sinα-4sin^3;α = 4sinα·sin(60°+α)sin(60°-α)   cos(3α) = 4cos^3;α-3cosα = 4cosα·cos(60°+α)cos(60°-α)   tan(3α) = (3tanα-tan^3;α)/(1-3tan^2;α) = tanαtan(π/3+α)tan(π/3-α)   cot(3α)=(cot^3;α-3cotα)/(3cotα-1)n倍角公式  sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…   cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式  sin(α/2)=±√((1-cosα)/2)   cos(α/2)=±√((1+cosα)/2)   tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα   cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)   sec(α/2)=±√((2secα/(secα+1))   csc(α/2)=±√((2secα/(secα-1))辅助角公式  Asinα+Bcosα=√(A^2;+B^2;)sin(α+arctan(B/A))   Asinα+Bcosα=√(A^2;+B^2;)cos(α-arctan(A/B))万能公式  sin(a)= (2tan(a/2))/(1+tan^2;(a/2))   cos(a)= (1-tan^2;(a/2))/(1+tan^2;(a/2))   tan(a)= (2tan(a/2))/(1-tan^2;(a/2))降幂公式  sin^2;α=(1-cos(2α))/2=versin(2α)/2   cos^2;α=(1+cos(2α))/2=covers(2α)/2   tan^2;α=(1-cos(2α))/(1+cos(2α))三角和的三角函数  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ   cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ   tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·t一些常用特殊角的三角函数值   正弦 余弦 正切 余切 0 0 1 0 不存在 π/6 1/2 √3/2 √3/3 √3 π/4 √2/2 √2/2 1 1 π/3 √3/2 1/2 √3 √3/3 π/2 1 0 不存在 0 π 0 -1 0 不存在 幂级数  c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)   c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)   它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数。泰勒展开式  泰勒展开式又叫幂级数展开法   f(x)=f(a)+f"(a)/1!*(x-a)+f""(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……   实用幂级数:   e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……   ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)   sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞)   cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)   arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)   arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)   arctan x = x - x^3/3 + x^5/5 -……(x≤1)   sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)   cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)   arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)   arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)   在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。傅立叶级数  傅里叶级数傅里叶级数又称三角级数   f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)   a0=1/π∫(π..-π) (f(x))dx   an=1/π∫(π..-π) (f(x)cosnx)dx   bn=1/π∫(π..-π) (f(x)sinnx)dx   三角函数的数值符号   正弦 第一,二象限为正, 第三,四象限为负   余弦 第一,四象限为正 第二,三象限为负   正切 第一,三象限为正 第二,四象限为负编辑本段相关概念三角形与三角函数  1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)   2.第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC   3.第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA   4.正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)   5.三角形中的恒等式:   对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC   证明:   已知(A+B)=(π-C)   所以tan(A+B)=tan(π-C)   则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)   整理可得   tanA+tanB+tanC=tanAtanBtanC   类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ   三角函数图像:定义域和值域  sin(x),cos(x)的定义域为R,值域为〔-1,1〕   tan(x)的定义域为x不等于π/2+kπ,值域为R   cot(x)的定义域为x不等于kπ,值域为R   y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²+b²) , c+√(a²+b²)]三角函数的画法(以y=sinx的图像为例)  得到y=Asin(ωx+φ)的图像:   方法一:   y=sinx→【左移(φ>0)/右移(φ<0) ∣∣∣φ∣个单位】 →y=sin(x+φ)→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0<A<1])】→ y=Asin(ωx+φ)   方法二:   y=sinx→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sinωx→【左移(φ>0)/右移(φ<0)∣φ∣/ω 个单位】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0<A<1])】→ y=Asin(ωx+φ)初等三角函数导数  三角函数图像y=sinx---y"=cosx   y=cosx---y"=-sinx   y=tanx---y"=1/cos^2x =sec^2x   y=cotx---y"= -1/sin^2x= - csc^2x   y=secx---y"=secxtanx   y=cscx---y"=-cscxcotx   y=arcsinx---y"=1/√(1-x²)   y=arccosx---y"= -1/√(1-x²)   y=arctanx---y"=1/(1+x²)   y=arccotx---y"= -1/(1+x²)倍半角规律  如果角a的余弦值为1/2,那么a/2的余弦值为√3/2反三角函数  三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。   反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).   反三角函数主要是三个:   y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;   y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;   y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;   sinarcsin(x)=x,定义域[-1,1],值域 【-π/2,π/2】   证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得   其他几个用类似方法可得。编辑本段高等数学内容总体情况  高等代数中三角函数的指数表示(由泰勒级数易得):   sinz=[e^(iz)-e^(-iz)]/(2i)   cosz=[e^(iz)+e^(-iz)]/2   tanx=[e^(iz)-e^(-iz)]/[ie^(iz)+ie^(-iz)]   泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… ≦   此时三角函数定义域已推广至整个复数集。   ·三角函数作为微分方程的解:   对于微分方程组 y=-y"";y=y"""",有通解Q,可证明   Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。   补充:由相应的指数表示我们可以定义一种类似的函数--双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。   :复数域内正余弦函数的性质  (1)对于z为实数y来说,复数域内正余弦函数的性质与通常所说的正余弦函数性质是一样的。   (2)复数域内正余弦函数在z平面是解析的。   (3)在复数域内不能再断言|sinz|≦1,|cosz|≦1。   (4)sinz、cosz分别为奇函数,偶函数,且以2π为周期。编辑本段性质定理  三角函数,正如其名称那样,在三角学中是十分重要的,主要是因为下列两个结果。正弦定理  于边长为 a, b 和 c 而相应角为 A, B 和 C的三角形,有:   sinA / a = sinB / b = sinC/c   也可表示为:   a/sinA=b/sinB=c/sinC=2R   变形:a=2RsinA,b=2RsinB,c=2RsinC   其中R是三角形的外接圆半径。   它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数 (sinA)/a 是通过 A, B 和 C 三点的圆的直径的倒数。正弦定理用于在一个三角形中(1)已知两个角和一个边求未知边和角(2)已知两边及其一边的对角求其他角和边的问题。这是三角测量中常见情况。余弦定理  对于边长为 a, b 和 c 而相应角为 A, B 和 C的三角形,有: c^2=a^2+b^2-2ab·cosC.   也可表示为:   cosC=(a^2+b^2-c^2)/ 2ab.   这个定理也可以通过把三角形分为两个直角三角形来证明。余弦定理用于在一个三角形的两个边和一个角已知时确定未知的数据。   如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。正切定理  对于边长为 a, b 和 c 而相应角为 A, B 和 C的三角形,有:   (a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]编辑本段三角函数在解三次方程中的应用  一元三次方程的解是三个不相等的实根时,可用三角函数知识求出方程的解。   一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)   重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd。   总判别式:Δ=B^2-4AC。   当Δ=B^2-4AC<0时,盛金公式④:   X⑴=(-b-2A^(1/2)cos(θ/3))/(3a)   X(2,3)=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),   其中θ=arccosT,T=(2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。   在利用卡尔丹公式解三次方程时,对于x^3+px+q=0,有   x1=√(-p/3)cos(Φ/3)   x2=√(-p/3)cos(Φ/3+2π/3)   x3=√(-p/3)cos(Φ/3+4π/3)   对于一般的方程ax^3+bx^2+cx+d=0,只需令x=y-b/(3a)即可化为上式求解。   例:一建筑物的楼顶要建一个储水池,按施工的设计要求,这个储水池的长、宽、高之和为70.5dm(为了减少占用楼顶面积,取长>高>宽),满储水量为10082.44(dm)^3,立体对角线为1903.17dm,问:如何施工才能达到设计要求?   解:设取长、宽、高分别为X⑴、X⑵、X⑶,依题意:   X⑴+X⑵+X⑶=70.5   X⑴·X⑵·X⑶=10082.44   X⑴^2+X⑵^2+X⑶^2=1903.17。   解这个方程组。   根据韦达定理,得一元三次方程:   X^3-70.5X^2+1533.54X-10082.44=0   a=1,b=-70.5,c=1533.54,d=-10082.44。   A=369.63;B=-17372.61;C=219308.8716,   Δ=-22444974.63<0。   根据盛金判别法,此方程有三个不相等的实根。   应用盛金公式④求解。   θ=90°。   把有关值代入盛金公式④,得:   X⑴=12.4(dm);X⑵=34.6(dm);X⑶=23.5(dm)。   经检验,结果正确。   因为取长>高>宽,   所以,应取长为34.6dm;高为23.5dm;宽为12.4dm来进行施工。
2023-01-13 20:03:432

