bp神经网络

阅读 / 问答 / 标签

RBF预测和bp神经网络预测谁强?

对于同时间段的数据预测未来的同时间段的数据,我认为可以用anfis 自适应神经网络函数来预测比较合理。例如,用电问题。用数日的同时间段的用电量,预测某日的同时间段的用电量。

ga-bp神经网络预测效果不好

。1. 根据你的预测对象的特性选取合适的输入层、输出层和隐层神经元数目。2. 选择合适的神经网络训练函数。3. 保证足够的训练样本数据,并且确保这个训练样本数据有足够的精度能够反映需要预测的对象的特性。谷歌人工智能写作项目:小发猫2、BP神经网络的精度低,怎么解决?建议用RBP神经网络进行训练如何提高bp神经网络的准确率。使用方法:x=-1:0.1:5;y=-1:0.1:5;z=x.^2.*y-0.1*x+2*y;net=newrbe([x;y],z); %创建一个RBF网络t=sim(net,[x;y]);%仿真未经训练的网络netplot3(x,y,z,"rd");hold onplot3(x,y,t,"b-");3、怎么才能使bp神经网络预测的结果更准确这个问的太哪个了吧,神经网络预测一般也就是对已有数据进行非线性拟合而已,简单的说,他只是一个拟合方法,只是与传统的拟合方法相比有一些优点。用神经网络预测也不会是一定很非常准确的。4、采用什么手段使神经网络预测更加准确优化神经网络结构。如BP神经网络改变隐层神经元数量、训练算法等;使用其他神经网络。如Elman神经网络考虑了前一时刻的输出,比较适合用于预测,预测效果往往更好。RBF神经网络的训练速度很快,训练效果也很好。改进的神经网络算法。例如BP神经网络增加动量项、自适应学习率等措施,防止陷入局部极小影响预测效果。组合神经网络。取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较灵活,可以和许多算法融合。全面考虑影响因素。未来的预测值受许多因素影响,所以应该在基于历史数据的基础上,充分考虑各种因素,考虑得越周全,预知信息越多,预测效果一般更好。5、优化初始权值及阈值为什么可以提高bp神经网络识别率bp的学习过程就是不断的网络训练工程,而训练的就是利用权值和阈值的激活函数计算输出的。权值与输入相乘,经过激活函数计算出的值与阈值比较,达到阈值的可输出,不满足的则返回继续训练。因此可以提高识别率。6、bp神经网络遇到新的数据,就预测不准,怎么弄?预测数据的话BP不是特别好用,最好用Elman反馈神经网络或者RNN循环神经网络,这些有记忆功能的网络比较好用。bp主要和你选择的隐含层数,和误差范围,学习率有关。你可以调节相关参数来改变神经网络,获得更精确的结果。7、BP神经网络误差如何提高你好,误差大,第一步需要尝试的是做归一化处理。有线性归一化,有对数函数归一化等等,这个你可以去网上搜索数据归一化方法,有相关的代码,应该。第二部需要做出的改动是隐层节点数量,如果节点数量太多,那么结果的随机性就会很大,如果太少,那么复杂数据的规律计算不出来。多少层节点最合适,这个目前除了一个一个试没有更好的办法。但是你会发现每一个相同的结构计算出的结果却不尽相同,这个时候就需要考虑后续的问题。第三步尝试,变换transfer function。麻烦你查查字典,因为我不是用中文学的神经网络。我姑且翻译成传输函数。传输函数在matlab中内建了3中 pureline logsig tansig。分别有不同的应用范围。因为没看到你的数据,我也不清楚具体应该推荐你用哪一种。不过你可以去网上搜索一下三种传输函数的特点。如果有用请给“采纳”谢谢。8、BP神经网络仿真时仿真结果准确率低。请问高手如何处理 5是预测低还是拟合低?如果是预测那没办法的,如果是拟合低,可以重新选择网络种类或者网络结构

rbf神经网络和bp神经网络有什么区别

bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。用途不同前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。BP神经网络是ANN人工神经中的一种,常用的神经网络有BP、RBF、SOM、Hopfield等等,其功能不经相同,可总体来说ANN的主要功能是模式识别和分类训练。最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。

rbf神经网络和bp神经网络有什么区别

结构不一样。

RBF神经网络和BP神经网络,matlab代码有什么区别?

函数不同。一个用newff一个用rbf。

rbf神经网络和bp神经网络有什么区别

bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。用途不同前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。BP神经网络是ANN人工神经中的一种,常用的神经网络有BP、RBF、SOM、Hopfield等等,其功能不经相同,可总体来说ANN的主要功能是模式识别和分类训练。最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。

RBF神经网络和BP神经网络有什么区别

1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP网络的结构要比RBF 网络简单。2. RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。但是在训练样本增多时, RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。3. RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。4. 他们的结构是完全不一样的。BP是通过不断的调整神经元的权值来逼近最小误差的。其方法一般是梯度下降。RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。5. bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。

前馈神经网络、BP神经网络、卷积神经网络的区别与联系

区别:一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。二、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。三、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。2、BP神经网络:1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;2)模式识别:用一个待定的输出向量将它与输入向量联系起来;3)分类:把输入向量所定义的合适方式进行分类;4)数据压缩:减少输出向量维数以便于传输或存储。3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。扩展资料人工神经网络的优点:1、具有自学习功能。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。2、具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。3、具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可很快找到优化解。参考资料来源:百度百科-前馈神经网络参考资料来源:百度百科-BP神经网络参考资料来源:百度百科-卷积神经网络参考资料来源:百度百科-人工神经网络

bp神经网络和som神经网络的区别

结构层不一样。1、SOM是一种比较简单的神经网络,只有一层神经网络。2、BP网络具有三层结构。

c语言实现*/遗传算法改进BP神经网络原理和算法实现怎么弄

你提供的代码是一个基本的BP神经网络训练过程。一般都是用GA训练,之后再用改进动量法继续训练,直至最后达到目标。遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

BP神经网络 VB

我有VB的 不过是汽车方面

前馈神经网络、BP神经网络、卷积神经网络的区别与联系

前馈神经网络就是一层的节点只有前面一层作为输入,并输出到后面一层,自身之间、与其它层之间都没有联系,由于数据是一层层向前传播的,因此称为前馈网络。BP网络是最常见的一种前馈网络,BP体现在运作机制上,数据输入后,一层层向前传播,然后计算损失函数,得到损失函数的残差,然后把残差向后一层层传播。卷积神经网络是根据人的视觉特性,认为视觉都是从局部到全局认知的,因此不全部采用全连接(一般只有1-2个全连接层,甚至最近的研究建议取消CNN的全连接层),而是采用一个滑动窗口只处理一个局部,这种操作像一个滤波器,这个操作称为卷积操作(不是信号处理那个卷积操作,当然卷积也可以),这种网络就称为卷积神经网络。目前流行的大部分网络就是前馈网络和递归网络,这两种网络一般都是BP网络;深度网络一般采用卷积操作,因此也属于卷积神经网络。在出现深度学习之前的那些网络,基本都是全连接的,则不属于卷积网络的范围,但大部分是前馈网络和BP网络。

