barriers / 阅读 / 详情

大数据与不确定性

2023-08-24 14:11:46
共1条回复
西柚不是西游

早在100年前物理学家海森堡就提出了的测不准原理。海森堡的测不准原理从理论上揭示了这个世界最深处的那种不确定性,这种不确定,不是因为我们的工具本身的局限而导致的不确定,而是世界本身的不确定性。

在人类社会里头不确定性,比物理世界更加的明显。每一个人的行为,每一个人的思维都有很多很多的偶然性。最重要的是,当无数个充满着不确定性偶然性的个体汇聚在一起的时候,我们通过大数据技术是可以做出某种预知的,但是还有大量的事件,大量的过程是无法预测的。

比如说古代农村的谚语:蚂蚁搬家蛇过道,燕子低飞蛤蟆叫,大雨不久就来到。

它反应的就是一种预测。农民通过长期的观察,并不一定要知道他们之间的因果关系,但是他可以认定,当燕子低飞,蚂蚁搬家的时候雨就会下。

今天人类进入了一个前所未有的时代,就是一切人和事的运行都可以被实时的记录下来,变成数据。通过对数据的挖掘和分析,人类就获得了一种前所未有的能力,通过分析现象间的关联,达到预测未来的目的,但是,这并不意味着人类就能够消除不确定性。

这个世界不管是大数据技术如何的发达,人类都没办法穷尽这个世界的不确定性、模糊性、易变性和复杂性。大数据,它是力图接近天算的那种人算,但是它毕竟是人算不是天算,这就是俗话说的:人算不如天算。

相关推荐

波粒之争——海森堡测不准原理

关于光的本性,粒子和波动两种理论300年来不断交锋,其间兴废存亡犹如白云苍狗,沧海桑田。从德布罗意开始,这种本质的矛盾成为物理学的基本问题,而海森堡从不连续性出发创立了他的矩阵力学,薛定谔沿着另一条连续性的道路也发现了他的波动方程。虽然这两种理论被数学证明是同等的,但是其物理意义却引起了广泛的争论,波恩的概率解释更是把数百年来的决定论推上了怀疑的舞台,成为浪尖上的焦点。而另一方面,波动说和微粒说的战争现在也到了最关键的时候。 1927年2月那个冬天,过去的几个月对于海森堡来说就像一场噩梦,越来越多的人转投向薛定谔和他那该死的波动理论,就连曾经支持他的严师玻尔也转向了他的对立面。海森堡满脑子都装满了大大小小的矩阵,还有他那奇特的乘法规则:pxq=qxp 这说明了什么呢?难道说先观测动量p,在观测位置q,和先观测q,再观测p,其结果是不一样的吗?除非观测动量p这个动作本身,影响到了q的数值。关键就在这里了!观测!对于一个经典的小球,你要怎么测量它的位置呢?你必须看到它,就拿“看到”来说吧, 你怎么“看到”一个小球的位置呢? 总得有个光子从光源出发,撞到这个球身上再反弹到你眼睛里吧?关键是小球对于一个 光子 来说是一个庞然大物,光子撞到它身上就像蚂蚁撞到大象,对它的影响可以小到忽略不计。但是如果是 电子 呢?! 我们派遣一个光子去执行这个任务,好的,当它接触到这个电子的时候测量了它的位置,但是它给我狠狠地撞了一下之后,飞到不知道什么地方去了,他现在的速度什么的我可说不上来。因为光子剧烈的改变了它的速度,就是动量。我们把q测得特别准的时候,p的动量就变得无穷大,如果我们要了解一个电子动量p的全部信息,那么我们同时就失去了他位置q的所有信息,鱼和熊掌不可兼得,这就是海森堡测不准原理Uncertainty Principle。 有人提出通过降温,降到绝对零度,理论上原子就完全静止了,那时候动量就确定为零了。可惜,一方面,能斯特等人早就证明无法通过有限循环过程来达到绝对零度;另一方面,即使是达到绝对零度,我们的振子也不会完全静止,因为它仍然保有一个极小能量——半个量子的大小,你再也无法把这个内禀的能量消除。就像你银行里永远取不走的那半分钱。 动量p和位置q,这一对不共戴天的数据,一个在宇宙出现另一个就神秘的消失。然而海森堡还发现了另外一对类似的仇敌(宇宙中这样的似乎还有许多),那就是能量E和时间t。 在古人看来,“空”就是空荡荡什么都看不见,后来我们知道了看不见的空气中也有许多分子,“空”应该是指抽了空气的真空。再后来,人们发现原来真空中存在各种场,从引力场到电磁场。再后来,爱因斯坦的相对论告诉我们,就算是空间本身也可以像东西一样被扭曲,事实上引力只不过是它的弯曲而已(天体之间不是因为存在引力,使得小球被大球牵扯着,而是因为大球造成的空间弯曲更大,小球流向大球)。而海森堡的不确定性原理展现了更奇特的场景:当t测得越准,E就越不确定。所以在非常短的一刹那间,真空中会出现巨大的能量起伏,它违反了能量守恒定律!它从一无所有中被创造出来,在我们未能察觉之前又消失在了另一世界,在宏观上坚守着能量守恒定律。
2023-08-17 22:34:531

海森堡不确定关系公式

海森堡不确定关系公式如下:1、不确定性原理大概是说,世界上存在一组一组的不对易量,两个不对易量之间存在一种关系:△P×△X≥"h/2,其中"h/2是一个确定的常数。"h=h/2π,其中h是普朗克常数,h=6.626×10^(-34) 焦耳·秒。△P×△X≥"h/2这种关系,可以理解是一种规律,至于为什么会存在这种规律,还没有人知道。然而这更像是世界的内禀属性,内在规律。2、海森堡得到这种关系式的方法是通过矩阵力学的方法推导出来的,大概可以理解为三维空间上的不对易量的函数求解,其答案不止一个,可能有很多个解。不对易变量之间总会存在这种关系:△P×△X≥"h/2。比如动量和位置就是一组“不对易量”,当你想要去测量粒子的动量的时候,粒子的位置就会变得不确定。3、通过单缝中央明纹实验,也可以证实海森堡的不确定性原理,当光横向穿过单缝之前,光的纵向是没有阻碍的,根据不确定性原理,光的纵向位置不确定度大,那么光的动量变化不确定度就小,所以光沿横向传播。实验会发现,经过单缝后,墙壁上光不是一个光点或一束光束。而是很宽的中央明纹向两边扩散,光亮度逐渐稀薄。
2023-08-17 22:35:171

海森堡测不准原理是正确的吗?

在这里,我只解释解释海森堡测不准原理背后的逻辑基础:这是来自德布罗意假说的一个非常著名的原理。德布罗意在1924年提出了一个绝妙但“难以消化”的想法。他提出一切运动的物体都具有波的性质e,它同时具有粒子和波的性质。它具有二重性。此外,他还提出,这是一个完全普遍的原则,适用于所有人。然而,对于巨大的物体,比如一辆移动的公共汽车或任何我们肉眼看到的日常生活用品,可以很容易地证明波的性质是非常微不足道的,因此我们不会把它们解释为波。但对于亚原子水平的粒子,如电子,波的性质是绝对不能低估的。由于亚原子粒子具有波的性质,它应该有一个波长。它被命名为德布罗意波长,由公式给出:波长= (h /动力)在那里,h =普朗克常数。注:从这个公式可以看出,如果波长已知,就可以计算出动量,即:动量= (h /波长)。然而,他的理论可以解释一些神秘的数据,比如:为什么电子绕原子核旋转的轨道,它的角动量,是h/2π,i的整数倍。e,它解释了为什么波尔量子化的角动量起作用。但它有后果。海森堡测不准原理就是其中之一。这就是:由于显而易见的原因,粒子表现为波的现象是难以理解的。我的意思是粒子在空间中是局域的而波在空间中传播。现在我们来理解不确定性原理的逻辑基础。如果运动的物体是一个质点,它在某一时刻有一个位置。所以它没有波长(因为粒子没有波长,..它局限于空间)。还记得我上面提到的德布罗意公式吗?动量= (h /波长). .如果波长未知,动量就无法测量。所以在这种情况下,位置可以知道,但动量不知道。现在我们来分析一下波浪的性质。如果运动的物体表现得像波,它有一个波长,因此你可以从上面的公式测量它的动量,但它没有位置(因为波没有位置,所以它在空间中传播)。所以这次动量可以测量,但位置不能。现在让我告诉你们,一个量子系统有一个奇怪的特征,当你测量它的时候,你干扰它,你的测量会影响这个系统。但在测量之前,它是各种状态的叠加。所以在你测量之前,运动的物体具有二重性。但当你试图测量它的精确位置时,你强迫它显示它的粒子性质(只有粒子/物体有一个精确的位置),这使得无法测量它的波长,因此它的动量也无法测量。当你试图测量它的动量时,你强迫它显示它的波的性质(因为动量与德布罗意波长有关),因此它的位置无法测量。这就是海森堡测不准原理告诉我们的。人们不可能同时精确地测量粒子的位置和动量,而且精度不受限制。为了精确地测量上述数量中的一个,必须折衷另一个数量的准确性。
2023-08-17 22:35:501