数学中的e等于多少?

e约等于2.71828182。小写e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。e=2.71828182……是微积分中的两个常用极限之一。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。e的起源:在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。欧拉也听说了这一常数,所以在27岁时,用发表论文的方式将e“保送”到微积分。
2023-01-13 20:03:431

成语接龙:开天辟地……

开天辟地----地大物博.....博大精深
2023-01-13 20:03:436

大家晚上好,有没有成语接龙的

j
2023-01-13 20:03:392

怎么用十字交叉法分解因式 我忘了

第一个无法分解,b²-4ac<0第二个:2k²+5k+2=(2k+1)(k+2)
2023-01-13 20:03:382

天上开头成语接龙六个

上雨旁风 风趣横生 生财有道 道尽途穷 穷山恶水 水涨船高 高傲自大 大得人心 心口如一 望采纳答案
2023-01-13 20:03:362

异想天开 (成语接龙)至少要接十五个

异想天开成语接龙:开路先锋→ 锋镝余生→ 生生不息→ 息交绝游→ 游目骋怀→ 怀恨在心→ 心弛神往→ 往返徒劳→ 劳苦功高→ 高识远见→ 见钱眼红→ 红衰翠减→ 减师半德→ 德薄才疏→ 疏不闲亲→ 亲如手足→ 足不逾户→ 户枢不蝼→ 蝼蚁贪生→ 生死醉梦→ 梦笔生花→ 花样翻新→ 新学小生→ 生吞活夺→ 夺人所好→ 好谋善断→ 断管残沈→ 沈鱼落雁→ 雁泊人户→ 户枢不朽→ 朽木生花→ 花花公子→ 子子孙孙→ 孙庞斗智→ 智穷才尽→ 尽多尽少→ 少气无力→ 力士脱靴→ 靴刀誓死→ 死而无怨→ 怨天尤人→ 人离乡贱→ 贱目贵耳→ 耳濡目击→ 击钵催诗→ 诗礼之家→ 家喻户晓→ 晓行夜宿→ 宿水餐风→ 风移俗改→ 改政移风→ 风清弊绝→ 绝色佳人→ 人去楼空→ 空心汤圆→ 圆首方足→ 足踏实地→ 地崩山摧→ 摧坚获丑→ 丑类恶物→ 物竞天择→ 择邻而居→ 居无求安→ 安身为乐→ 乐道忘饥→ 饥焰中烧→ 烧眉之急→ 急不可待→ 待兔守株→ 株连蔓引→ 引过自责→ 责备求全→ 全神灌注→ 注玄尚白→ 白首穷经→ 经济之才→ 才兼文武→ 武爵武任→ 任人唯贤 0
2023-01-13 20:03:322

数学中十字交叉法怎么弄

十字交叉法是进行二组混合物平均量与组分计算的一种简便方法。凡可按M1·n1+M2·n2=M·n计算的问题,均可按十字交叉法计算。式中,M表示某混合物的平均量,M1.M2则表示两组分对应的量。如M表示平均相对分子质量,M1.M2则表示两组分各自的相对分子质量,n1.n2表示两组分在混合物中所占的份额,n1:n2在大多数情况下表示两组分的物质的量之比,有时也可以是两组分的质量之比,判断时关键看n1.n2表示混合物中什么物理量的份额,如物质的量、物质的量分数、体积分数,则n1:n2表示两组分的物质的量之比;如质量、质量分数、元素质量百分含量,则n1:n2表示两组分的质量之比。十字交叉法常用于求算:(1)有关质量分数的计算;(2)有关平均相对分子质量的计算;(3)有关平均相对原子质量的计算;(4)有关平均分子式的计算;(5)有关反应热的计算;(6)有关混合物反应的计算。
2023-01-13 20:03:266