[基于BP神经网络的高校财务工作绩效评价研究]神经网络算法

  【摘 要】 文章从高校财务工作绩效的内涵出发,构建了高校财务工作绩效评价指标体系,并运用BP神经网络的方法,对江苏省所属10所高校财务工作的实际效果进行了实证分析,发现了一些共性、根本性问题,提出了相关对策建议。   【关键词】 高校; 财务工作绩效; BP神经网络   财务工作绩效是衡量一所高校内部工作绩效的重要尺度,也是决定一所高校教育事业能否持续健康发展的标志。客观、科学地评价一所高校的财务工作绩效,对于促进高校引入效益概念,合理配置教育资源,提高资源利用效率,实现学校长期可持续发展具有十分重要的意义。   一、高校财务工作绩效内涵   “绩效”(performance)一词源自管理学,有业绩、成果等方面的丰富内涵。从经济管理活动的角度来看,绩效是一个多维概念,包括组织或者团体绩效、员工个人绩效两个方面,是指一个组织、团体或者个人在一定时期内为达到某个目标或完成某项任务所进行的一种投入产出活动,它强调活动的结果和成效。高校作为一个非营利性机构,高校财务工作绩效显然是一种组织层面的绩效,它是运用“绩效”来衡量高校财务活动所取得的业绩和成果,反映学校在一定时期内的财务工作效果、财务工作效率和财务工作效益,是高校经济效益和社会效益的统一。其中财务工作效果是指高校各项财务活动所取的最具正面影响的成果数量和质量的总和,如教学成果、科研成果等;财务工作效率是指高校投入与产出之间的比例,如资产负债率、师生比等;财务工作效益反映高校各种直接的经济效益与社会效益的实现情况,如毕业生就业率、校办产业经济效益等。   二、高校财务工作绩效评价指标体系构建   高校财务工作绩效评价是指以特定的评价指标体系为基础,运用科学的评价方法,对照统一、合理的评价标准,对高校财务工作的行为过程及结果进行客观、科学的衡量、比较与评价,并将评价结果作为对高校财务工作的考核标准。从上述高校财务工作绩效的内涵和高校财务工作的特殊性与复杂性可以看出,高校财务工作绩效评价指标体系的设计是一个复杂的、多目标的决策过程,既要考虑不同规模、不同类别高校财务工作的共性特征,也要考虑个性特征。为此,我们在遵循科学性、可比性、通用性等原则的基础上,着重从高校财务工作组织绩效、财务工作效果、财务工作效率和财务工作效益等四个方面,构建一个行为与结果相结合,定量与定性相结合的高校财务工作绩效评价指标体系,如表1所示。其中:财务工作组织绩效主要反映高校为有效实施财务管理,提高财务工作效能而在财务管理体制、财务管理制度、财务队伍建设等方面的潜在资源总和;财务工作效果主要反映高校在人才培养、教学成果、科研成果等产出方面获取收益的能力;财务工作效率指高校有关教育科研资源的使用效率,综合反映了高校资金潜力的发挥程度;财务工作效益则主要指高校资金投入后预定目标所产生的经济效益与社会效益的实现程度。   三、BP人工神经网络评价模型   BP人工神经网络通常由输入层、隐含层和输出层构成,每层由若干个神经元组成。研究证明,一个三层的BP神经网络结构可以映射任意连续函数。为此,本文采用一个多输入、单输出的3层结构BP神经网络模型对高校财务管理绩效进行评价。   1.BP人工神经网络基本原理   BP人工神经网络模型通常采用误差反向传播算法,首先,当给定一个输入模式时,它从输入层节点传输到隐含层节点再传输至输出层节点,经输出层节点处理后,产生一个输出模式;如果没有得到预期的结果,则转入反向传播过程,循环往复交替训练,直到输出结果的误差减小到人们所期望的范围时,网络的学习过程就结束。此时将新样本输入到已经训练好的网络,就可以得到所需要的输出值。   2.输入层、隐含层及输出层节点数的选取   研究中把影响高校财务管理绩效的18项指标作为BP神经网络的输入向量,把高校财务管理绩效的总因子值作为输出向量,这样就确定了输入层节点数为18,输出层节点数为1。Kolmogrov理论已经证明:对于任意给定的连续函数§,U→V,U∈Vn,U∈[0,1]n,§可以精确地由一层隐含层来构建网络。在本文中,我们根据分别组建了隐含层节点数从1—35的BP网络,经过大量测算,最后根据试报效果,确定了较为理想的隐含层节点数为6。   3.三层BP神经网络学习步骤   三层前馈神经网络的学习步骤为:首先,进行归一化处理,将样本向量数据处理为(0,1)之间的数据;其次,计算隐含层和输出层各节点的输入和相应的输出,Gj=■UjiVi+Tj,Ss=∑K(mn)hn+Js;再次,计算输出层误差和隐含层误差,?啄m=(Hm-Km)(1-fs);最后,利用误差系数值对各层权值和阈值进行调整,并选用另一个学习样本向量,返回第二步,直到全局误差§小于预先设定值,则学习结束。   4.模型结构确定   根据上面的分析,本文高校财务工作绩效评价的神经网络模型设计为18-6-1;即输入层节点数为18,隐含层节点数为6,输出层节点数为1,网络层数为3。   四、高校财务工作绩效评价的实证分析   2011年上半年,我们通过发放统计报表、发放问卷等方式,对江苏省10所高校2010年度的财务工作情况进行了调查分析。此次调查共发放统计报表10份,发放教职工、学生问卷3 830份,回收率分别为100%、98%。   1.采集样本数据   限于篇幅,具体样本数据略,经归一化处理后的样本数据值如表2所示。   2.评价标准的设计   本文将评价标准集V设定为:V=[高,较高,一般,较低,低]=[0.8,0.6,   0.5,0.4,0.2]五个等级。   3.网络的训练及结果   按照选定的网络结构模型,即输入层节点数为18,隐含层节点数为6,输出层节点数为1,利用前10所高校进行训练,确定权值与阈值。训练时训练参数最高迭代次数为6 595次,预期误差为1e-4,训练函数为traincgb,网络学习率为0.068。当程序迭代0次时,误差为6.68531e-005;当程序迭代50次后,误差达到5.39561e-005;当程序迭代60次时,误差达到8.68052e-006,说明训练达到预期目标。

bp神经网络是有监督还是无监督

bp神经网络是有监督。BP神经网络是最基础的神经网络,其输出结果采用前向传播,误差采用反向(Back Propagation)传播方式进行。BP神经网络是有监督学习,不妨想象这么一个应用场景:输入数据是很多银行用户的年龄、职业、收入等,输出数据是该用户借钱后是否还贷。作为银行风控部门的负责人,你希望建立一个神经网络模型,从银行多年的用户数据中学习针对银行客户的风控模型,以此判定每个人的信用,并决定是否放贷。基本原理人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

如何用matlab构建一个三层bp神经网络模型,用于预测温度。

第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。  一种解决方法是用已有的数据训练一个神经网络用作分类器。  如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示:图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:  图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:  若用X表示输入向量,用W表示权重向量,即:X = [ x0 , x1 , x2 , ....... , xn ]   则神经元的输出可以表示为向量相乘的形式:若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。(1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。(4) S形函数 ( Sigmoid Function )  该函数的导函数:(5) 双极S形函数   该函数的导函数:  S形函数与双极S形函数的图像如下:图3. S形函数与双极S形函数图像  双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。  由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)具体http://blog.csdn.net/gongxq0124/article/details/7681000/

马尔科夫链和bp神经网络的各自原理?

