熵增加原理

阅读 / 问答 / 标签

熵增加原理就是隔离体系的熵永远增加么

在孤立系统中,实际发生的过程总使整个系统的熵值增大,这就是热力学第二定律

引入熵的概念后,人们也把热力学第二定律叫做熵增加原理,...

【答案】在任何自然过程中,一个孤立系统的总熵不会减小【答案解析】试题分析:根据熵增加原理的内容回答.在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行.解:熵增加原理:在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行,这就是熵增加原理故答案为:在任何自然过程中,一个孤立系统的总熵不会减小.点评:理解熵增加原理:利用绝热过程中的熵是不变还是增加来判断过程是可逆还是不可逆的基本原理.在一个孤立的系统,分子只能向无序方向发展.

试用熵增加原理解释热现象不可逆

熵熵增加原理:系统经过一个绝热过程后,熵永不减小(如孤立系、宇宙)宇宙总熵是在无情地朝着它的极大值增长(所有的能量转化都是不可逆的)玻尔兹曼把熵和概率连在一起,成为世上第一个给一项基本物理定律一个统计性解释的人信号中的信息量越大,它的熵就越小,熵和信息之间极为相似在可逆过程中熵的改变是零,而在不可逆过程中熵总是增加的。熵是物理几率的量度。 -- 玻耳斯曼没有人真正了解熵到底是什么东西。 --- 纽曼熵在绝对零度时消失? ◇ 在可逆过程中熵的改变是零,而在不可逆的过程的过程中熵总是增加的,熵的增加正好与时间的前进一致。 ◇ 第二定律中最令人困惑的方面即所有在我们四周发现的明显的低熵,应归结于这样一个事实:即通过弥散气体引力收缩成恒星的过程中可得到大量的低熵。弥散气体:主要是氢、质量占23%的氦及其它物质。 ◇ 热量是能量的最无序的形式,也就是说,它是能量的最高熵形式。 ◇ 绿色植物吸收低熵形式的能量(相对少量的可见光)而重新把它以高熵形式(相对多量的红外光子)辐射,为我们提供了所需要的分解的氧和碳,以这种方式把低熵喂给我们。人:低熵形式的能量(食物、氧气);高熵形式(热、二氧化碳、排泄物) 援引自:http://ranshiyong.bokee.com/3017137.html

热力学中的熵是什么?它与能量和热量的关系是怎样的?熵增加原理如何解释自然界的不可逆过程?

热力学中的熵(Entropy)是描述系统无序程度或混乱程度的物理量。它是热力学第二定律的核心概念之一,通常用符号"S"表示。熵与能量和热量的关系可以通过以下方式来理解:1. 定义:熵可以通过统计物理学的观点解释,它是系统的微观状态数目的对数函数。简单来说,熵衡量了系统中微观粒子的排列方式的多样性。2. 热力学第二定律:根据热力学第二定律,孤立系统的熵在一个不可逆过程中总是增加的。换句话说,自然界中的不可逆过程总是伴随着熵的增加。3. 能量和热量的关系:能量是系统的一个守恒量,它可以从一个形式转化为另一个形式,但总量保持不变。而熵并不是一个守恒量,它可以增加或减少。当系统吸收热量时,熵会增加。熵增加的过程表示系统的无序程度增加,因为能量转化为了不可利用的形式。例如,考虑一个热水壶中的水,初始状态下水和壶的温度相同,没有热量流动。当我们将热源放在壶底,热量流向水时,水的温度升高,系统的能量增加,但熵也增加,因为热量的流动增加了水分子的无序程度。熵增加原理解释了自然界中的不可逆过程。不可逆过程是指在一定条件下,无法通过微观过程逆转的过程。根据熵增加原理,不可逆过程中系统的熵总是增加的,这意味着系统的无序程度增加。例如,将两个不同温度的物体接触在一起,热量会从高温物体传递到低温物体,最终达到热平衡。这个过程是可逆的,因为在理论上可以通过微观过程逆转热量流动的方向。然而,当我们观察到热量自发地从低温物体传递到高温物体时,这个过程就是不可逆的,因为熵增加了。熵增加原理解释了为什么不可逆过程在自然界中是普遍存在的现象。当熵增加时,系统的有序性或可利用能量减少,而无序性或不可利用能量增加。这可以通过以下例子来理解:考虑一个封闭的房间,其中有一杯水和一小块冰。初始状态下,冰块处于完整且有序的结晶状态,而水则是无序的液体状态。系统的总能量保持不变。当冰块融化成水时,系统的熵增加了。水的分子被解离并在整个空间中随机分布,这增加了系统的无序性。虽然系统的总能量没有改变,但有序的冰变成了无序的水,所以熵增加了。熵增加原理说明了为什么自然界中许多过程都是不可逆的。在不可逆过程中,系统经历的变化导致了熵的增加。例如,热量的传导从高温物体到低温物体,使得高温物体的分子运动速度减慢,而低温物体的分子运动速度增加。这导致了整个系统的无序程度增加,即熵增加。根据熵增加原理,自然界中的一些常见不可逆过程包括:热量传导、摩擦产生的热量、气体扩散、能量转化为热能的过程等。这些过程都与熵的增加相联系,系统的有序性减少,无序性增加。需要注意的是,虽然熵增加是不可逆过程的普遍特征,但并不排除偶然性的熵减少事件。在一个系统中,熵减少的概率非常低,但并非完全不可能。然而,从宏观的角度来看,熵增加是不可逆过程的主导趋势。