以探测引力波为例,浅谈对海森堡不确定性原理极限的突破

我们用LIGO探测引力波,在这种情况下,LIGO那4公里长臂的长度变化小于单个质子宽度的一万分之一。我们的测量已经变得如此精确,以至于我们开始遇到绝对量子极限,也就是海森堡不确定性原理定义的极限。但无论是物理学家还是工程师,都不会让基本自然法则阻碍他们。通过这篇文章,我们将看到如何破解不确定性原理,从而使测量变得比以往更加精确。 海森堡不确定性原理告诉我们,自然界存在着一种基本的不可知性——一种对我们测量宇宙的精确度的绝对限制。该原理提出,存在着一对属性,我们不可能同时精确地知道:对粒子位置的完全了解意味着它的动量是不确定的;而对它能量的精确测量意味着它在时间上的位置在量子力学中是模糊的。在量子力学中,我们将这些属性对称为互补变量。不确定性原理告诉我们,当我们将这些属性对相乘时,它一定总是大于某个特定的但特别小的数字。 1920年代,海森堡在发明他的矩阵力学时就发现了测不准原理。但是,当海森堡第一次提出这种关系时,他并没有意识到这个原理是如此基本的,当时他考虑的是用光子测量粒子的位置会发生什么。他推断光子会给粒子一个动量冲击,这就解释了测量后其动量的更大不确定性。为了更精确地测量位置,将需要一个更高能量的光子,但是它会把被测量粒子踢得更远,导致动量的不确定性变得更大。基本上,他认为测不准原理的产生是由于测量干扰了系统。 海森堡把他的新想法告诉了他的导师尼尔斯·玻尔。玻尔对这一发现感到兴奋,但强烈反对海森堡的解释,他认为不确定性原理暗示了一个更为基本的宇宙法则。 海森堡的不确定性原理使我们无法同时了解有关量子态的所有信息,但有时我们也可以超越海森堡的极限,因为有时我们更关心的只有其中一个属性。不确定性原理对互补性质的不确定性乘积设置了一个下限,如果我们只关心粒子的位置,原则上我们可以非常精确地测量它,只要我们不知道它的动量而已。但是,这并不是一件简单的事情,因为正常的量子态倾向于在互补的属性之间均匀地分担不确定性。在过去的几十年里,我们开发了理论和技巧,使我们能够操纵量子态来突破不确定性原理的极限,我们将以LIGO为例。 快速回顾一下LIGO的工作原理。位于美国华盛顿州和路易斯安那州的双干涉仪是由一对4公里长的直角臂组成。激光被分裂并沿着这些路径发送,然后再以这种方式重新组合,使这些激光束的电磁波相消干涉。也就是说,一个波的波峰与另一个波的波谷对齐,导致能量完全抵消。但是,如果引力波通过干涉仪,两条路径的相对长度会以一种特殊的方式发生变化,重组的激光不再完全抵消,因此我们可以观察到闪烁信号。 这种测量方法对路径长度非常敏感,但这意味着它对光波的相位也很敏感,两个光束的相对相位的任何变化都会在信号中产生闪烁。事实上,因为相位存在着固有的不确定性,所以两个光束的相位从未完美匹配。这会导致低水平的噪音,在应该黑暗的地方出现闪烁的信号,而这种噪音会掩盖微弱的引力波信号。如果激光束相位的量子涨落大于引力波引起的臂长变化,那么我们将永远看不到引力波,除非我们能破解不确定性原理。 在这种情况下,所讨论的互补变量不是位置和动量,而是变成相位和振幅。为了提高我们探测微弱引力波的能力,我们需要减少激光束相位的不确定性,这将使我们能够更完美地排列这些波以减少量子涨落。我们不太关心振幅的不确定性。 在LIGO中,光的相位被压缩,以增加振幅的不确定性为代价提高了精度。这种相位压缩是通过量子纠缠来实现的,激光通过非线性晶体的特殊材料发射,这种材料将入射光子转换成成对的光子。这些发出的光子具有纠缠相位,它们的波峰和波谷的位置是相关的。这些光子对被送到干涉仪的不同臂上,当它们重新组合时,它们的相位仍然有量子涨落,但两束光之间的涨落现在是相关的,所以它们可以更完美地抵消。由于随机相移导致的闪烁减少,这意味着我们可以看到由更微弱引力波引起的真实信号。 当然,为了提高相位精度,总是要付出代价的,那就是激光束中传输的振幅的不确定性。但这也引入了另一种噪声——辐射压力噪声,不过这种噪声比相位不确定性的问题要小得多。凡事都有代价,但如果你把不确定性投资在正确的地方,这个代价是值得的。 这种压缩光的使用只是量子力学如何用于提高测量精度的一个例子,科学家们已经在其他系统中证明了同样的原理,比如纠缠原子钟,这可能会在某一天大大提高我们北斗卫星的定位精度。我们测量世界的能力是有极限的,但只要我们愿意改变一些基本定律(比如不确定性原理),我们就可以将极限推到我们认为可能的范围之外,从而对这个不确定的时空进行更加确定的测量。
2023-08-17 22:36:181

海森堡不确定性原理能测出其准确的动量吗

根据海森堡的不确定性原理,物体是能够被测出其准确的动量的,只不过粒子的位置与动量不可同时被确定。也就是说,如果想测出粒子准确的动量,那么粒子的位置就完全不能够确定。
2023-08-17 22:36:312

heisenberg uncertainty principle什么意思

海森博格不确定原理
2023-08-17 22:36:542

请对海森堡 的 测不准原理 给我指点一下,谢谢!

有误差
2023-08-17 22:37:047

为什么说海森堡一思考,物理学家就全疯掉?

原因是因为海森堡不确定性原理
2023-08-17 22:37:2511

海森堡是怎么死的

  测不准原理  德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物 。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。  海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确。如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置。换而言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。经过一番推理计算,海森伯得出:△q△p≥u0127/2。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”=  海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”
2023-08-17 22:39:081

absolute uncertainty和relative uncertainty的区别

absolute uncertainty:绝对不确定性relative uncertainty:相对不确定性不确定性原理不确定性原理(Uncertainty principle,又称测不准原理)由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克斯常数除于4π(ΔxΔp≥h/4π),这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来",所错误的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”表达式ΔxΔp≥h/4π提出者维尔纳·海森堡(Werner Heisenberg)提出时间1927年应用学科物理适用领域范围量子力学测不准原理德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物[1] 。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制[1] 。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制[1] 。海森堡测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置[2] 。于是,经过一番推理计算,海森堡得出:△q△p≥u0127/4π。海森堡写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”[2]海森堡还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”简介在量子力学里,不确定性原理(Uncertainty principle)表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式ΔxΔp≥h/4π其中,是约化普朗克常数。维尔纳·海森堡于1927年发表论文给出这原理的原本启发式论述,因此这原理又称为“海森堡不确定性原理”。根据海森堡的表述,测量这动作不可避免的搅扰了被测量粒子的运动状态,因此产生不确定性。同年稍后,厄尔·肯纳德(Earl Kennard)给出另一种表述。隔年,赫尔曼·外尔也独立获得这结果。按照肯纳德的表述,位置的不确定性与动量的不确定性是粒子的秉性,无法同时压抑至低于某极限关系式,与测量的动作无关。这样,对于不确定性原理,有两种完全不同的表述。追根究柢,这两种表述等价,可以从其中任意一种表述推导出另一种表述。[3]长久以来,不确定性原理与另一种类似的物理效应(称为观察者效应)时常会被混淆在一起。观察者效应指出,对于系统的测量不可避免地会影响到这系统。为了解释量子不确定性,海森堡的表述所援用的是量子层级的观察者效应。之后,物理学者渐渐发觉,肯纳德的表述所涉及的不确定性原理是所有类波系统的内秉性质,它之所以会出现于量子力学完全是因为量子物体的波粒二象性,它实际表现出量子系统的基础性质,而不是对于当今科技实验观测能力的定量评估。在这里特别强调,测量不是只有实验观察者参与的过程,而是经典物体与量子物体之间的相互作用,不论是否有任何观察者参与这过程。类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。由于不确定性原理是量子力学的重要结果,很多一般实验都时常会涉及到关于它的一些问题。有些实验会特别检验这原理或类似的原理。例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。对于不确定性原理的相关研究可以用来发展引力波干涉仪所需要的低噪声科技。
2023-08-17 22:39:281

量子力学颠覆了什么?不确定性的科学是指什么

量子化现象主要表现在微观物理世界,不确定性的科学是指象波一样的表达式的几率。
2023-08-17 22:39:385

海森堡不确定性原理证明核外电子没有固定轨道,为什么还是有1S2S2P这样的轨道

你可以去百度贴吧物理吧问问,
2023-08-17 22:41:252

海森堡测不准原理的另一个版本是什么意思?

又名"测不准原理"、"不确定关系",英文"Uncertainty principle",是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差的乘积必然大于常数 h/2u03c0 (h是普朗克常数)是海森伯在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理。
2023-08-17 22:41:334

不确定性是什么?为何既存在于微观世界,也存在宏观世界?