马尔科夫预测模型它的前提条件是,在各个期间或者状态时,变量面临的下一个期间或者状态的转移概率都是一样的、不随时间变化的。一旦转移概率有所变化,Markov模型必须改变转移概率矩阵的参数,否则,预测的结果将会有很大的偏差。 随机过程中,

为什么说神经网络是一个非线性系统?如果BP神经网络中所有结点都为线性函数,

作为神经网络的教授和数学教师,我很高兴能够回答学生们关于神经网络的困惑,并提供一些学习上的建议。首先,让我们来谈谈为什么神经网络被称为一个非线性系统。事实上,神经网络之所以被称为非线性系统,是因为它们不像传统的线性回归或逻辑门等函数一样,只依赖于输入变量之间的线性关系。相反,它们的输出结果取决于输入变量之间的关系以及它们自身的内部结构。这种非线性性质使得神经网络能够更好地适应复杂的数据模式和任务,从而提高了它们的性能和准确性。接下来,让我们来回答一个关键的问题:如果BP神经网络中所有结点都为线性函数,那么它还是一个非线性系统吗?答案是仍然不是。虽然BP神经网络的所有结点都是线性函数,但是它们通过加权和、激活函数等方式相互作用,从而形成了一个非线性的整体结构。这意味着,即使这些结点本身是线性的,整个神经网络仍然是一个非线性系统。因此,在设计和选择神经网络时,我们需要考虑到其整体结构和非线性性质,以便获得最佳的性能和准确性。对于学习神经网络的学生来说,我有以下几点建议:首先,要理解神经网络的基本原理和概念,包括前向传播、反向传播、损失函数、权重初始化等等。其次,要选择适合自己的教材和资源进行学习,例如经典的《深度学习》、《神经网络与深度学习》等书籍或者在线课程如Coursera上的《Neural Networks and Deep Learning》课程。此外,还要多做实践和练习,例如使用现有的数据集进行分类、聚类、生成等任务,或者自己设计和实现小型的神经网络模型。最后,要积极参加讨论和交流活动,与其他学生、教师和专家分享经验和见解,从中获得更多的启发和帮助。

BP神经网络的梳理

BP神经网络被称为“深度学习之旅的开端”,是神经网络的入门算法。 各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来 [1] ,另外由于BP神经网络结构简单,算法经典, 是神经网络中应用最广泛的一种。 BP神经网络(back propagation neural network)全称是反向传播神经网络。 神经网络发展部分背景如下 [2] : 为解决非线性问题,BP神经网络应运而生。 那么什么是BP神经网络?稍微专业点的解释要怎么说呢? 很喜欢 最简单的神经网络--Bp神经网络 一文对算法原理的解释,语言活泼,案例简单,由浅入深。 文中提到所谓的 AI 技术,本质上是一种数据处理处理技术,它的强大来自于两方面:1.互联网的发展带来的海量数据信息;2.计算机深度学习算法的快速发展。AI 其实并没有什么神秘,只是在算法上更为复杂 [3] 。 我们从上面的定义出发来解释BP神经网络的原理。 BP神经网络整个网络结构包含了:一层输入层,一到多层隐藏层,一层输出层。 一般说L层神经网络,指的是有L个隐层,输入层和输出层都不计算在内的 [6] 。 BP神经网络模型训练的学习过程由信号的 正向传播 和误差的 反向传播 两个过程组成。 什么是信号的正向传播?顾名思义,就是结构图从左到右的运算过程。 我们来看看结构图中每个小圆圈是怎么运作的。我们把小圈圈叫做神经元,是组成神经网络的基本单元。 正向传播就是输入数据经过一层一层的神经元运算、输出的过程,最后一层输出值作为算法预测值y"。 前面正向传播的时候我们提到权重w、偏置b,但我们并不知道权重w、偏置b的值应该是什么。关于最优参数的求解,我们在 线性回归 、 逻辑回归 两章中有了详细说明。大致来讲就是: BP神经网络全称 back propagation neural network,back propagation反向传播是什么? 反向传播的建设本质上就是寻找最优的参数组合,和上面的流程差不多,根据算法预测值和实际值之间的损失函数L(y",y),来反方向地计算每一层的z、a、w、b的偏导数,从而更新参数。 对反向传播而言,输入的内容是预测值和实际值的误差,输出的内容是对参数的更新,方向是从右往左,一层一层的更新每一层的参数。 BP神经网络通过先正向传播,构建参数和输入值的关系,通过预测值和实际值的误差,反向传播修复权重;读入新数据再正向传播预测,再反向传播修正,...,通过多次循环达到最小损失值,此时构造的模型拥有最优的参数组合。 以一个简单的BP神经网络为例,由3个输入层,2层隐藏层,每层2个神经元,1个输出层组成。 【输入层】传入 【第一层隐藏层】 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 对于 神经元而言,传入 ,加权求和加偏置函数处理后,输出 ; 输出: 【第二层隐藏层】 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 输出: 【输出层】 对于输出层神经元而言,输入 ,加权求和加偏置激活函数处理后,输出 ,输出的是一个值 第一次运行正向传播这个流程时随用随机参数就好,通过反向传播不断优化。因此需要在一开始对 设置一个随机的初始值。 首先计算正向传播输出值 与实际值的损失 ,是一个数值。所谓反向是从右到左一步步来的,先回到 ,修正参数 。以此类推,通过对损失函数求偏导跟新参数 ,再跟新参数 。这时又回到了起点,新的数据传入又可以开始正向传播了。 keras可以快速搭建神经网络,例如以下为输入层包含7129个结点,一层隐藏层,包含128个结点,一个输出层,是二分类模型。 神经网络反向传播的优化目标为loss,可以观察到loss的值在不断的优化。 可以通过model.get_layer().get_weights()获得每一层训练后的参数结果。通过model.predict()预测新数据。 至此,BP神经网络的整个运算流程已经过了一遍。之前提到BP神经网络是为解决非线性问题应运而生的,那么为什么BP神经网络可以解决非线性问题呢? 还记得神经元里有一个激活函数的操作吗?神经网络通过激活函数的使用加入非线性因素。 通过使用非线性的激活函数可以使神经网络随意逼近复杂函数,从而使BP神经网络既可以处理线性问题,也可以处理非线性问题。 为什么激活函数的使用可以加入非线性因素 [7] ? 其实逻辑回归算法可以看作只有一个神经元的单层神经网络,只对线性可分的数据进行分类。 输入参数,加权求和,sigmoid作为激活函数计算后输出结果,模型预测值和实际值计算损失Loss,反向传播梯度下降求编导,获得最优参数。 BP神经网络是比 Logistic Regression 复杂得多的模型,它的拟合能力很强,可以处理很多 Logistic Regression处理不了的数据,但是也更容易过拟合。 具体用什么算法还是要看训练数据的情况,没有一种算法是使用所有情况的。 常见的前馈神经网络有BP网络,RBF网络等。 BP神经网络的一个主要问题是:结构不好设计。 网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。 但是BP神经网络简单、易行、计算量小、并行性强,目前仍是多层前向网络的首选算法。 [1] 深度学习开端---BP神经网络: https://blog.csdn.net/Chile_Wang/article/details/100557010 [2] BP神经网络发展历史: https://zhuanlan.zhihu.com/p/47998728 [3] 最简单的神经网络--Bp神经网络: https://blog.csdn.net/weixin_40432828/article/details/82192709 [4] 神经网络的基本概念: https://blog.csdn.net/jinyuan7708/article/details/82466653 [5] 神经网络中的 “隐藏层” 理解: https://blog.csdn.net/nanhuaibeian/article/details/100183000 [6] AI学习笔记:神经元与神经网络: https://www.jianshu.com/p/65eb2fce0e9e [7] 线性模型和非线性模型的区别: https://www.cnblogs.com/toone/p/8574294.html [8] BP神经网络是否优于logistic回归: https://www.zhihu.com/question/27823925/answer/38460833