熵增加原理解题

原来两物体有熵S=2CInTi后来做功W,应有2CTi+W=CT2+CT1后来的熵是S"=CInT1+CInT2由熵增加原理,有S"大于等于S临界是S"=S所以T1*T2=Ti^2将Ti代掉,能得到W的表达式。这个问题我很久没研究了,你算算,不知对不对,思想应该没错。

熵增加原理能说明熵不变吗

你好!绝热可逆过程的熵不变。例:卡诺循环中的绝热可逆膨胀和绝热可逆压缩过程体系的熵不变。

熵增加原理中,为什么绝热不可逆过程熵增加

可逆绝热的熵为什么不等于不可逆绝热的熵在经典热力学中,可用增量定义为ds=(dq/t)可逆,式中t为物质的热力学温度;dq为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则ds>(dq/t)不可逆。单位质量物质的熵称为比熵,记为s。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地,连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生过程,总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dq由高温(t1)物体传至低温(t2)物体,高温物体的熵减少ds1=dq/t1,低温物体的熵增加ds2=dq/t2,把两个物体合起来当成一个系统来看,熵的变化是ds=ds2-ds1>0,即熵是增加的。

热力学函数熵的物理意义是什么?熵增加原理适用范围是什么

熵表示混乱度,熵增加原理是普适原理。如果将宇宙看做一个大系统,熵增加是普遍规律,系统的熵永远不会朝着减少的方向变化

熵增加原理疑问!求高手。

那你为何不从Q=W里面找找原因呢,思维要发散看问题。

熵增加原理就是隔离体系的熵永远增加 对么

  对,孤立系统的一切自发过程均向着其微观状态更无序的方向发展,如果要使系统回复到原先的有序状态是不可能的,除非外界对它做功。另外,微观状态越混乱,则该系统的熵值越大,反之越小。所以说,孤立系统的熵值是永远增加的。  熵增加原理:在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行,这就是熵增加原理。

熵增加原理中的G、S、H各是什么意思?

1、由G = U u2212 TS + pV = H u2212 TS公式来的物理意义是:在等温等压的平衡态封闭系统,吉布斯函数的减少量可以衡量体系输出的非体积功。2、(1)G:吉布斯自由能是在化学热力学中为判断过程进行的方向而引入的热力学函数,又称自由焓、吉布斯自由能或自由能。(2)T是温度一般用绝对温度表示,单位为K,计算式为T=摄氏温度℃+273(K)(3)S是熵是热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量。(4)H是焓是热力学中表征物质系统能量的一个重要状态参量,常用符号H表示。焓的物理意义是体系中热力学能再附加上PV这部分能量的一种能量。3、Δ是指某一状态时的变化值。扩展资料:A和G这两个函数都是第二定律的衍生函数,一般也称之为“自由能”,它们都是具有广度性质和能量单位(J)的物理量。使用这两个物理量时,着眼于体系本身,就可以衡量体系的能量转化关系和可逆性,其物理意义完全和熵增加原理一致。比如“自由能减小原理”:Helmholtz自由能减小原理:无其他功的封闭体系,等温等容条件下,体系的Helmholtz自由能A在可逆过程中保持不变,在不可逆过程中总是减少,直至A为最小值时体系达到平衡态;Gibbs自由能减小原理:无其他功的封闭体系,等温等压条件下,体系的Gibbs自由能G在可逆过程中保持不变,在不可逆过程中总是减少,直至G为最小值时体系达到平衡态。参考资料来源:百度百科-吉布斯自由能百度百科-熵百度百科-焓