科学在诞生的300余年时间里,经历了飞速的发展。科学越是发展,我们离真理越近,而离真理越近,疑惑也就越多。大多数人对于科学的认知实际上停留在了一个比较低的层次,因为低层次的科学原理与我们所知的“常识”就越是贴合,而越是接近于真理的科学则越是与“常识”相反。而要说最反常识的科学理论,莫过于这个世界的不确定性。在我们的常识之中,万事万物都应该是确定的,正所谓有因必有果,有果必有因,但现实世界似乎与我们所知的常识背道而驰。不确定性存在于世界的每个角落,既存在于微观世界,也存在于宏观世界。先来说说微观世界的不确定性吧。这就要从海森堡不确定性原理说起了,什么是海森堡不确定性原理呢?在微观世界中,一个粒子包含着这样的两个基本属性,一个就是粒子所在的位置,另一个则是粒子的动量。有趣的是,无论使用任何方法,也无法同时测定一个粒子所在的位置和它的动量。如果我们测准了动量信息,那么则无法测定它的位置,如果确定了它的位置,则无法测量它的动量。在海森堡不确定性原理的基础上,量子力学拔地而起了。量子力学是属于微观世界的物理学,其可以描述除引力以外的三种基本力。量子力学虽然强大,却令人充满了困惑,而困惑的来源就是微观世界的不确定性。我们知道原子是由原子核与核外电子所组成的,在以前,人们一直认为电子是按照固定的轨道运行的,但实际上不是,电子的位置是随机的。电子可以出现在任意一点,而出现在每个点的概率是不尽相同的,我们无法得知电子的具体位置,只能够知道它在某个位置出现的概率。著名的双缝干涉实验从另一个角度描述了微观世界的不确定性,通过双缝干涉实验,人们发现了一个更反常识的原理,观测与否会影响到实验的结果。所谓双缝干涉实验,就是让光通过两条细缝,然后会在背板上出现明暗相间的干涉条纹。可是如果我们企图在双缝的边上撞上摄像头来观测光是如何穿过两条缝隙的,此时背板上的干涉条纹就会消失。这样的现象,如果说给对物理学所知不深的人听,一定会被当成是妖言惑众,因为这的确与一般人所知的常识大不相同。如果说微观世界是一般人所接触不到的,那么就让我们来说说宏观世界吧。你以为宏观世界是确定的?并不是。在宏观世界中,存在着这样的一个效应,我们称之为“混沌效应”。所谓的混沌效应简单来讲,就是在一个系统的内部,初始状态只要出现微小的扰动,都可能会导致巨大的链式反应,也就是我们常说的差之毫厘谬以千里。对于混沌效应,一个最典型的描述就是我们所熟知的“蝴蝶效应”了。蝴蝶效应说的是在亚马孙雨林之中一只蝴蝶扇动了一下翅膀,在一个月以后,美国的得克萨斯州便形成了一场龙卷风。这听起来有些让人觉得不可思议,但事实上就是如此,而且我们还能够举出很多相关的例子。比如在人类的历史上,很多战争的起源其实都是一些非常小的事件,很多灾难也起源于一些细小的行为。我们可以回顾人类历史上的一些重大事件,可以是全球性的经济危机,也可以是某种疫病的流行,当我们一直追溯下去,我们会发现源头是起源于一个非常小的事件,在源头,一个人的一念之差,一个微小的改变都可能让整个事件变得截然不同,这就是宏观世界的不确定性。微观世界和宏观世界的不确定性是客观存在的,但却是人们所不能够接受的,就连伟大的科学家爱因斯坦都曾经说过,上帝不会掷骰子。事实上,科学家们也一直在试图寻找各种方法来克服这种不确定性,而在很多领域,只有克服了不确定性,或者在一定程度上克服了不确定性,才能够使某些特定的问题得到解决。可是我们能够在一定程度上克服不确定性,却不能否认不确定性似乎才是世界的真实面貌。
2023-08-17 22:42:001

薛定谔的测不准原理是什么?

测不准原理跟波粒二相性(可以相互推导)的哲学意义是等价的,不是观测的扰动问题。是因为我们所有的中学物理,基础假定中的质点(有自性的点)和刚体的概念是理想化和不存在的。唯物主义基于现代物理对物质的定义中物质是(离不开)运动的,潜在含有同一时刻(时间是相对假象),物质是在此又在彼(空间是相对假象)的。跟佛教中的物质定义非常接近(印顺《中观论颂讲记》)区别在于佛教中的物质是无自性(虚幻的现象存在)的,是刹那(时间相对)流及他性的。所以本质法无我,无自性。就是无常,刹那迁异。所有的事物即真(概率波)空,即俗(粒子)假。因为概率波的不可思维观察思议真空,那么存在也是遍法界存在的(只不过概率小而已,《华严经》讲一尘出生法界遍),只要没有观察思维(言语道断,心行处灭),它就是自在真如状态的,是不知而知的。所以万物这种状态是 一体同源 不二(处于量子纠缠 互相待立,《华严经探玄记》 称作 12 缘起生灭缚观,互相缚住仿佛存在的假象。彼此以对方存在为前提的虚假存在)的,可以超距作用。因为猫的生死也跟 时间-空间-物质微粒(根据 Minkovsky 对相对论的推论,一切本质(概率波存在)都在光速运动,时空物质相互依立) 一样是一种虚妄的假象。我们每个人其实都是时时刻刻刹那新陈代谢,生生死死的。所以死也是一种假象,因为死后不是断灭的什么都没有,一刹那在法界另外的时处马上有新的如幻生起。一旦即入无我无观察思维的不二状态,一切都是一个的 他维(分身)展现。所以可以一毛端见尘沙国土。也可以度百千劫(世界成坏周期)犹如弹指(毫秒)。
2023-08-17 22:42:433

量子力学的奠基人是谁,爱因斯坦,薛定谔?

都不是,量子力学是在20世纪初由一大批物理学家共同创立的,并不是一两个人创立的。
2023-08-17 22:42:533

  很多人认为,拥有金钱物质就是富有的,其实我觉得,知识才是最宝贵的财富!物理学是当今最精密的一门自然科学学科。是探索分析大自然所发生的现象,目的是要了解其中的规则,接下来 民族文化 带大家来认识一下世界十大物理学?我们一起来看看!   沃纳·海森堡是德国着名物理学家,量子力学的主要创始人,提出不确定性原理,奠定了量子力学,还提出矩阵理论,其在核物理学的显着贡献,为量子场论和粒子物理学的出现奠定基础,是世界十大杰出物理学家之一。   海森堡与爱因斯坦受普朗克的量子理论的启发而提出了光量子假设一样,海森堡也是得益于爱因斯坦的相对论的思路而于1925年创立起了矩阵力学,并提出不确定性原理及矩阵理论。量子力学是人们研究微观世界必不可少的有力工具。由于对量子理论的新贡献,他于1932年获得了诺贝尔物理学奖。海森堡还完成了核反应堆理论。由于他取得的上述巨大成就,使他成了20世纪最重要的理论物理和原子物理学家。公元1901~公元1976,德国物理学家维尔纳·卡尔·海森堡由于在取得整个科学史上的最重要的成就之一——量子力学的创立中所起的作用,于1932年获得诺贝尔物理奖。   力学是研究物体运动普遍规律的物理学分支。它是物理学的最基本分支,又是最基础学科。在20世纪初的年月里,人们逐渐认识到公认的力学定律不能描写极其微小物体如原子和亚原子粒子的行为;他们对此感到迷惑不解,忐忑不安,因为公认的定律应用于宏观物体(即比个体原子大得多的物体)时是白璧无瑕,完美无缺的。   第二次世界大战开始后,迫于德国的威胁,丹麦的大物理学家玻尔离开了心爱的哥本哈根理论物理研究所,离开了朝夕相处的来自世界各地的同事,远赴美国。德国的许多科学家也纷纷背井离乡,坚决不与势力妥协。然而,有一位同样优秀的物理学家却留下来了,并被德国委以重任,负责领导研制原子弹的技术工作,远在异乡的玻尔愤怒了,他与这位过去的同事产生了尖锐的矛盾,并与他形成了终生未能化解的隔阂。有趣的是,这位一直未能被玻尔谅解的科学家却在1970年获得了“玻尔国际奖章”,而这一奖章是用以表彰“在原子能和平利用方面做出了巨大贡献的科学家或工程师”的。历史在此开了个巨大的玩笑,这玩笑的主人公就像他发现的“不确定性原理”一样,一直让人感到困惑和不解。他就是量子力学的创始人——海森堡。1976年2月1日逝世,享年75岁。
2023-08-17 22:43:531

简要说明以下科学家对量子力学的主要贡献:普朗克、爱因斯坦、玻尔、德布罗意、薛定谔、海森堡

Plank->黑体辐射, Einstein->光量子。Bohr->氢原子光谱的解释。de Broglie->物质波。 Schroedinger->波动力学 Heisenberg->矩阵力学
2023-08-17 22:44:041

海森堡是真算错了吗?

海森堡是故意算错的。在二战结束后,海森堡表示,自己当初之所以会算错,都是故意而为之的。他作为一名德国科学家,是非常热爱祖国的,但同时他又深知纳粹党犯下的暴行,如果给他们制造出了原子弹,整个世界都会陷入空前的危机,所以他最终选择计让公式的计算出现差错。一个小的差错,最终得出来的结论就是德国无法制造原子弹。因为海森堡在科学界的地位是非常高的,所以他得出来的结论,也没有人敢轻易地质疑,所以大家最后都相信了这个说法,因此德国也没有再继续研究原子弹,而是把重心转移到了其他的研究上。沃纳·海森堡的人物介绍海森堡是继爱因斯坦之后最有作为的科学家之一。与爱因斯坦受普朗克的量子理论的启发而提出了光量子假设一样,海森堡也是得益于爱因斯坦的相对论的思路而于1925年创立起了矩阵力学,并提出不确定性原理及矩阵理论。量子力学是人们研究微观世界必不可少的有力工具。由于对量子理论的新贡献,他于1933年获得了诺贝尔物理学奖。公元1901~公元1976,德国物理学家维尔纳·卡尔·海森堡由于在取得整个科学史上的最重要的成就之一——量子力学的创立中所起的作用,于1932年获得诺贝尔物理奖。力学是研究物体运动普遍规律的物理学分支。它是物理学的最基本分支,又是最基础学科。在20世纪初的年月里,人们逐渐认识到公认的力学定律不能描写极其微小物体如原子和亚原子粒子的行为。
2023-08-17 22:45:151