BP神经网络的工作原理

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。

BP神经网络的原理的BP什么意思

Back PropagationBP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层(隐含层)可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。神经网络很多种,BP神经网络最常用。

BP神经网络的起源学说

人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。 若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。利用突触效能的变化来调整存贮内容人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡 (平均每小时约一千个),但不影响大脑的正常思维活动。普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。

深入浅出BP神经网络算法的原理

深入浅出BP神经网络算法的原理相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?)本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法的神经网络。BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用调整后的连接权值重新计算输出误差。直到输出的误差达到符合的要求或者迭代次数溢出设定值。说来说去,“误差”这个词说的很多嘛,说明这个算法是不是跟误差有很大的关系?没错,BP的传播对象就是“误差”,传播目的就是得到所有层的估计误差。它的学习规则是:使用最速下降法,通过反向传播(就是一层一层往前传)不断调整网络的权值和阈值,最后使全局误差系数最小。它的学习本质就是:对各连接权值的动态调整。拓扑结构如上图:输入层(input),隐藏层(hide layer),输出层(output)BP网络的优势就是能学习和储存大量的输入输出的关系,而不用事先指出这种数学关系。那么它是如何学习的?BP利用处处可导的激活函数来描述该层输入与该层输出的关系,常用S型函数δ来当作激活函数。我们现在开始有监督的BP神经网络学习算法:1、正向传播得到输出层误差e=>输入层输入样本=>各隐藏层=>输出层2、判断是否反向传播=>若输出层误差与期望不符=>反向传播3、误差反向传播=>误差在各层显示=>修正各层单元的权值,直到误差减少到可接受程度。算法阐述起来比较简单,接下来通过数学公式来认识BP的真实面目。假设我们的网络结构是一个含有N个神经元的输入层,含有P个神经元的隐层,含有Q个神经元的输出层。这些变量分别如下:认识好以上变量后,开始计算:一、用(-1,1)内的随机数初始化误差函数,并设定精度ε,最多迭代次数M二、随机选取第k个输入样本及对应的期望输出重复以下步骤至误差达到要求:三、计算隐含层各神经元的输入和输出四、计算误差函数e对输出层各神经元的偏导数,根据输出层期望输出和实际输出以及输出层输入等参数计算。五、计算误差函数对隐藏层各神经元的偏导数,根据后一层(这里即输出层)的灵敏度(稍后介绍灵敏度)δo(k),后一层连接权值w,以及该层的输入值等参数计算六、利用第四步中的偏导数来修正输出层连接权值七、利用第五步中的偏导数来修正隐藏层连接权值八、计算全局误差(m个样本,q个类别)比较具体的计算方法介绍好了,接下来用比较简洁的数学公式来大致地概括这个过程,相信看完上述的详细步骤都会有些了解和领悟。假设我们的神经网络是这样的,此时有两个隐藏层。 我们先来理解灵敏度是什么?看下面一个公式:这个公式是误差对b的一个偏导数,这个b是怎么?它是一个基,灵敏度δ就是误差对基的变化率,也就是导数。因为?u/?b=1,所以?E/?b=?E/?u=δ,也就是说bias基的灵敏度?E/?b=δ等于误差E对一个节点全部输入u的导数?E/?u。也可以认为这里的灵敏度等于误差E对该层输入的导数,注意了,这里的输入是上图U级别的输入,即已经完成层与层权值计算后的输入。每一个隐藏层第l层的灵敏度为:这里的“?”表示每个元素相乘,不懂的可与上面详细公式对比理解而输出层的灵敏度计算方法不同,为:而最后的修正权值为灵敏度乘以该层的输入值,注意了,这里的输入可是未曾乘以权值的输入,即上图的Xi级别。对于每一个权值(W)ij都有一个特定的学习率ηIj,由算法学习完成。