关于熵增加原理的疑问

系统有三种,开放,封闭,孤立对于孤立系统,无物质能量交换,熵≥0,可逆=0 不可逆>0对于非孤立系统,系统的熵分为熵增加和熵流,其中熵增加是系统不可逆过程引起的,≥0。熵流是系统和外界进行物质或者能量交换引起的熵变,大小可正可负熵增加原理不是用来判断可逆不可逆的,而是来判断一个朝着某个方向的变化能否进行。孤立系统不管可逆不可逆永远熵增。卡诺循环是一个整体, 单独看一部分他就不是孤立系统了。比如等温膨胀压缩是外界对气体做功了,这就有能量交换,就不是孤立系统。但整体就不一样了,无能量损耗,所以得到了可逆过程可逆过程 ∑Q/T=0,就是熵然后他又想不可逆过程的效率一定小于可逆热机,热量少了,Q/T也少了,所以S- ∑δQ/T>0,具体可以看看书上 克劳修斯不等式那一段

熵增加原理和热力学第二定律有什么关系

热力学第二定律有上千种表述,熵增加原理是其中最为常见也最容易接受的

什么叫熵?什么叫熵增加原理?它们与信息、生命、社会、经济、管理有什么关系?

熵包含很多意思的,不知道你要了解哪一个方面的? 最初,熵代表着物理领域能量的分配密集程度,之后被引用于多个领域,比如污染方面,人口比例方面,信息方面,金融方面

熵增加原理的性质?

此系统不是绝热的。如果把溶液和外界环境作为一个整体熵仍然增加

熵增加原理的简介

【熵增加原理】孤立系统的熵值永远是增加的(更精确的说,是永不减少)。要说明这个原理,首先我们换种方式来说热力学第二定律:孤立系统的一切自发过程均向着其微观状态更无序的方向发展,如果要使系统回复到原先的有序状态是不可能的,除非外界对它做功。另外,微观状态越混乱,则该系统的熵值越大,反之越小。所以说,孤立系统的熵值是永远增加的。熵增加原理:在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行,这就是熵增加原理(principleof entropy increase)。熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统。

关于能量最低原理和熵增加原理

对于孤立系统来说,比如宇宙,总是向着混乱度增加的方向进行,最终达到热寂对于非孤立有能量交换的系统来说,比如地球,是向着稳定的方向进行的

1. 简述熵增加原理,并指出适用条件。 2.简述微波炉加热原理。 按大学物理标准答案答,追加高分

你好第一个问题 熵增原理:孤立体系中熵的增加恒不为负,适用于所有孤立体系中的任意过程。热力学中的解释熵增=熵流+熵产。熵流跟系统与外界的热量交换有关,放热熵流为负,吸热熵产为正。熵产是系统由于不可逆因素而产生的,恒不为负,其中熵产=0时就是可逆反应。而熵增原理的全称叫孤立体系熵增原理,所以适用于所有孤立体系。孤立体系就是与外界没有质量交换以及热量交换的体系。所以孤立体系中熵流为0,熵产依然不为负。所以由熵增=熵流+熵产得出,孤立体系熵增恒不为负。其中孤立体系熵增为零时就是可逆的孤立体系。第二个问题,大学物理中的解释微波炉的核心是在铁箱内制造了一个不断变化的电场,有麦克斯韦电磁理论得知,变化的电场产生磁场,变化的磁场又产生电场。所以微波炉内就是一个变化的磁场和电场。下面以水分子为例解释为什么纬度升高水分子是极性分子,所以会受到变化电场和磁场的影响而运动,而电场磁场方向是改变的,所以水分子的运动来回改变,摩擦产热导致微波炉中的物品的温度升高。而对于一些非极性分子,由于其不受变化磁电场的影响,所以不能用微波炉加热希望对你有帮助

熵增加原理的微观本质

熵增加原理的微观本质介绍如下:熵增加原理的微观实质是孤立系统内发生的过程,总是从有序状态向无序状态过渡。熵增原理就是任何物理系统在外界不向其输送能量的情况下,熵只能增加或者不变,不会主动减小。系统经绝热过程由一状态达到另一状态熵值不减少——熵增原理(the principle of the increase of entropy)对绝热过程,Q = 0 ,有ΔS(绝热)≥ 0(大于时候不可逆,等于时候可逆) 或 dS(绝热)≥0 (>0不可逆;=0可逆)扩展资料生活中的很多现象,比如:懒散容易自律难,放弃容易坚持难,变坏容易变好难,拖延容易行动难,邋遢容易整洁难……这些现象都和熵增加原理有关。就好像面对一个沙堆,我们可以随意更改沙堆的“形状”,但不管组成哪种形状,构成沙子的“结构”不会发生任何改变,从熵的意义上讲,这个沙堆(泛指一切自然形成的沙堆,大同小异)的熵值很高。但是,当我们把沙堆弄成一个沙堡,这时,有规则形状的沙堡的组合可能性就会骤降,不再是原先的无限可能了,但沙子的结构仍然不会发生任何变化。从熵的意义上讲,这个沙堡的熵值很低。但是,维持这个沙堡形状不变的成本很高,一个系统要实现熵减,需要额外施加外力,克服熵增之余,再实现系统熵值的降低,这是一个逆着熵值做功的过程。