不确定性系统分析最先是要解决什么问题

、引言   海森堡提出的不确定性原理以其特殊的性质给科学和哲学解释提出了挑战。不确定性原理,告诉我们微观客体的任何一对互为共轭的不确定变量都不可能同时确定出确定值,使人们放弃了经典的轨道概念。这表明,几率性、随机性、偶然性,并非是由于人类认识能力不足所导致的,而是自然界客观事物的本性。科学的发展要求从哲学层次来认识不确定性原理在科学理论中的作用和地位,分析它的本体论及认识论内涵,总结其基本特征,进而为不确定性原理的科学研究提供富有启示意义的哲学观念和方法论原则。   2、不确定性原理   不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出,它反映了微观粒子运动的基本规律。   在云室(一种观察微观粒子运动径迹仪器)中观察到的电子径迹的解释上,海森堡的想法是如何用已知的数学形式去描述云室中的电子径迹。云室中的径迹并不是能反映粒子明确位置和速度的一条无限细的线,在云室中看到的电子径迹的宽度要比电子本身的线度大得多,这可能代表了电子的位置具有某种不确定性。通过推算,得到了一种不确定性原理,它表明: 同时严格确定两个共轭变量( 如位置和速度,时间和能量等) 的数值是不可能的,它们的数值准确度有个下限。这是一条自然定律, 它说明,在微观粒子层次上,同时得到一个粒子运动的位置和速度的严格准确的测量值在原则上是不可能的。用这个理论去解释试验中所观察到的电子轨迹,经过重新的分析整理,最终确定: 云室中电子径迹并不是一条连续的线,实质上它是一系列离散而模糊的斑点,它们近似排列成线,并非真正的电子“径迹”,也就是说电子的位置是不确定的。   海森堡进一步验证此不确定性满足新的量子力学,得到了标准的量子条件:   Pq-qP=h/2π   (P为动量,q为与动量对应的位置,h为普朗克常量s)。   由上式出发,海森堡导出了位置和与速度相关的p的不确定关系式:ΔpΔq≥h。   3、不确定性原理的哲学思考   不确定性原理告诉人们:经典的轨道概念已不再适用,像经典物理学精确把握宏观物体那样将微观粒子的信息精确测出也是不可能的。更重要的是,波函数的统计诠释与不确定性原理两者可共存于一个理论体系,不确定性原理可以由量子力学基本公设推导,而且推导结果也没有超出量子力学的几率诠释。我们需要将二者结合起来,看看它们究竟告诉了我们什么。   有一些社会科学工作者,由于望文生义或不太理解量子力学理论,认为不确定性原理之不确定,几率诠释之几率。深入的思考者则认为,几率诠释告诉我们微观粒子之状态我们不能百分百把握,而不确定性原理则干脆将“不确定”确定下来,告诉我们不确定不是我们的仪器有什么问题,而是客观世界正是如此,不仅认为客观世界的本性在于不确定性,更认为人类的认识能力无法战胜客观的不确定性。   不确定性与确定性交织在一起密不可分,彼此之间相互否定,各自分别从相反的维度揭示着客观世界的根本性质和特征。确定性是人类认识和追求的目标,但“确定性寻求”的结果使得人们深入到世界的深层并发现不确定性比确定性更为基本和普遍,在确定性岛屿的周围存在着广阔无垠的不确定性海洋。我对不确定性原理的认识主要集中在对不确定性概念的进一步分析之中。   通过对自然科学、数学研究中的典型随机事件掷硬币或掷骰子的具体分析,我认为不确定性就是与事物运动状态或结果具有多种可能性相联系的一种性质,是对确定性的否定。与不确定性相对立,确定性是关于事物的状态、过程、结构、功能、规律等在一定条件下的唯一性。唯一性是确定性的本质特征。有时在放宽的情形下也可以把稳定性、规则性看作是确定性。不确定性具有认识论和本体论意义上的区别。   其一,从认识论角度看,不确定性是指人无法对事物状态或事件运行结果做出唯一确定的描述和预言。事件过程及其结果本身是确定的,但是由于人的认识能力不足或信息不完全而造成认识反映的不确定性。这是和人类天然具有有限的类特征相关联而造成的情形,郝柏林教授提出“有限性原则”也主要是期望概括这一情形中的基本特点。我将这种不确定性称之为主观不确定性或主观随机性。   其二,客观世界还存在着与人类认识能力无关的客观的不确定性,我将其称之为客观不确定性或客观随机性。客观不确定性是指客观事物状态或运行结果的多种可能性在实现上的等概性、平权性或对称性。最简单、最典型的事例就是掷硬币或掷骰子。任何一种可能性的实现相对于其它可能性并不具有优先地位,在实际实现过程中彼此地位平等,概率相同,因而是无法事前准确预言的。这种情形的存在是由客观实体自身结构的特点所决定,与人的认识能力无关。   对于现实与未来的关系,我们之所以说“未来是不确定的”,那皆是因为未来的状态相对于我们目前的状态都是非唯一的,其可能性空间大于现实的状态空间。更由于我们的认识能力有限,基于此,我们只能在今天与未来的交界之处不断锻造更加符合复杂事物系统变化规律的方法之梯,从而将我们的研究视野尽可能地伸向未来的区域。   4、结语   由以上论述我们可以看出,对于许多现实生活中的事情,我们没必要、也没可能完全了解它的所有方面,也不可能完全把握它的发展动向,因为在许多事情的发展中总有一些不确定的因素。将物理中的不确定性原理应用于现实生活中,有一定的现实指导意义,它将为我们的决策带来更加合乎实际的参考方案。
2023-08-17 22:45:581

神秘的量子隧穿效应,居然让粒子学会了穿墙术~

在中国古老法术之中,穿墙术可以说是出现频率较高的法术了,如今也广泛存在于各种魔术之中,记忆犹新的就是,大卫科波菲尔当年横穿长城。然而,在现实生活中,人是不可能会穿墙术的,魔术中的穿墙术都是障眼法。不过,在微观世界里,粒子们却真的会穿墙术,而这就是著名的量子隧穿效应。举个例子,假如人在赶路,前面有一座大山挡住了去路,那么人如果要前往大山的另外一边,那么你就只能翻过山去。但是对于粒子而言,它可以直接穿过去,即使能量不足,也可以穿山而过。这就是粒子穿墙术——量子隧穿效应。1896 年,法国物理学家发现了铀的放射性,后来居里夫妇进一步对此展开研究,我们都知道,宇宙有四大力——强核力、弱核力、电磁力以及引力。杨振宁就是统一了三大力,是宇宙大一统只差临门一脚。居里夫妇在研究中发现,以最常见的α衰变来看,是从重原子核中放射出α粒子,即氦原子核。我们知道,原子核的核子(质子或中子)之间是通过强核力联系在一起的,核子怎么会挣脱强大的强核力逃逸出来呢?后来,量子力学建立,海森堡不确定性原理与德布罗意波粒二象性的确定,在 1927 年,研究分子光谱时,弗里德里希·洪德在计算双势阱的基态问题发现了有趣的现象。 势阱是一个包围着势能局部极小点的邻域。被势阱捕获的能量无法转化为其它形式的能量(例如能量从重力势阱中逃脱转化为动能),因为它被势阱的局部极低点捕获。也正是因此,一个被势阱捕获的物体不能继续向全局势能最低处运动,即使它根据熵的原理自然地倾向于向全局最低点运动。粒子在某力场中运动,势能函数曲线在空间的某一有限范围内势能最小,形如陷阱,所以称为势阱。双势阱简单理解就是有两个局部极低点。洪德就发现偶对称量子态与奇对称量子态会因量子叠加形成非定常波包,其会从其中一个阱穿越过中间障碍到另外一个阱,然后又穿越回来,这样往往返返的震荡。这是人们首次注意到量子隧穿现象。而到了 1928 年,乔治·伽莫夫正确地用量子隧穿效应解释了原子核的阿尔法衰变。在经典力学里,粒子会被牢牢地束缚于原子核内,主要是因为粒子需要超大的能量,才能逃出原子核的非常强的位势。所以,经典力学无法解释阿尔法衰变。在量子力学里,粒子不需要拥有比位势还强的能量,才能逃出原子核;粒子可以概率性的穿透过位势,因此逃出原子核位势的束缚。伽莫夫想出一个原子核的位势模型,借着这模型,借着这模型,他用薛定谔方程推导出进行阿尔法衰变的放射性粒子的半衰期与能量的关系方程,即盖革-努塔尔定律。在一场伽莫夫的专题研讨会里,量子力学的核心人物玻恩听到了伽莫夫的理论之后,他敏锐地意识到,这种理论不仅仅局限于核物理学,还普遍存在于量子力学之中。玻恩对伽莫夫的理论进行了修正,因为伽莫夫理论所使用的哈密顿量是厄米算符,其特征值必须是实数,而不是伽莫夫所假定的复数。 经过修正之后,该理论仍旧维持不变原先的结果。这是伽莫夫提出的阿尔法衰变机制是首次成功应用量子力学于核子现象的案例。早在1922年,朱利斯·利廉费德就已观察到电子冷发射现象,但物理学者最初都无法对于这现象给出合理解释。而玻恩将伽莫夫理论应用于量子力学之后则很好地提供了解释。 直到 1931 年,雅科夫·弗伦克尔在著作《波动力学,基本理论》里,才正式给这种现象起了英文术语“tunnel effect”(隧道效应)。 我们知道,根据牛顿经典力学,粒子是不可能穿过能量比自己高的势垒的。但在量子力学中,根据海森堡的不确定性原理,由于粒子具有不确定性,即使粒子能量低于势垒能量,它也有一定的概率出现在势垒之外。而且粒子能量越大,出现在势垒之外的概率越高。这个隧穿几率则是由薛定谔方程确定,隧穿时的能量变化与隧穿时间满足不确定关系,即△E*△t~h。 当我们带入一维定态薛定谔方程去求其穿透几率就会发现,势垒厚度(D=x2-x1)越大,粒子通过的几率越小;粒子的能量E越大,则穿透几率也越大。两者都呈指数关系,因此,D和E的变化对穿透因子P十分灵敏。但是如果你把物体从微观世界的粒子换成了宏观世界的物体,比如人穿墙,取各种参数,假如人的质量 m=75kg,墙厚0.2m等参数代入以后,就会发现可见宏观物体穿越的几率及其微小,近似不可能。所以这也是为什么粒子会穿墙术而人不可能的原因。 量子隧穿效应的诞生也为我们解释了很多生活里的现象,基本粒子没有形状,没有固定的路径,不确定性是它唯一的属性,既是波,也是粒子,就像是我们对着墙壁大吼一声,即使99.99%的声波被反射,仍会有部分声波衍射穿墙而过到达另一个人的耳朵。因为墙壁是不可能切断物质波的,只能在拦截的过程中使其衰减。量子隧穿现象的应用范围可以说十分广泛,比如说半导体领域,快闪存储器的运作原理牵涉到量子隧穿理论。超大型集成电路(VLSI integrated circuit) 的一个严峻的问题就是电流泄漏。这会造成相当大的电力流失和过热效应。 扫描隧道显微镜(STM)的设计原理就是来源于量子隧穿效应,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界十大 科技 成就之一。由于电子的隧道效应,金属中的电子并不是完全局限于严格的边界之内,也就是说,电子密度不会在表面处突然骤降为零,而是会在表面之外指数性衰减,衰减的长度量级大约为1nm。如果两块金属靠的很近,近到了1nm以下,他们表面的电子云就会发生重叠,也就是说两块金属的电子之间发生了相互作用。如果在这两块金属之间加一个电压,我们就会探测到一个微小的隧穿电流,而隧穿电流的大小和两块金属之间的距离有关,这就是(STM)的基本原理。很多人可能会问,人体真的没有办法发生量子隧穿效应吗?毕竟人体也是由粒子构成的,按照刚才薛定谔方程的计算,人体穿过墙壁的几率微乎其微。
2023-08-17 22:46:071