BP神经网络的梳理

BP神经网络被称为“深度学习之旅的开端”,是神经网络的入门算法。 各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来 [1] ,另外由于BP神经网络结构简单,算法经典, 是神经网络中应用最广泛的一种。 BP神经网络(back propagation neural network)全称是反向传播神经网络。 神经网络发展部分背景如下 [2] : 为解决非线性问题,BP神经网络应运而生。 那么什么是BP神经网络?稍微专业点的解释要怎么说呢? 很喜欢 最简单的神经网络--Bp神经网络 一文对算法原理的解释,语言活泼,案例简单,由浅入深。 文中提到所谓的 AI 技术,本质上是一种数据处理处理技术,它的强大来自于两方面:1.互联网的发展带来的海量数据信息;2.计算机深度学习算法的快速发展。AI 其实并没有什么神秘,只是在算法上更为复杂 [3] 。 我们从上面的定义出发来解释BP神经网络的原理。 BP神经网络整个网络结构包含了:一层输入层,一到多层隐藏层,一层输出层。 一般说L层神经网络,指的是有L个隐层,输入层和输出层都不计算在内的 [6] 。 BP神经网络模型训练的学习过程由信号的 正向传播 和误差的 反向传播 两个过程组成。 什么是信号的正向传播?顾名思义,就是结构图从左到右的运算过程。 我们来看看结构图中每个小圆圈是怎么运作的。我们把小圈圈叫做神经元,是组成神经网络的基本单元。 正向传播就是输入数据经过一层一层的神经元运算、输出的过程,最后一层输出值作为算法预测值y"。 前面正向传播的时候我们提到权重w、偏置b,但我们并不知道权重w、偏置b的值应该是什么。关于最优参数的求解,我们在 线性回归 、 逻辑回归 两章中有了详细说明。大致来讲就是: BP神经网络全称 back propagation neural network,back propagation反向传播是什么? 反向传播的建设本质上就是寻找最优的参数组合,和上面的流程差不多,根据算法预测值和实际值之间的损失函数L(y",y),来反方向地计算每一层的z、a、w、b的偏导数,从而更新参数。 对反向传播而言,输入的内容是预测值和实际值的误差,输出的内容是对参数的更新,方向是从右往左,一层一层的更新每一层的参数。 BP神经网络通过先正向传播,构建参数和输入值的关系,通过预测值和实际值的误差,反向传播修复权重;读入新数据再正向传播预测,再反向传播修正,...,通过多次循环达到最小损失值,此时构造的模型拥有最优的参数组合。 以一个简单的BP神经网络为例,由3个输入层,2层隐藏层,每层2个神经元,1个输出层组成。 【输入层】传入 【第一层隐藏层】 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 对于 神经元而言,传入 ,加权求和加偏置函数处理后,输出 ; 输出: 【第二层隐藏层】 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 输出: 【输出层】 对于输出层神经元而言,输入 ,加权求和加偏置激活函数处理后,输出 ,输出的是一个值 第一次运行正向传播这个流程时随用随机参数就好,通过反向传播不断优化。因此需要在一开始对 设置一个随机的初始值。 首先计算正向传播输出值 与实际值的损失 ,是一个数值。所谓反向是从右到左一步步来的,先回到 ,修正参数 。以此类推,通过对损失函数求偏导跟新参数 ,再跟新参数 。这时又回到了起点,新的数据传入又可以开始正向传播了。 keras可以快速搭建神经网络,例如以下为输入层包含7129个结点,一层隐藏层,包含128个结点,一个输出层,是二分类模型。 神经网络反向传播的优化目标为loss,可以观察到loss的值在不断的优化。 可以通过model.get_layer().get_weights()获得每一层训练后的参数结果。通过model.predict()预测新数据。 至此,BP神经网络的整个运算流程已经过了一遍。之前提到BP神经网络是为解决非线性问题应运而生的,那么为什么BP神经网络可以解决非线性问题呢? 还记得神经元里有一个激活函数的操作吗?神经网络通过激活函数的使用加入非线性因素。 通过使用非线性的激活函数可以使神经网络随意逼近复杂函数,从而使BP神经网络既可以处理线性问题,也可以处理非线性问题。 为什么激活函数的使用可以加入非线性因素 [7] ? 其实逻辑回归算法可以看作只有一个神经元的单层神经网络,只对线性可分的数据进行分类。 输入参数,加权求和,sigmoid作为激活函数计算后输出结果,模型预测值和实际值计算损失Loss,反向传播梯度下降求编导,获得最优参数。 BP神经网络是比 Logistic Regression 复杂得多的模型,它的拟合能力很强,可以处理很多 Logistic Regression处理不了的数据,但是也更容易过拟合。 具体用什么算法还是要看训练数据的情况,没有一种算法是使用所有情况的。 常见的前馈神经网络有BP网络,RBF网络等。 BP神经网络的一个主要问题是:结构不好设计。 网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。 但是BP神经网络简单、易行、计算量小、并行性强,目前仍是多层前向网络的首选算法。 [1] 深度学习开端---BP神经网络: https://blog.csdn.net/Chile_Wang/article/details/100557010 [2] BP神经网络发展历史: https://zhuanlan.zhihu.com/p/47998728 [3] 最简单的神经网络--Bp神经网络: https://blog.csdn.net/weixin_40432828/article/details/82192709 [4] 神经网络的基本概念: https://blog.csdn.net/jinyuan7708/article/details/82466653 [5] 神经网络中的 “隐藏层” 理解: https://blog.csdn.net/nanhuaibeian/article/details/100183000 [6] AI学习笔记:神经元与神经网络: https://www.jianshu.com/p/65eb2fce0e9e [7] 线性模型和非线性模型的区别: https://www.cnblogs.com/toone/p/8574294.html [8] BP神经网络是否优于logistic回归: https://www.zhihu.com/question/27823925/answer/38460833

BP神经网络原理

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:图4.1 三层BP网络结构(1)输入层输入层是网络与外部交互的接口。一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。(2)隐含层1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。(3)输出层输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):(1)首先,对各符号的形式及意义进行说明:网络输入向量Pk=(a1,a2,...,an);网络目标向量Tk=(y1,y2,...,yn);中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;中间层各单元的输出阈值θj,j=1,2,...,p;输出层各单元的输出阈值γj,j=1,2,...,p;参数k=1,2,...,m。(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。(3)随机选取一组输入和目标样本 提供给网络。(4)用输入样本 、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。基坑降水工程的环境效应与评价方法bj=f(sj) j=1,2,...,p (4.5)(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。基坑降水工程的环境效应与评价方法Ct=f(Lt) t=1,2,...,q (4.7)(6)利用网络目标向量 ,网络的实际输出Ct,计算输出层的各单元一般化误差 。基坑降水工程的环境效应与评价方法(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差 。基坑降水工程的环境效应与评价方法(8)利用输出层各单元的一般化误差 与中间层各单元的输出bj来修正连接权vjt和阈值γt。基坑降水工程的环境效应与评价方法(9)利用中间层各单元的一般化误差 ,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。基坑降水工程的环境效应与评价方法(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。(12)学习结束。可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。通常,经过训练的网络还应该进行性能测试。测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

bp神经网络原理

BP神经网络被称为“深度学习之旅的开端”,是神经网络的入门算法。各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来,另外由于BP神经网络结构简单,算法经典, 是神经网络中应用最广泛的一种。开始发展——在人工神经网络的发展历史上,感知机网络曾对人工神经网络的发展发挥了极大的作用,它的出现曾掀起了人们研究人工神经元网络的热潮。单层感知网络(M-P模型)做为最初的神经网络,具有模型清晰、结构简单、计算量小等优点。只能解决线性可分——但是,随着研究工作的深入,人们发现它还存在不足,例如无法处理非线性问题,即使计算单元的作用函数不用阀函数而用其他较复杂的非线性函数,仍然只能解决解决线性可分问题.不能实现某些基本功能,从而限制了它的应用。多层前馈网络——增强网络的分类和识别能力、解决非线性问题的唯一途径是采用多层前馈网络,即在输入层和输出层之间加上隐含层。BP神经网络登场——20世纪80年代中期,David Runelhart。Geoffrey Hinton和Ronald W-llians、DavidParker等人分别独立发现了误差反向传播算法,简称BP,系统解决了多层神经网络隐含层连接权学习问题,并在数学上给出了完整推导。人们把采用这种算法进行误差校正的多层前馈网络称为BP网。BP神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或和一些其他问题。从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。