叫苦连天怎么成语接龙

叫苦连天、天经地义、义不容辞、辞旧迎新、新陈代谢、谢天谢地、地老天荒、荒无人烟、烟雾缭绕、绕梁三日等。
2023-01-13 20:03:251

以天使开头的成语接龙

天使降临,天使下凡
2023-01-13 20:03:211

关于数学中的十字交叉法

 十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。   十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两 十字相乘法个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把χ×2+7χ+12进行因式分解. .   上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .   又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).   讲解:   x^2-3x+2=如下:   x 1   ╳   x 2   左边x乘x=x^2   右边-1乘-2=2   中间-1乘x+(-2)乘x(对角)=-3x   上边的【x+(-1)】乘下边的【x+(-2)】   就等于(x-1)*(x-2)   x^2-3x+2=(x-1)*(x-2)例题 例1  把2x^2-7x+3分解因式.   分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分   别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.   分解二次项系数(只取正因数):   2=1×2=2×1;   分解常数项:   3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:   1 1   ╳   2 3   1×3+2×1   =5   1 3   ╳   2 1   1×1+2×3   =7   1 -1   ╳   2 -3   1×(-3)+2×(-1)   =-5   1 -3   ╳   2 -1   1×(-1)+2×(-3)   =-7   经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.   解 2x^2-7x+3=(x-3)(2x-1).   一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:   a1 c1   ╳   a2 c2   a1c2+a2c1   按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即   a^2+bx+c=(a1x+c1)(a2x+c2).   像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法. 例2  把6x^2-7x-5分解因式.   分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种   2 1   ╳   3 -5   2×(-5)+3×1=-7   是正确的,因此原多项式可以用十字相乘法分解因式.   解 6x^2-7x-5=(2x+1)(3x-5)   指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.   对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是   1 -3   ╳   1 5   1×5+1×(-3)=2   所以x^2+2x-15=(x-3)(x+5). 例3  把5x^2+6xy-8y^2分解因式.   分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即   1 2   ╳   5 -4   1×(-4)+5×2=6   解 5x^2+6xy-8y^2=(x+2y)(5x-4y).   指出:原式分解为两个关于x,y的一次式. 例4  把(x-y)(2x-2y-3)-2分解因式.   分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.   问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?   答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.   解 (x-y)(2x-2y-3)-2   =(x-y)[2(x-y)-3]-2   =2(x-y) ^2-3(x-y)-2   1 -2   ╳   2 1   1×1+2×(-2)=-3   =[(x-y)-2][2(x-y)+1]   =(x-y-2)(2x-2y+1).   指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法. 例5  x^2+2x-15   分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)   (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。   =(x-3)(x+5)   总结:①x^2+(p+q)x+pq型的式子的因式分解   这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)   ②kx^2+mx+n型的式子的因式分解   如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么   kx^2+mx+n=(ax+b)(cx+d)   a b   ╳   c d 编辑本段通俗方法  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写   1 1   ╳   二次项系数 常数项   若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)   需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)   a b   ╳   c d   第一次a=1 b=1 c=二次项系数÷a d=常数项÷b   第二次a=1 b=2 c=二次项系数÷a d=常数项÷b   第三次a=2 b=1 c=二次项系数÷a d=常数项÷b   第四次a=2 b=2 c=二次项系数÷a d=常数项÷b   第五次a=2 b=3 c=二次项系数÷a d=常数项÷b   第六次a=3 b=2 c=二次项系数÷a d=常数项÷b   第七次a=3 b=3 c=二次项系数÷a d=常数项÷b   ......   依此类推   直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)   例解:   2x^2+7x+6   第一次:   1 1   ╳   2 6   1X6+2X1=8 8>7 不成立 继续试   第二次   1 2   ╳   2 3   1X3+2X2=7 所以 分解后为:(x+2)(2x+3) 编辑本段十字相乘法(解决两者之间的比例问题)原理  </B>一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。   AX+B(1-X)=C   X=(C-B)/(A-B)   1-X=(A-C)/(A-B)   因此:X∶(1-X)=(C-B)∶(A-C)   上面的计算过程可以抽象为:   A ………C-B   ……C   B……… A-C   这就是所谓的十字相乘法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。