用爱因斯坦的相对论和hensberg的不确定原理来分析海明威的杀人者

你是黄冈师范学院的吧。。。 楼上答得文不对题...
2023-08-17 22:46:153

海森堡不确定性方程怎么理解?两个不确定性怎么乘?

动量的不确定性越大,位置的不确定性就越小,反之亦然。其中普朗克常量h是自然界微观领域深刻物理规律的数量反应。由它来控制二者的制约关系。
2023-08-17 22:46:251

虚粒子能量来源之谜

在普通的牛顿物理学中,几乎一切事物都可以追溯到一些能量和动量守恒的基本进程。400年来,我们一直被灌输着这样的想法,能量和质量既不能被创造也不能被毁灭,而必须通过某种方式保存,比如月球绕地球运行。我们还了解到守恒定律不仅适用于可视的封闭系统还有非可视的系统,从宇宙到原子。在没有人看到的情况下,一棵树倒在森林里,还能遵守能量守恒吗?答案是肯定的。但在20世纪的地球上,咆哮的二十年代来袭,物理学被颠覆了好几年。 在这篇文章中,我不打算回顾量子力学和量子场论,因为你可能已经阅读过大部分关于物理学“第二个支柱理论”的文献。重要的是要记住,这是一套全新范式的应用,与牛顿的物理没有任何关系,除了一些框架形式。我们仍然讨论质量,动量和能量,但是现在我们关注的对象,其表现为波或粒子——取决于你对它们做了什么实验。 能量不再是牛顿物理中的一个数量,而是一个“算符”,作用于粒子的波函数,输出特定状态指数的值。动量也有它自己的算符,这些算符作用于波函数的方式类比于一个特定的音叉在受外力的共振中振动的方式。电子的波函数的每一种振动模式在特定的时刻都有自己的能量,在特定空间也有特定的动量。物理学家说,能量和时间相互“交换”,动量和空间亦是如此。这些波函数本质上是统计性的,因此波函数的一个分量的平方提供电子具有特定能量和动量的可能性。但是电子状态的统计性意味着共轭变量的乘积必须大于或等于普朗克常数。这就给了我们著名的海森堡不确定性原理: 这些关系所涉及的是我们区分电子在每一种特定时刻和特定空间的可能具备的能量和动量的能力。事实上,我们处理的是电子波函数的无穷谐波级数的一部分,所以我们可以用傅里叶变换将每种状态下的频率和波长联系起来。在光和声音中,有着 波长=常数/频率 的定理,其中常数是光速或声速。那么,在量子力学中,波函数也有着基于共轭变量(E,t)和(p,x)的相似关系。实验中的问题是,因为E和t是共轭的,这意味着,当我们试图测定动量p时,我们对电子在x变量中的位置会逐渐失去准确性。类似地,当我们试图精确测定一个系统有多少能量E时,我们无法准确地知道它在哪个特定时刻存在能量。 实际上,描述能量和时间之间关系的海森堡不确定性理论,是我们对任何具有波状性质的系统中这两个量的一种表述。简而言之: 某一特定状态的总能量的不确定性随着处于该状态的时间的增加而减小。 通常这样解释,如果我们只观察它很短的时间,我们就能够测量系统的能量。下面是一个实例。 最初,时刻=Ti,系统由两个粒子Pa和Pb组成,它们具有总能量为Ea和Eb。然后Einitial = Ea + Eb。T2时刻的相邻态包含相同的两个粒子及其能量,但包含第三个粒子V,能量为Ev。系统在时刻= Tf时的最终状态只包含最初的两个粒子。根据海德堡测不准原理,两种状态之间的能量变化量为(Ea + Eb + Ev) - (Ea + Eb) = Ev。这两种状态之间的能量变化与第三粒子的状态存在的时间有关,根据Delta-T = h/Ev,这是Ev能量可以持续存在的最小时间。 在量子力学中,一个系统开始于Ti时刻,结束于Tf时刻。这些状态只包含原始粒子,在这种情况下,A和b之间发生的过程可以包含任何其他过程,只要它遵守海森堡不确定原理 Ev = h/(Tf-Ti) 如果初始时刻和最终时刻之间的时间差较长,能量波动Ev会很小,但是如果时间差较短,Ev的值会很大。 那么Ev的能量源自哪里呢?你可以认为它是从粒子V不存在的状态“借来”……这就是所谓的量子真空。这是因为真空状态是除去两个原始粒子后系统剩余的最低能量状态。剩下的n个“真空区”,其中所有其他的能量波动(根据E=mc^2而被解释为虚粒子)在它们所具有能量的时间段内来去自如。 另一种方法是使用度量类比来描述将大量度量值平均时会发生什么。当你从36个测量值取平均值,你会得到一个答案,但这是这些重复测量值的正态分布的中点,它有一个“标准差”,它告诉你测量值围绕平均值的分布。当您将测量值增加到10,000时,您的平均值可能不会有太大的变化,但是现在正态分布的形状已经缩小了,因为标准偏差现在是平方根(10000/36) = 100/6倍。你测量的越多,你测量的参数的波动就越小。用同样的方法,你对一个粒子状态进行36次能量测量,标准偏差是由海森伯格不确定原理决定的,该原理基于进行这些测量所花费的时间。但是当你进行更多的测量时,你增加了Ti和Tf之间的时间,标准偏差减小到一个更小的值。 1.WJ百科全书 2.天文学名词 3. astronomycafe- astronomycafe 转载还请取得授权,并注意保持完整性和注明出处
2023-08-17 22:46:381

量子力学的本质是什么,思想精髓在哪里

精髓在于薛定谔方程
2023-08-17 22:46:472

什么是量子力学理论

量子力学(英语:quantum mechanics;或称量子论)是描述微观物质(原子、亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(电磁相互作用、强相互作用、弱相互作用)的基础。量子力学是许多物理学分支的基础,包括电磁学、粒子物理、凝聚态物理以及宇宙学的部分内容。量子力学也是化学键理论、结构生物学以及电子学等学科的基础。量子力学主要是用来描述微观下的行为,所描述的粒子现象无法精确地以经典力学诠释。例如:根据哥本哈根诠释,一个粒子在被观测之前,不具有任何物理性质,然而被观测之后,依测量仪器而定,可能观测到其粒子性质,也可能观测到其波动性质,或者观测到一部分粒子性质一部分波动性质,此即波粒二象性。量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。在量子力学的形式中,系统在给定时间的状态由复波函数描述,也称为复向量空间中的态向量。[24] 这个抽象的数学对象允许计算具体实验结果的概率。例如,它允许计算在特定时间在原子核周围的特定区域找到电子的概率。与经典力学相反,人们永远无法以任意精度同时预测共轭物理量,如位置和动量。例如,电子可以被认为(以一定的概率)位于给定空间区域内的某处,但它们的确切位置未知。恒定概率密度的轮廓,通常被称为“云”,可以在原子核周围绘制,用以概念化电子最有可能的位置。海森堡的不确定性原理量化了由于粒子的共轭动量而无法精确定位粒子的能力。[25]
2023-08-17 22:46:551

Lz球坐标下的本征态,Lx和L能不能同时确定?Lx和Ly的不确定关系?

不,Lz球面坐标中的特征态,Lx和L不能同时确定。这是量子力学中海森堡不确定性原理的结果,该原理指出,某些成对的物理量,如位置和动量,或者在这里是角动量分量,不能以任意的精度同时测量。在角动量算子Lx、Ly和Lz的情况下,不确定性关系规定:。ΔLxΔLy≥1/2 |<[Lx, Ly]>|其中ΔLx和ΔLy是Lx和Ly测量的不确定度,[Lx, Ly]是Lx和Ly的换元器。由于换元[Lx, Ly]等于iℏLz,其中ℏ是缩小的普朗克常数,这个不等式可以写成。ΔLxΔLy ≥ ℏ/2 ||其中||是Lz的期望值。这个不等式意味着对Lx和Ly的值可以同时测量的精度有一个基本限制。它们的不确定度的乘积不能任意变小。此外,由于算子Lx、Ly和Lz不相互交换,所以不可能为所有三个算子找到同时的特征态。然而,有可能找到同时对角化任何两个算子的特征态,如Lz和L,或Lx和L。这些特征态被称为球面谐波,它们具有使第三个算子的不确定性最小化的特性。总之,量子力学中Lx和Ly的不确定性关系对这两个角动量分量可以同时测量的精度施加了一个基本限制。不可能为所有三个角动量算子Lx、Ly和Lz找到同时的特征态。
2023-08-17 22:47:231

世界上有哪些已经被证明是正确,但又令人无法接受的科学理论?