伤寒、副伤寒流行预测模型(BP神经网络)的建立

由于目前研究的各种数学模型或多或少存在使用条件的局限性,或使用方法的复杂性等问题,预测效果均不十分理想,距离实际应用仍有较大差距。NNT是Matlab 中较为重要的一个工具箱,在实际应用中,BP 网络用的最广泛。神经网络具有综合能力强,对数据的要求不高,适时学习等突出优点,其操作简便,节省时间,网络初学者即使不了解其算法的本质,也可以直接应用功能丰富的函数来实现自己的目的。因此,易于被基层单位预防工作者掌握和应用。以下几个问题是建立理想的因素与疾病之间的神经网络模型的关键:(1)资料选取应尽可能地选取所研究地区系统连续的因素与疾病资料,最好包括有疾病高发年和疾病低发年的数据。在收集影响因素时,要抓住主要影响伤寒、副伤寒的发病因素。(2)疾病发病率分级神经网络预测法是按发病率高低来进行预测,在定义发病率等级时,要结合专业知识及当地情况而定,并根据网络学习训练效果而适时调整,以使网络学习训练达到最佳效果。(3)资料处理问题在实践中发现,资料的特征往往很大程度地影响网络学习和训练的稳定性,因此,数据的应用、纳入、排出问题有待于进一步研究。6.3.1 人工神经网络的基本原理人工神经网络(ANN)是近年来发展起来的十分热门的交叉学科,它涉及生物、电子、计算机、数学和物理等学科,有着广泛的应用领域。人工神经网络是一种自适应的高度非线性动力系统,在网络计算的基础上,经过多次重复组合,能够完成多维空间的映射任务。神经网络通过内部连接的自组织结构,具有对数据的高度自适应能力,由计算机直接从实例中学习获取知识,探求解决问题的方法,自动建立起复杂系统的控制规律及其认知模型。人工神经网络就其结构而言,一般包括输入层、隐含层和输出层,不同的神经网络可以有不同的隐含层数,但他们都只有一层输入和一层输出。神经网络的各层又由不同数目的神经元组成,各层神经元数目随解决问题的不同而有不同的神经元个数。6.3.2 BP神经网络模型BP网络是在1985年由PDP小组提出的反向传播算法的基础上发展起来的,是一种多层次反馈型网络(图6.17),它在输入和输出之间采用多层映射方式,网络按层排列,只有相邻层的节点直接相互连接,传递之间信息。在正向传播中,输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态。如果输出层不能得到期望的输出结果,则转入反向传播,将误差信号沿原来的连同通路返回,通过修改各层神经元的权值,使误差信号最小。BP网络的学习算法步骤如下(图6.18):图6.17 BP神经网络示意图图6.18 BP算法流程图第一步:设置初始参数ω和θ,(ω为初始权重,θ为临界值,均随机设为较小的数)。第二步:将已知的样本加到网络上,利用下式可算出他们的输出值yi,其值为岩溶地区地下水与环境的特殊性研究式中:xi为该节点的输入;ωij为从I到j的联接权;θj为临界值;yj为实际算出的输出数据。第三步:将已知输出数据与上面算出的输出数据之差(dj-yj)调整权系数ω,调整量为ΔWij=ηδjxj式中:η为比例系数;xj为在隐节点为网络输入,在输出点则为下层(隐)节点的输出(j=1,2…,n);dj为已知的输出数据(学习样本训练数据);δj为一个与输出偏差相关的值,对于输出节点来说有δj=ηj(1-yj)(dj-yj)对于隐节点来说,由于它的输出无法进行比较,所以经过反向逐层计算有岩溶地区地下水与环境的特殊性研究其中k指要把上层(输出层)节点取遍。误差δj是从输出层反向逐层计算的。各神经元的权值调整后为ωij(t)=ωij(t-1)+Vωij式中:t为学习次数。这个算法是一个迭代过程,每一轮将各W值调整一遍,这样一直迭代下去,知道输出误差小于某一允许值为止,这样一个好的网络就训练成功了,BP算法从本质上讲是把一组样本的输入输出问题变为一个非线性优化问题,它使用了优化技术中最普遍的一种梯度下降算法,用迭代运算求解权值相当于学习记忆问题。6.3.3 BP 神经网络模型在伤寒、副伤寒流行与传播预测中的应用伤寒、副伤寒的传播与流行同环境之间有着一定的联系。根据桂林市1990年以来乡镇为单位的伤寒、副伤寒疫情资料,伤寒、副伤寒疫源地资料,结合现有资源与环境背景资料(桂林市行政区划、土壤、气候等)和社会经济资料(经济、人口、生活习惯等统计资料)建立人工神经网络数学模型,来逼近这种规律。6.3.3.1 模型建立(1)神经网络的BP算法BP网络是一种前馈型网络,由1个输入层、若干隐含层和1个输出层构成。如果输入层、隐含层和输出层的单元个数分别为n,q1,q2,m,则该三层网络网络可表示为BP(n,q1,q2,m),利用该网络可实现n维输入向量Xn=(X1,X2,…,Xn)T到m维输出向量Ym=(Y1,Y2,…,Ym)T的非线性映射。输入层和输出层的单元数n,m根据具体问题确定。(2)样本的选取将模型的输入变量设计为平均温度、平均降雨量、岩石性质、岩溶发育、地下水类型、饮用水类型、正规自来水供应比例、集中供水比例8个输入因子(表6.29),输出单元为伤寒副伤寒的发病率等级,共一个输出单元。其中q1,q2的值根据训练结果进行选择。表6.29 桂林市伤寒副伤寒影响因素量化表通过分析,选取在伤寒副伤寒有代表性的县镇在1994~2001年的环境参评因子作为样本进行训练。利用聚类分析法对疫情进行聚类分级(Ⅰ、Ⅱ、Ⅲ、Ⅳ),伤寒副伤寒发病最高级为Ⅳ(BP网络中输出定为4),次之的为Ⅲ(BP网络中输出定为3),以此类推,最低为Ⅰ(BP网络中输出定为1)(3)数据的归一化处理为使网络在训练过程中易于收敛,我们对输入数据进行了归一化处理,并将输入的原始数据都化为0~1之间的数。如将平均降雨量的数据乘以0.0001;将平均气温的数据乘以0.01;其他输入数据也按类似的方法进行归一化处理。(4)模型的算法过程假设共有P个训练样本,输入的第p个(p=1,2,…,P)训练样本信息首先向前传播到隐含单元上。经过激活函数f(u)的作用得到隐含层1的输出信息:岩溶地区地下水与环境的特殊性研究经过激活函数f(u)的作用得到隐含层2的输出信息:岩溶地区地下水与环境的特殊性研究激活函数f(u)我们这里采用Sigmoid型,即f(u)=1/[1+exp(-u)](6.5)隐含层的输出信息传到输出层,可得到最终输出结果为岩溶地区地下水与环境的特殊性研究以上过程为网络学习的信息正向传播过程。另一个过程为误差反向传播过程。如果网络输出与期望输出间存在误差,则将误差反向传播,利用下式来调节网络权重和阈值:岩溶地区地下水与环境的特殊性研究式中:Δω(t)为t次训练时权重和阈值的修正;η称为学习速率,0<η<1;E为误差平方和。岩溶地区地下水与环境的特殊性研究反复运用以上两个过程,直至网络输出与期望输出间的误差满足一定的要求。该模型算法的缺点:1)需要较长的训练时间。由于一些复杂的问题,BP算法可能要进行几小时甚至更长的时间的训练,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。2)完全不能训练。主要表现在网络出现的麻痹现象上,在网络的训练过程中,当其权值调的过大,可能使得所有的或大部分神经元的加权总和n偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导数f′(n)非常小,从而使得对网络权值的调节过程几乎停顿下来。3)局部极小值。BP算法可以使网络权值收敛到一个解,但它并不能保证所求为误差超平面的全局最小解,很可能是一个局部极小解。这是因为BP算法采用的是梯度下降法,训练从某一起点沿误差函数的斜面逐渐达到误差的最小值。考虑到以上算法的缺点,对模型进行了两方面的改进:(1)附加动量法为了避免陷入局部极小值,对模型进行了改进,应用了附加动量法。附加动量法在使网络修正及其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响,其作用如同一个低通滤波器,它允许网络忽略网络上的微小变化特性。在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用则有可能滑过这些极小值。该方法是在反向传播法的基础上在每一个权值的变化上加上一项正比于前次权值变化量的值,并根据反向传播法来产生心的权值变化。促使权值的调节向着误差曲面底部的平均方向变化,从而防止了如Δω(t)=0的出现,有助于使网络从误差曲面的局部极小值中跳出。这种方法主要是把式(6.7)改进为岩溶地区地下水与环境的特殊性研究式中:A为训练次数;a为动量因子,一般取0.95左右。训练中对采用动量法的判断条件为岩溶地区地下水与环境的特殊性研究(2)自适应学习速率对于一个特定的问题,要选择适当的学习速率不是一件容易的事情。通常是凭经验或实验获取,但即使这样,对训练开始初期功效较好的学习速率,不见得对后来的训练合适。所以,为了尽量缩短网络所需的训练时间,采用了学习速率随着训练变化的方法来找到相对于每一时刻来说较差的学习速率。下式给出了一种自适应学习速率的调整公式:岩溶地区地下水与环境的特殊性研究通过以上两个方面的改进,训练了一个比较理想的网络,将动量法和自适应学习速率结合起来,效果要比单独使用要好得多。6.3.3.2 模型的求解与预测采用包含了2个隐含层的神经网络BP(4,q1,q2,1),隐含层单元数q1,q2与所研究的具体问题有关,目前尚无统一的确定方法,通常根据网络训练情况采用试错法确定。在满足一定的精度要求下一般认小的数值,以改善网络的概括推论能力。在训练中网络的收敛采用输出值Ykp与实测值tp的误差平方和进行控制:岩溶地区地下水与环境的特殊性研究1)将附加动量法和自适应学习速率结合应用,分析桂林市36个乡镇地质条件各因素对伤寒副伤寒发病等级的影响。因此训练样本为36个,第一个隐含层有19个神经元,第二个隐含层有11个神经元,学习速率为0.001。A.程序(略)。B.网络训练。在命令窗口执行运行命令,网络开始学习和训练,其学习和训练过程如下(图6.19)。图6.19 神经网络训练过程图C.模型预测。a.输入未参与训练的乡镇(洞井乡、两水乡、延东乡、四塘乡、严关镇、灵田乡)地质条件数据。b.预测。程序运行后网络输出预测值a3,与已知的实际值进行比较,其预测结果整理后见(表6.30)。经计算,对6个乡镇伤寒副伤寒发病等级的预测符合率为83.3%。表6.30 神经网络模型预测结果与实际结果比较c.地质条件改进方案。在影响疾病发生的地质条件中,大部分地质条件是不会变化的,而改变发病地区的饮用水类型是可以人为地通过改良措施加以实施的一个因素。因此,以灵田乡为例对发病率较高的乡镇进行分析,改变其饮用水类型,来看发病等级的变化情况。表6.31显示,在其他地质条件因素不变的情况下,改变当地的地下水类型(从原来的岩溶水类型改变成基岩裂隙水)则将发病等级从原来的最高级4级,下降为较低的2级,效果是十分明显的。因此,今后在进行伤寒副伤寒疾病防治的时候,可以通过改变高发区饮用水类型来客观上减少疫情的发生。表6.31 灵田乡改变饮用水类型前后的预测结果2)选取桂林地区1994~2000年月平均降雨量、月平均温度作为输入数据矩阵,进行样本训练,设定不同的隐含层单元数,对各月份的数据进行BP网络训练。在隐含层单元数q1=13,q2=9,经过46383次数的训练,误差达到精度要求,学习速率0.02。A.附加动量法程序(略)。B.网络训练。在命令窗口执行运行命令,网络开始学习和训练,其学习和训练过程如下(图6.20)。C.模型预测。a.输入桂林市2001年1~12月桂林市各月份的平均气温和平均降雨量。预测程度(略)。b.预测。程序运行后网络输出预测值a2,与已知的实际值进行比较,其预测结果整理后见(表6.32)。经计算,对2001年1~12月伤寒副伤寒发病等级进行预测,12个预测结果中,有9个符合,符合率为75%。图6.20 神经网络训练过程图表6.32 神经网络模型预测结果与实际值比较6.3.3.3 模型的评价本研究采用BP神经网络对伤寒、副伤寒发病率等级进行定量预测,一方面引用数量化理论对不确定因素进行量化处理;另一方面利用神经网络优点,充分考虑各影响因素与发病率之间的非线性映射。实际应用表明,神经网络定量预测伤寒、副伤寒发病率是理想的。其主要优点有:1)避免了模糊或不确定因素的分析工作和具体数学模型的建立工作。2)完成了输入和输出之间复杂的非线性映射关系。3)采用自适应的信息处理方式,有效减少人为的主观臆断性。虽然如此,但仍存在以下缺点:1)学习算法的收敛速度慢,通常需要上千次或更多,训练时间长。2)从数学上看,BP算法有可能存在局部极小问题。本模型具有广泛的应用范围,可以应用在很多领域。从上面的结果可以看出,实际和网络学习数据总体较为接近,演化趋势也基本一致。说明选定的气象因子、地质条件因素为神经单元获得的伤寒、副伤寒发病等级与实际等级比较接近,从而证明伤寒、副伤寒流行与地理因素的确存在较密切的相关性。