即比例,以十字相乘法形式展现更加清晰 十字相乘法使用时的注意  第一点:用来解决两者之间的比例问题。   第二点:得出的比例关系是基数的比例关系。   第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。 例题  </B>某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人?   十字相乘法   解:去年毕业生一共7500人,7650÷(1+2%)=7500人。   本科生:-2%………8%   …………………2%   研究生:10%……… -4%   本科生∶研究生=8%∶(-4%)=-2∶1。   去年的本科生:7500×2/3=5000   今年的本科生:5000×0.98=4900   答:这所高校今年毕业的本科生有4900人。 编辑本段3.十字相乘法解一元二次方程  例1 把2x^2-7x+3分解因式.   分析:先 分解二次项系数,   分别写在十字交叉线的左上角和左下角,   再分解常数项,   分别写在十字交叉线的右上角和右下角,   然后交叉相乘,   求代数和,使其等于一次项系数.   分解二次项系数(只取正因数):   2=1×2=2×1;   分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:   11╳23 1×3+2×1=5   13╳21 1×1+2×3=7   1-1╳2 -3 1×(-3)+2×(-1) =-5   1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7   经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.   解 2x^2-7x+3=(x-3)(2x-1).   一般地,对于二次三项式ax^2+bx+c(a≠0),   如果二次项系数a可以分解成两个因数之积,   即a=a1a2,   常数项c可以分解成两个因数之积,   即c=c1c2,把a1,a2,c1,c2,   排列如下:   a1c1 ╳ a2c2   a1c2+a2c1   按斜线交叉相乘,再相加,得到a1c2+a2c1,   若它正好等于二次三项式ax2+bx+c的一次项系数b,   即a1c2+a2c1=b,   那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,   即 ax2+bx+c=(a1x+c1)(a2x+c2).   例2 把6x^2-7x-5分解因式.   分析:按照例1的方法,   分解二次项系数6及常数项-5,   把它们分别排列,   可有8种不同的排列方法,   其中的一种 21╳3-5 2×(-5)+3×1=-7   是正确的,因此原多项式可以用十字相乘法分解因式.   解 6x^2-7x-5=(2x+1)(3x-5)   指出:通过例1和例2可以看到,   运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,   往往要经过多次观察,   才能确定是否可以用十字相乘法分解因式.   对于二次项系数是1的二次三项式,   也可以用十字相乘法分解因式,   这时只需考虑如何把常数项分解因数.   例如把x^2+2x-15分解因式,   十字相乘法是1-3╳ 15 1×5+1×(-3)=2   所以x^2+2x-15=(x-3)(x+5).   例3 把5x^2+6xy-8y^2分解因式.   分析:这个多项式可以看作是关于x的二次三项式,   把-8y^2看作常数项,   在分解二次项及常数项系数时,   只需分解5与-8,用十字交叉线分解后,   经过观察,选取合适的一组,   即 12╳ 5-4 1×(-4)+5×2=6   解 5x^2+6xy-8y^2=(x+2y)(5x-4y).   指出:原式分解为两个关于x,y的一次式.   例4 把(x-y)(2x-2y-3)-2分解因式.   分析:这个多项式是两个因式之积与另一个因数之差的形式,   只有先进行多项式的乘法运算,   把变形后的多项式再因式分解.   问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?   答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.   解 (x-y)(2x-2y-3)-2   =(x-y)[2(x-y)-3]-2   =2(x-y) ^2-3(x-y)-2   1-2╳ 21   1×1+2×(-2)=-3   =[(x-y)-2][2(x-y)+1]   =(x-y-2)(2x-2y+1).   指出:把(x-y)看作一个整体进行因式分解,   这又是运用了数学中的“整体”思想方法.例5 x^2+2x-15   分析:常数项(-15)<0,可分解成异号两数的积,   可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),   其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5)   总结:①x^2+(p+q)x+pq型的式子的因式分解   这类二次三项式的特点是:二次项的系数是1;   常数项是两个数的积;一次项系数是常数项的两个因数的和.   因此,可以直接将某些二次项的系数是1的二次三项式因式分解:   x^2+(p+q)x+pq=(x+p)(x+q)   ②kx^2+mx+n型的式子的因式分解   如果能够分解成k=ac,n=bd,且有ad+bc=m 时,   那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d   (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0   (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0   (1)解:(x+3)(x-6)=-8 化简整理得   x^2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解。   (2)解:2x^2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-3/2是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。   (3)解:6x^2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=5/2, x2=-10/3 是原方程的解。   (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。   例题x^2-x-2=0   解:(x+1)(x-2)=0   ∴x+1=0或x-2=0   ∴x1=-1,x2=2 词条图册更多图册扩展阅读: 1 .十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1?a2,把常数项c分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。2 .例:x2+2x-153 .分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。4 .=(x-3)(x+5)
2023-01-13 20:03:196

有关人定胜天的成语接龙

人定胜天,天下为公,公正廉洁,洁已奉公,公私两济,济济一堂,堂堂正正,正经八百。
2023-01-13 20:03:184