要是这么纠结的话,好像也就没有什么意思了。
2023-08-17 22:47:416

测不准原理的哲学意义

测不准原理揭示了粒子运动的不确定性,微观粒子的研究对哲学有很重要的意义,测不准原理的哲学意义在于其对传统的客观性观念、理性观念和确定性的观念都带来了冲击。测不准原理又称为量子测不准原理,是微观物理学中的一个基本原理,由德国物理学家海森堡于1927年提出。测不准原理的含义是指用科学方法测定基本粒子的位置而同时又做到不影响基本粒子的速度是不可能的,即同时测量微观粒子的位置和速度是不可能的。玻尔指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变。如果观测者总是被观测过程的一部分,那么人们长久以来所领会的客观性就不再是一个有效的概念。任何一个观测者,例如一个进行实地考察的考古学家,或到某一新闻现场进行报道的新闻工作者,都必须注意到,他的在场已经成了故事的一部分。故在历史学领域中,有“一切历史都是当代史”的说法。
2023-08-17 22:49:171

《绝命毒师》中沃尔特为何化名海森堡?

海森堡是量子力学的主要创始人,哥本哈根学派的代表人物,1932年诺贝尔物理学奖获得者;但同时他也是希特勒原子弹计划的总负责人,德国最后并没有造出原子弹,最重要的原因是他对铀235的临界质量计算犯了一个极其低劣的错误,从而放慢了德国原子弹计划的进程。海森堡是纳粹的核物理学家,因为自己的计算失误部分导致了纳粹的核武器计划流产(当然也不能全怪他,盟军的破坏,希特勒的决策失误也是重要原因),海森堡的失误全是科研领域几个最著名的计算错误了吧老白给自己起名海森堡是有深意的,在刚开始我以为他只是因为自己从事的是邪恶的事业,所以取了这么个名,随着故事的发展我们才明白老白当年为了给小白买奶粉和尿布,把自己手中的股票买给了另外两个人,换了500美元……多年以来他每周都会查看公司的股价,算算自己因为500美元而放弃了多大一笔财富老白如此傲气一人,这辈子犯下的最大错误他一直不肯原谅自己,取名海森堡,也是因为自己同他一样犯了一个错误却失去了一切老白拒绝别人的帮助治疗癌症也是因为这个错误,“这些钱本来就是我的,你们凭什么拿来施舍我?”后来老白如此痴迷于他的毒品帝国也是这个原因,“我这辈子已经犯过一个大错,不会再犯第二个”他用海森堡自勉,他用海森堡自嘲
2023-08-17 22:49:372

薛定谔的猫是一个有趣的理想实验,常在网络上被人们玩梗,那么实验的内容究竟是什么?

是一个关于量子理想的实验
2023-08-17 22:50:3711

沃尔特怀特原型

现实生活中的沃尔特·怀特是阿拉巴马州最好的冰毒制造者,他被判入狱12年城事决策-现实生活中的沃尔特·怀特是阿拉巴马州最好的冰毒制造者,他被判入狱12年首页 > 现场报道 > 正文现实生活中的沃尔特·怀特是阿拉巴马州最好的冰毒制造者,他被判入狱12年 admin 2022-09-15 09:23 28 人阅读 0 条评论Real life Walter White who was the best meth cook in Alabama was sentenced to 12 years in prison一个“现实版的沃尔特·怀特”曾因贩卖冰毒被判12年以上监禁。之所以会有这样的对比,不仅仅是因为他曾因贩卖冰毒而被定罪,还因为他的真名是沃尔特·怀特。是的,他和布莱恩·克兰斯顿在《绝命毒师》中扮演的著名毒贩同名。据当地报纸《比林斯公报》报道,没有上过电视的沃尔特·怀特被认为是阿拉巴马州最好的冰毒制造者之一。2013年,美国地区法官唐纳德·莫洛伊(Donald Molloy)告诉他,他必须因持有冰毒并意图分销冰毒而被判入狱9年,并因携带武器的指控被判入狱3年半。
2023-08-17 22:51:232

电视机维修的技巧

  电视机是现代每个家庭都有的家用电器,它为我们的日常生活提供了许多乐趣。随着科学技术的日益进步,电视机的类型也进步到了液晶电视,不论是何种电视,使用过程中出现一些小故障是难以避免的,许多人就想要自己学习维修电视,从而省去叫专门的师傅来修的麻烦。本文就将为大家介绍一下如何学习维修电视,从而供大家有需要的时候做下参考。    一、先学液晶电视的理论知识。  因为排除故障的第一步就是分析故障,你不知道液晶电视的电路结构与信号流程,不知道液晶电视各电路的电压供电数据,不知道液晶电视电压控制电路是怎样控制的,你就感觉不知从什么地方开始维修。如果不学好基础知识,你也不会快速修好液晶电视.你只会修一些表面上的简单故障。维修技术就不能更新,保持原样,将来你会面临这个时代的淘汰。所以要学好液晶电视的维修技术,一定要理解液晶屏的工作原理、工作条件,及新电路新技术,新型元器件的应用(例如MOS管等),只有加强这方面的理论学习,积累一些维修技术知识。你才会跟上时代电子技术的发展,才会成为一个优秀的液晶电视维修师。你才会受人尊敬;你才会拥有享之不尽的财富。    二、液晶电视维修要有好的维修工具  液晶电视维修要有数字万用表、带防静电恒温烙铁的风枪、示波器。修过CRT彩电的朋友就会知道一个20脚以上的集成块坏了,用电烙铁拆下与装好集成块要30分钟以上,用电风枪就只有十分钟左右,并且焊接点也不会损坏。示波器是一种用来展示和观测信号波形的电子仪器,它可以用于观测和直接测量液晶电视中信号电压大小和周期,根据检测的波形参数来判断检测的电压是否有故障,而且可以提高维修判断故障的速度。    三、要有自己的资料数据库  古人行军打仗,通常都是兵马未动,粮草先行。想学好学精液晶电视维修技术,心须有自己的维修数据库。在维修实际中遇到要数据的时候,不知道配件到那里买的时候,到自己的资料数据库查一下不就知道了。    通过上文的介绍,我们已经大致了解了如何维修电视。从中我们可以看到首先需要做的就是对专门的技术理论进行学习,所有的维修技巧都是建立在厚实的理论基础上的。了解了基本的理论知识后就要准备一些必要的工具,最后就是建立自己的数据库。值得大家注意的是,修电视是一门技术活,没有必要的情况下最好还是请专门的技术人员来进行维修。
2023-08-17 22:45:352

英语凌晨 的 零点 怎么说

twelve am
2023-08-17 22:45:366

pickup和pickyourup的区别

pick up 的字面上可以看出,它最基本的意思是”拿起;提起;拾起;捡起“,通常是用手pickyourup意思是顺路接人
2023-08-17 22:45:362

电磁炉风扇不转的原因?电磁炉风扇不转怎么维修?

对于电磁炉,风扇不转的原因是需要了解和知道的,另外对于电磁炉风扇不转怎么维修,也是应该要有个正确的认识才行,这样才能够不影响到使用。 吹电风扇的种类实在是太多了,有关于电磁炉风扇,很多人们只是听说过,但是对于这方面的产品了解和认识的并不是很多,对于电磁炉,风扇不转的原因是需要了解和知道的,另外对于电磁炉风扇不转怎么维修,也是应该要有个正确的认识才行,这样才能够不影响到使用。 电磁炉风扇不转的原因? 1、风扇供电电路故障。拔掉风扇在主板上的插头,万用表打到直流电压档,通电运行电磁炉,用万用表测量主板的风扇针脚是否有12V电压。无电压的话,沿线路走向查上级电路。 2、风扇自身故障。如果主板针脚处有正常的电压输出,基本可以断定是风扇坏,换个风扇试试 电磁炉风扇不转怎么维修? 故障现象:风机不转(指示灯正常)。故障现象分析:根据 电磁炉原理 推测,造成该故障现象的原因基本可以分为两种情况: 一、若电磁炉能正常加热,而风机不转。则说明5V电源正常,18V电源正常。其故障范围应在风机控制电路和风机本身。 二、若电磁炉不能正常加热,而风机不转。则说明故障多出现在18V电源和单片机上。 故障电路推断:5V稳压电路、18V稳压电路、风机电路。 维修指引:通电测量18V供电输出电压18.01V正常,在开机状态下测量Q10(D667)三极管的B极电压为0.7V左右正常。再用镊子短路三极管D667的CE极时,风极运转正常。 此时,可以推断故障应为三极管Q10(D667)不良。取下D667测量发现其BC极已开路,更换后试机,确认故障排除。拆下风扇用万用表测量绕组线包,其电阻值小于正常值或开路损坏。对于损坏不太严重的线包可自行拆修。 取下线包后一圈圈退下绕组线层,当退至发现烧焦短路处时,把短路的线略剪掉一段(若短路烧毁线圈圈数较多,应按烧毁总圈数的 长度 用线径为u03c60.1mm高 强度 漆包线加长),然后将线头重新绞合并焊接,再用黄蜡布包好焊接头后, 将退下的线重新绕回放入绝缘清漆中浸泡并加以烘十后使用。如果电机绕组已严重烧毁,应采用同型号线径重新绕制(线径为u03c60.1mm,圈数约在5200匝左右),或换用新的排风电机。 电磁炉风扇不转的原因实在是太多了,人们在进行维修的时候,要知道不一样的原因,所采取的维修方法也是不一样的,那么所需要花费的费用也是不同,应该要具体的原因具体对待,另外对于电磁炉风扇不转怎么维修,看过上面的介绍之后人们都是应该已经了解和知道了吧。
2023-08-17 22:45:371

哪一种二极管是工作在反向偏置状态

选C.
2023-08-17 22:45:385

断电延时电路的工作原理?