有哪位大神知道BP神经网络变学习率学习算法在Matlab中怎么实现啊?

额。。。一种启发式的改进就是,为学习速率选用自适应值,它依赖于连续迭代步骤中的误差函数值。 自适应调整学习速率的梯度下降算法,在训练的过程中,力图使算法稳定,同时又使学习的步长尽量地大,学习速率则是根据局部误差曲面作出相应的调整。当误差以减小的方式趋于目标时,说明修正方向正确,于是步长(学习速率)增加,因此学习速率乘以增量因子Ir_inc,使学习速率增加;而当误差增加超过设定的值C倍时,说明修正过头,应减小步长,因此学习速率乘以减量因子Ir_dec,使学习速率减少.其他情况学习速率则不变。Matlab 里有对应的变学习速率的函数。bpnet=newff(x,[60,4],{"logsig","logsig"},"traingda"); %"traingda"表示自适应学习速率调整方法bpnet.trainParam.show=50;bpnet.trainParam.lr=0.01; %预设值的学习速率bpnet.trainParam.epochs=3000;bpnet.trainParam.goal=0.247;bpnet.trainParam.Ir_inc=1.05; %增加的学习速率倍数,默认为1.05 bpnet.trainParam.Ir_dec=0.7; %减少的学习速率倍数,默认为0.7bpnet.trainParam.max_perf_inc=1.04; %误差函数增加为迭代前的1.04时,减少学习速率。默认为1.04[bpnet]=train(bpnet,p,t);save bpnet;%%%%%%%%%%%%%%%%%%%%

bp神经网络在matlab中的预测结果是直线??