熵增加原理

熵增原理,指孤立热力学系统的熵不减少,总是增大或者不变。用来给出一个孤立系统的演化方向。说明一个孤立系统不可能朝低熵的状态发展,既不会变得有序。玻尔兹曼曾经通过仔细研究两个球形分子碰撞前与碰撞后的景象,宣称能证明碰撞前的熵小于撞后的熵,因此熵在增加。但是他的证明是错的,原因是如果是这样,同样的论证过程可以运用在时间的反方向的。熵增原理:在孤立热力系所发生的不可逆微变化过程中,熵的变化量永远大于系统从热源吸收的热量与热源的热力学温度之比。可用于度量过程存在不可逆性的程度。

熵增加原理

热力学第二定律,也称熵增原理。熵增原理:指孤立热力学系统的熵不减少,总是增大或者不变。用来给出一个孤立系统的演化方向。说明一个孤立系统不可能朝低熵的状态发展即不会变得有序。熵增原理表明:在绝热条件下,只可能发生dS≥0 的过程,其中dS = 0 表示可逆过程;dS>0表示不可逆过程,dS<0 过程是不可能发生的。但可逆过程毕竟是一个理想过程。因此,在绝热条件下,一切可能发生的实际过程使系统的熵增大,直到达到平衡态。熵增原理是适合热力学孤立体系的,能量守恒定律是描述自然界普遍适用的定律。熵增定律仅适合于孤立体系,这是问题的关键。实际上,绝对的联系和相对的孤立的综合,才是事物运动的本质。

什么是熵增加原理?有何意义

熵增加原理一般指热力学第二定律。热力学第二定律(secondlawofthermodynamics),热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。1824年,法国工程师萨迪·卡诺提出了卡诺定理。德国人克劳修斯(RudolphClausius)和英国人开尔文(LordKelvin)在热力学第一定律建立以后重新审查了卡诺定理,意识到卡诺定理必须依据一个新的定理,即热力学第二定律。他们分别于1850年和1851年提出了克劳修斯表述和开尔文表述。这两种表述在理念上是等价的。扩展资料随着科技的发展和社会的进步,人们对熵的认识已经远远超出了分子运动领域,被广泛用于任何做无序运动的粒子系统,也用于研究大量出现的无序事件。熵已成为判断不同种类不可逆过程进行方向的共同标准。熵增加的原理突出了世界的演化性、方向性和不可逆性,深化了人类对自然和社会的认识,使“演化”和“发展”越来越成为新自然观的主题。熵增原理表明,在绝热条件下,只可能发生dS≥0的过程,其中dS=0表示可逆过程;dS>0表示不可逆过程,dS<0过程是不可能发生的。但可逆过程毕竟是一个理想过程。因此,在绝热条件下,一切可能发生的实际过程都使系统的熵增大,直到达到平衡态。参考资料来源:百度百科-熵增加原理

什么是熵增加原理?有何意义

  熵增加原理:  利用绝热过程中的熵是不变还是增加来判断过程是可逆还是不可逆的基本原理。利用克劳修斯等式与不等式及熵的定义可知,在任一微小变化过程中恒有熵增加原理,其中不等号适于不可逆过程,等号适于可逆过程。对于绝热系统,则上式又可表为dS≥0。这表示绝热系统的熵绝不减少。可逆绝热过程熵不变,不可逆绝热过程熵增加,这称为熵增加原理。  意义:  随着科技的发展和社会的进步,人们对熵的认识已经远远超出了分子运动领域,被广泛用于任何做无序运动的粒子系统,也用于研究大量出现的无序事件。熵已成为判断不同种类不可逆过程进行方向的共同标准。熵增加的原理突出了世界的演化性、方向性和不可逆性,深化了人类对自然和社会的认识,使“演化”和“发展”越来越成为新自然观的主题。