时间继电器 2 7是线圈 1 3 4是延时闭合 5 6 8是延时断开 综合图你在看一下不就明白了 图上面时间继电器有8个角 27线圈 134延时闭合 568延时断开 而你左上角电路图中 用到220V交流电 然后火线通过开关S 经过时间继电器线圈 线圈另一端通零线 组成一个通路,而和开关关联电路中用到时间继电器一组延时闭合 总结该电路用到时间继电器的 2 7 5 6 8几个触点 时间继电器得电以后 因为 7角接的火线 然后与8角短接 这样 5 8这组触电在时间继电器得电后灯泡亮 达到预设时间熄灭
2023-08-17 22:45:451

Pickup Truck 歌词

歌曲名:Pickup Truck歌手:Kings Of Leon专辑:Come Around SundownKings Of Leon-Pickup TruckWalk you home to see, where you"re livin" around, and I know it"s late,Pour yourself on me, and you know I"m the one, that you won"t forget.Lay your hand on mine, I see something ain"t right, and I see your wink,When he comes around, see your fixin" to shine, and my faith won"t keep.Hate to be so emotional, I didn"t mean to get physical,But when he pulled in & he revved it up, I see you crawl out a pickup truck,And in the moonlight I run him down, all kickin" screamin" and rollin" around,A little piece of a bloody tooth, just so you know I was thinkin" of you,Just so you know oohhh.Tremblin" knees are weak, and its cold as a hole, hug your bones and skin,Cracklin" woods gone white, and my eyes swolled up now, I can see the light.Hate to be so emotional, I didn"t mean to get physical,But when he pulled in & he revved it up, I see you crawl out a pickup truck,And in the moonlight I run him down, all kickin" screamin" and rollin" around,A little piece of a bloody tooth, just so you know I was thinkin" of you,Just so you know oohhhh.Just so you know oohhhh.Everything"s so emotional, I didn"t think it"d get physical,But when he pulled in & he revved it up, I see you crawl out a pickup truck,And in the moonlight I run him down, all kickin" screamin" and rollin" around,A little piece of a bloody tooth, just so you know I was thinkin" of you,Just so you know I was thinkin" of you.Just so you know oohhhhJust so you know oohhhhhttp://music.baidu.com/song/52605094
2023-08-17 22:45:451

pickup巧克力桶装怎么打开

如果是圆通的话,您可以看看是不是有订书钉或者胶带缠着。我如果没有的话,您可以往下按压看看有没有翘起的边缘,然后脚比较薄又细的东西做一个支撑点来撬开,以免伤到你的手。另外,这个巧克力桶,如果您吃完巧克力就丢掉或者是不用的话,您可以采取暴力式拆开。
2023-08-17 22:45:532

"Murder", He Says 歌词

歌曲名:"Murder", He Says歌手:Dinah Shore专辑:The Very Best Of Dinah ShoreTori Amos - Murder, He Says LyricsHenry Ye 编辑歌词(谢谢使用)Finally found a fellaAlmost completely divineBut his vocabularyIs killing this romance of mineWe get into an intimate situationAnd then begins this character"s conversationHe says, murder, he saysEvery time we kissHe says, murder, he saysAt a time like thisHe says, murder, he saysIs that the language of love?He says, solid, he saysTakes me in his armsAnd says, solid, he saysMeaning all my charmsHe says, solid, he saysIs that the language of love?He says, chick chickYou torture meZoom, are we livin?I"m thinkin of leaving him flatHe says, dig dig the jumpsThe old ticker is givingHe can talk plainer than thatHe says, murder, he saysEvery time we kissHe says, murder, he saysKeep it up like thisHe says, murder, he saysIn that impossible toneWe"ll bring on nobody"s murderBut his ownHe says, jackson, he saysAnd my name"s marieHe says, jackson, he saysShoot the snoot for meHe says, jackson, he saysIs that the language of love?He says, mmmhmmWhen he likes my hatHe says, tsk tsk tskWhat the heck is that?He says, woo hoo! he saysIs that the language of love?He says hep hep with heliumNow babe, we"re cookinAnother expression"s too illHe says, we"re in the grooveAnd the groove is good lookinSounds like his uppers don"t fit!He says, murder, he saysEvery time we kissHe says, murder, he saysKeep it up like thisIn that, murder, he saysIn that impossible toneWe"ll bring on nobody"s murderBut his ownhttp://music.baidu.com/song/8317482
2023-08-17 22:45:531

说说电磁炉 结构 原理

一、电磁炉的工作原理 电磁炉是利用电磁感应涡流加热原理来工作的,其主要工作过程如下: 1、电磁炉首先将输入的220V/50HZ的交流电转变(整流)成300V直流电。 2、高频交变电流输入电磁线圈,在电磁线圈表面产生高频交变磁场。 3、高层交变磁场作用到铁质锅具上,使铁质锅具感应从而产生(电流)涡流,进而使锅体发热。 从能量转化的角度看,电磁炉的过程是:电能——电磁能——锅具的热能。二、电磁炉构成和分类 1、电磁炉由5个主要部分组成: ◇微晶玻璃陶瓷面板 ◇机身外壳 ◇电磁线盘 ◇控制电路板 ◇风扇三、电磁炉的主要部件1、微晶陶瓷玻璃面板作用:它是一个电磁炉非常重要的、不可缺少的部分,他直接影响电磁炉的使用寿命,决定了电磁炉的品质高低和性能优劣。面板的主要作用是支撑锅具,隔热以及保护内部电子元器件。 ● 进口微晶玻璃板 进口微晶玻璃板采用高科技精密工艺、特殊配方,生产周期长达2个月,其主要特性为: ◇光洁度高,表面平整光滑,无杂质,易清洗,长期使用不会发黄变色; ◇耐热性能好,面板抗热高达1050°C,能承受800°C的温差瞬变,面板热胀冷缩系数接近于零,加热后即使立即用冷水溅浇面板表面,也无任何损伤; ◇机械性能好、强度高、耐冲击,硬度大,莫氏硬度达到7级以上(金刚石为10级,不锈钢4.8级),用铁质器件如钥匙扣在面板表面刮擦,无刮痕留下。 ◇极低的热传导性,面板的高温烧煮区与冷边缘区的温差可达500°C。 注:电磁炉发热原理是由于电磁波作用于锅具内铁分子形成。面板本身不会加热,恰恰相反,是应用于隔热。面板产生的高温是由于与锅具的热传递形成。我们用手触摸与锅具接触以外的面板,几乎感觉不到温度,这样更好的防止事故发生。 2、高频大功率晶体管(IGBT) 材质:双极晶体管 作用:大功率高速开关控制元器件,用于控制电磁线盘中电流的通断,相当于人类的心脏。 3、电磁线盘 线盘结构:由漆包绞合线、盘架、导磁体构成。 线盘作用:高频交变电流通过电磁线圈,产生交变磁场。 4、控制电路板 作用:实现能量转换,调节温度、功率及时间,对电磁炉进行控制。 5、风扇: 作用:机器内部散热。 6、机身外壳: 作用:用于把电路板、风扇、加热线圈等等部件封装起来,并和支撑锅具。
2023-08-17 22:45:291

机械制造工程原理(清华出版社 第2版)课件 试卷及答案 两者有一即可

琥珀课后资源网,希望能帮到你,免费
2023-08-17 22:45:281

求助1N4746A稳压管的代换

发个参数表给你,希望你以后用得着!1N47系列稳压二极管参数IN4728(3.3V)、 IN4729(3.6V)、 IN4729(3.6V)、 IN4730(3.9V)、 IN4730(3.9V) IN4731(4.3V)、 IN4731(4.3V)、 IN4732(4.7V)、 IN4732(4.7V)、 IN4764(100V) IN4733(5.1V)、 IN4734(5.6V)、 IN4734(5.6V)、 IN4734-KEL、 IN4734-TA、 IN4735(6.2V)、 IN4735(6.2V)、 IN4736(6.8V)、 N4736(6.8V)、 IN4736(6.8V)、 IN4737(7.5V)、 IN4737(7.5V)、 IN4738(8.2V)、 IN4738(8.2V)、 IN4739(9.1V)、 IN4739(9.1V)、 IN4740(10V)、 IN4740(10V)、 IN4741(11V)、 IN4741(11V)、 IN4742(12V)、 IN4742(12V)、 IN4742A、 IN4743(13V)、 IN4743(13V)、 IN4744(15V)、 IN4744(15V)、 IN4745(16V)、 IN4745(16V)、 IN4762(82V)、 IN4746(18V)、 IN4746(18V)、 IN4747(20V)、 IN4747(20V)、 IN4748(22V)、 IN4748(22V)、 IN4749(24V)、 IN4749(24V)、 IN4763(91V)、 IN4750(27V)、 IN4750(27V)、 IN4751(30V)、 IN4751(30V)、 IN4752(33V)、 IN4752(33V)、 IN4753(36V)、 IN4753(36V)、 IN4754(39V)、 IN4755(43V)、 IN4756(47V)、 IN4757(51V)、 IN4758(56V)、 IN4758(56V)
2023-08-17 22:45:262