缺少归一化和反归一化过程,训练失败。应将[2.5,3.0]范围内的数据归一化。在最新版的matlab里面共有两个归一化函数:mapminmax()和mapstd(),其中第一个函数是归一化到[0 1]范围,后一个为统计归一化。各自的归一化格式如下:[pn,ps]=mapminmax(P)或=mapstd(P) %P是输入向量[tn, ts]=mapminmax(t)或=mapstd(t) %t 是目标向量在训练完后,对测试样本归一化格式为:pnt=mapminmax("apply",pt,ps)或=mapstd("apply",pt,ps)仿真后反归一化格式则为:out=mapminmax("reverse",An,ts)或=mapstd("reverse",An,ts);其中An为sim函数的输出

用Matlab算BP神经网络的具体算法?

梯度下降法

bp神经网络只有一类样本怎么分类

没法分,考虑用一类支持向量机(One-Class SVM)吧

matlab BP神经网络出错 newff参数 隐含层 怎么确定

隐含层节点个数不能取的太小,否则会导致网络根本无法训练,隐含层神经元最小个数大体估算为:根号(输入神经元个数+输出神元个数) ,双隐含层就是有两个隐含层,比如你的网络参数写为:[26,26,1],这样网络就是双隐含层,

matlab实现BP神经网络,对风电功率进行预测。输入层的影响因子是风速、风向正弦、风向余弦。求代码!!!

交流一下吧 我也做风电功率预测

运行MATLAB BP神经网络后,得到了误差曲线(mse),图例里有四个量,其中,Validation代表啥意思啊?

和楼主遇到了同样的问题,这四条线都应该如何解释?

BP神经网络的mu参数是学习率么?训练结果val fail中的validation check=6什么意思

大概意思是给神经网络的权重再加一个调制,这样能避免神经网络收敛到局部最小值,MU的范围通常是0到1.Mu stands for momentum constant or momentum parameter which is included in weight update expression to avoid the problem of local minimum. Sometimes network may get stuck to local minimum and convergence does not occur. Range of mu is between 0 and 1.

bp神经网络中的gradient是什么意思

若果对你有帮助,请点赞。 神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。现在很多算法在寻解过程,都会借助梯度来确定目标函数的下降方向,梯度可以理解为单变量时的导数,梯度下降的方法就是目标函数的下降方向。你可以到《神经网络之家》nnetinfo中查看《梯度下降法》一文来理解,另外还有《Levenberg-Marquardt法理论基础》方法,也讲解了在数据不太大时,一种更优于梯度下降法的寻解方法若果对你有帮助,请点赞。 祝学习愉快

BP神经网络的MATLAB训练Gradient是什么意思?Performance是什么意思?,大神能解释一下吗?谢谢了

Gradient是梯度的意思,BP神经网络训练的时候涉及到梯度下降法,表示为梯度下降的程度与训练过程迭代次数(步长)的关系。Performance是神经网络传递误差大小的意思,表示为均方差与训练过程迭代次数(步长)的关系。

bp神经网络中的gradient是什么意思

gradient是梯度的意思,在解线性方程组中,有很多迭代算法,如最速梯度下降法,F-R共轭梯度下降法,高斯-牛顿法,SOR迭代法很多很多,不同算法的收敛性和迭代次数都有不同。

1.如何用MATLAB神经网络工具箱创建BP神经网络模型?具体有哪些步骤?请高手举实例详细解释下? 2.如何把输

%人脸识别模型,脸部模型自己找吧。function mytest()clc;images=[ ]; M_train=3;%表示人脸N_train=5;%表示方向 sample=[]; pixel_value=[];sample_number=0; for j=1:N_train for i=1:M_train str=strcat("Images",num2str(i),"_",num2str(j),".bmp"); %读取图像,连接字符串形成图像的文件名。 img= imread(str); [rows cols]= size(img);%获得图像的行和列值。 img_edge=edge(img,"Sobel");%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好 sub_rows=floor(rows/6);%最接近的最小整数,分成6行 sub_cols=floor(cols/8);%最接近的最小整数,分成8列 sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度 sample_number=sample_number+1; for subblock_i=1:8 %因为这还在i,j的循环中,所以不可以用i block_num=subblock_i; pixel_value(sample_number,block_num)=0; for ii=sub_rows:(2*sub_rows) for jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_cols pixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj); end end end end end %将特征值转换为小于1的值 max_pixel_value=max(pixel_value); max_pixel_value_1=max(max_pixel_value); for i=1:3 mid_value=10^i; if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)<10)) multiple_num=1/mid_value; pixel_value=pixel_value*multiple_num; break; end end % T 为目标矢量 t=zeros(3,sample_number); %因为有五类,所以至少用3个数表示,5介于2的2次方和2的3次方之间 for i=1:sample_number % if((mod(i,5)==1)||(mod(i,5)==4)||(mod(i,5)==0)) if(i<=3)||((i>9)&&(i<=12))||((i>12)&&(i<=15)) t(1,i)=1; end %if((mod(i,5)==2)||(mod(i,5)==4)) if((i>3)&&(i<=6))||((i>9)&&(i<=12)) t(2,i)=1; end %if((mod(i,5)==3)||(mod(i,5)==0)) if((i>6)&&(i<=9))||((i>12)&&(i<=15)) t(3,i)=1; end end % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P 为输入矢量 P=pixel_value"% T 为目标矢量 T=tsize(P)size(T)% size(P)% size(T)% 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,3],{"tansig","purelin"},"traingdm")% 当前输入层权值和阈值 inputWeights=net_1.IW{1,1} inputbias=net_1.b{1} % 当前网络层权值和阈值 layerWeights=net_1.LW{2,1} layerbias=net_1.b{2} % 设置训练参数net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3; % 调用 TRAINGDM 算法训练 BP 网络[net_1,tr]=train(net_1,P,T); % 对 BP 网络进行仿真A = sim(net_1,P); % 计算仿真误差 E = T - A; MSE=mse(E) x=[0.14 0 1 1 0 1 1 1.2]";sim(net_1,x)

训练BP神经网络对函数进行拟合

可以发下作业文件吗,谢谢

请帮忙解释下matlab做bp神经网络regression的四个图代表啥意思

你好,很高兴为你解答。表示网络训练预测时,用了简单的回归分析,一部分数据用来训练的情况,一部分数据用来确认训练情况,剩下的数据用来测试,以及最后整体状况。~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~O(∩_∩)O,记得好评和采纳,互相帮助,谢谢。

请帮忙解释下matlab做bp神经网络regression的四个图代表啥意思

你好,很高兴为你解答。表示网络训练预测时,用了简单的回归分析,一部分数据用来训练的情况,一部分数据用来确认训练情况,剩下的数据用来测试,以及最后整体状况。~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~O(∩_∩)O,记得好评和采纳,互相帮助,谢谢。

BP神经网络regression为什么只有一个图

表示网络训练预测时,用了简单的回归分析,一部分数据用来训练的情况,一部分数据用来确认训练情况,剩下的数据用来测试,以及最后整体状况。

BP神经网络的Regression图像是这样的,正常吗?

表示网络训练预测时,用了简单的回归分析,一部分数据用来训练的情况,一部分数据用来确认训练情况,剩下的数据用来测试,以及最后整体状况。

请帮忙解释下matlab做bp神经网络regression的四个图代表啥意思

表示网络训练预测时,用了简单的回归分析,一部分数据用来训练的情况,一部分数据用来确认训练情况,剩下的数据用来测试,以及最后整体状况。