液晶电视背光板电路原理分析及故障维修方法有哪些

液晶彩色电视机液晶显示屏背光灯电源电路一般安装在一块单独的电路板上,采用双面安装方式,布局紧凑。该电路的作用是将开关电源电路提供的低压直流电压转换为液晶面板所需要的1500~1800V的高频交流电压,点亮液晶面板背光灯管CCFL(冷阴极荧光灯)。通常又将该板称为高压板。高压板故障是液晶彩色电视机故障率较高的部位,上门维修时准确判断其故障的部位,较常用且有效的6种方法简述如下。1.高压测试棒碰触判断方法对于开机后屏幕一闪就“黑屏”故障的液晶彩色电视机,可以采用以下方法来判断背光灯电源电路故障的大概原因。接通电源开机的瞬间,迅速用高压测试棒(也可使用万用表的单根表笔)碰触高压输出端插头焊脚,观察是否有微弱的蓝色火花出现。如果有火花出现,灯管不亮故障在灯管本身或其相应的插接件上。对各个灯管均应按上述方法一一进行判断。如果没有放电火花出现,应进一步测量各级供电电压是否正常,背光灯启动信号电平是否正确。采用示波器测量末级驱动管或控制集成电路信号输出端引脚处是否有50Hz以上的波形(具体频率因机型不同而不一样,一般幅值在10~20VP_P)。如果测得的波形正常,故障通常发生在高压变压器、次级高压输出电容器或灯管上。2.假负载判断方法这种方法类似于上述对开关电源电路故障的判断方法。当确认故障在逆变电路后,如果不连接灯管检修会因为保护电路启动而使判断不准确,连接灯管进行检修又因为灯管脆弱、长度太长而比较麻烦。采用假负载判断方法就可以弥补这一不足。这种判断方法的实质,就是在背光灯电源电路的高压输出端用一只150kΩ/10W的电阻器(例如水泥电阻器或线绕电阻器>代替灯管,由此来判断背光灯电源电路的好坏,北京东芝电视维修中心。3.互换比较判断方法为了保证背光灯管供电的平衡和可靠性能,一般液晶电视的高压板电路都采用了几组完全相同的电路,分别为各个背光灯管供电,几组背光灯驱动电路同时损坏的可能性较小。因此,当怀疑某一灯管驱动电路不良时,可以采用互换灯管驱动电路的方法来判断其好坏。4.测量电流判断方法液晶彩色电视机的高压电路板电路一般都设置了高压平衡保护电路,通过对高压输出电流的检测,也可以判断高压是否正常。另外,当多背光灯管的高压板中的某个背光灯管损坏、接触不良、任一高压输出电路元器件损坏等,都会引起高压输出电流不平衡,该不平衡的电流经逆变电源控制集成电路检测后,就会判断电路有故障,使振荡电路停振,关断高压输出。此时的故障现象为在开机的瞬间,屏幕闪烁一下后,再变为“黑屏”。因此,也可以依据这一典型特征来判断高压板的好坏。5.直接观察判断方法对于没有高压平衡保护电路的液晶电视机,在高压电路出现故障后,可以在合适的光、线下侧视屏幕,依然会有暗淡的图像显示。可以通过这一典型特征,也可以快速判断高压板的好坏。6.调节亮度测电压判断方法在液晶显示屏背光灯高压板电路中,有一个亮度调节接口,该接口受微处理器控制系统输出端输出的亮度调整PWM脉冲信号的控制,当此接口电压改变时,会使输出端的高压也发生变化,由此就改变了CCFL的亮度,完成了对液晶显示屏亮度的调整。如果高压板电路正常,调整亮度时该接口电压会随之产生平滑的高低变化。因此,根据这一典型特征,通过测量该接口电压是否变化,也可以用来判断高压板电路工作是否正常。
2023-08-17 22:45:241

怎么用中间继电器把时间继电器的通电延时变成断电延时功能

这里需要一个线圈工作电压相同的中间继电器,首先将中间继电器接成起保停功能电路,然后把时间继电器线圈并联在中间继电器上,将起保停电路中的停止作用的常闭触点更换成通电延时断开的常闭触点,即可实现功能,但存在竞争与冒险。在此基础上将起保停电路中保持用的常开触点更换成通电延时继电器上的瞬时的普通常开触点,即可实现通电延时继电器断电延时功能。
2023-08-17 22:45:197

二极管分为几种啊?各种功能是什么呢?

一、分类  二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。二、功能整流二极管结构主要是平面接触型,其特点是允许通过的电流比较大,反向击穿电压比较高,但PN结电容比较大,一般广泛应用于处理频率不高的电路中。例如整流电路、嵌位电路、保护电路等。整流二极管在使用中主要考虑的问题是最大整流电流和最高反向工作电压应大于实际工作中的值。快速二极管主要应用于高频整流电路、高频开关电源、高频阻容吸收电路、逆变电路等,其反向恢复时间可达10ns。快速二极管主要包括快恢复二极管和肖特基二极管。稳压管的最主要的用途是稳定电压。在要求精度不高、电流变化范围不大的情况下,可选与需要的稳压值最为接近的稳压管直接同负载并联。在稳压、稳流电源系统中一般作基准电源,也有在集成运放中作为直流电平平移。其存在的缺点是噪声系数较高,稳定性较差。快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。目前快恢复二极管主要应用在逆变电源中作整流元件,高频电路中的限幅、嵌位等。肖特基(Schottky)二极管也称肖特基势垒二极管(简称SBD),是由金属与半导体接触形成的势垒层为基础制成的二极管,其主要特点是正向导通压降小(约0.45V),反向恢复时间短和开关损耗小,是一种低功耗、超高速半导体器件,广泛应用于开关电源、变频器、驱动器等电路,作高频、低压、大电流整流二极管、续流二极管、保护二极管使用,或在微波通信等电路中作整流二极管、小信号检波二极管使用。
2023-08-17 22:45:162

gaggle herd and murder什么意思

gaggle herd and murde:狼群与谋杀这是一本非常好的介绍各种动物群体英文说法的书。gaggle是一群geese, colony是一群bats, pod 是一群whales或者dolphins, herd是一群三角龙(这个是娃说的),zebras或者cows,murder是一群crows(这个看书名真没想出来是这个),smack是一群jellyfish,pack是一群wolves或者wild dogs. people则有family,neighborhood,team, ethic groups等等。
2023-08-17 22:45:071

液晶电视背光板电路原理分析及故障维修方法有哪些

1、电视机磁化电视机磁化原因:电视机受过剧烈振动、电视机内部的消磁电阻损坏、受旁边带磁物体的磁化影响、电视机里面的偏转线圈或色纯磁环移位电视机磁化解决:受到剧烈震动之后的电视机,会出现更多的情况,也不能确定是元件的损伤还是人为的因素。要请专业的维修人员进行修理,如果是画面能够显示,除了有屏幕的光晕现象一切正常,那么就用专业的消磁器就能够解决。如果是不能够解决的,一般就是里面的消磁元件有损坏,就要进行元件的更换。注意不要让带磁的物体放在电视机的旁边,这样会对电视有一个很大的影响。还有是色彩制式没有调整好,可以自行调整。2、电视机整机没有电整机无电原因:这是一个很简单的故障,主要是由电视机的机内电源和机外电源两种情况造成的。一般是机外电源的故障率会较高一些。比较容易损坏的是一些机内的小元件,这些小元件都比较的,比如:象保险管、整流桥、电源开关等等。还有一个是驱动板的故障,导致了整机没有电。整机无电解决:如果是电源部分的原因,检修起来比较简单,通常更换了这些零部件之后,就能够解决到问题。如果是驱动板的故障,就要稍微复杂一点,要检查电源的相关电压是否正常,驱动板故障会导致两组电源没有输出电压,只要电压有问题,驱动板就一定是有问题的。3、有声音没有图像有声无图原因:首先怀疑是高频头出了问题,这会直接导致这个情况。还有是色彩制式没有调整对,没有调节到亮度出来,通过遥控器调整色彩制式检查。有声无图解决:高频头损坏之后,是没有图像的输入的,所以电视机屏幕上面是没有图像显示,检查高频头的相关参数是否正常,再进行更换。然后是调整电视机的色彩制式,这也是引起的原因之一,但是通常这种情况是比较少的。关掉电视的时候,在关的一瞬间可以看到电视机的光亮,而且是有一点放电的声音,那么可以断定的是电视机的显像管是正常的。
2023-08-17 22:45:053

稳压二极管如何使用?

是这样的,稳压二极管属于半导体元件,在工作时稳压二极管中内部电阻与电流变化比例关系不是线性比例变化的,而欧母定律适用与线性变化的电路分析,对于二极管自身内部变化分析是不适用的,但是可以应用于二极管外部工作电路的分析。 由于稳压二极管工作于反向击穿区(特殊二极管),当流过管子的反向电流达到稳定电压值时,管子就会从反向截止状态迅速进入导通稳压状态,此时管子自身内阻会迅速减小但不会是0。当管子两端电压不变反向电流继续增大时就会造成管子自身功率增大,当电流的增加使得子自身功率超过额定耗散功率,就会使得管子很容易烧毁,从而使得管子变得无法继续稳压了,为了减小自身功率损耗,因此理想的管子在稳压时我们希望内阻越小越好。 因此要想让稳压二极管实现稳压输出,必须保证电流要达到额定稳压值,太小的话管子因无法导通而无法稳压,太大了则会因功率增大而烧毁管子。为了防止稳压二极管两端电压增大而造成内部电流的急剧增加,需要在电路中使用一只电阻与管子串联来分压,由于电阻的引入还可以很有效的减小管子内部的电流过大问题,因此起到了对管子的保护,我们把这个电阻称为限流电阻。与管子并联的RL是负载电阻,用RL来替代负载的电阻大小,这样便于电路分析,需要注意的是稳压二极管只适用于小负载的场合,如果负载过大建议使用线性稳压集成IC(78XX / 79XX.)
2023-08-17 22:45:053