功率放大器

阅读 / 问答 / 标签

谁知道立体声功率放大器结构和工作过程?

  “功放”的全称为:音频功率放大器(Audio Power Amp,英文缩写为:AMP),其功能是把声音信号放大到足够的幅度以推动扬声器正常发声。经阻抗变换耦合到电压放大级放大,----功率放大级放大,-----OCL、OTL、或变压器输出推动扬声器(音箱)。  在追求高质量生活的今天,人们对功放的需求不仅仅满足在一般的听觉水平上,而是对音质的高保真、音效的逼真性和多功能性等关键性能方面提出了更高的要求。特别是在组建家庭影院方面,对功放的性能、质量要求是非常高的,否则就达不到影院的应该具备的效果。  按制造元件功放分为晶体管功放和电子管功放(又称“胆”机)。电子管属于淘汰产品,恐怕只有在功放机中才能找到它的家了,其它电子产品中,几乎没有它的踪影了。“胆”机有它独特的魅力,其特有“胆”味音质,晶体管不能完全模拟出来。  按电路结构来说,功放机有纯功放和非纯功放之分。前者的电路中,输入的声音信号不经过其它处理如高、低音控制而直接进行放大后输出到扬声器。很显然,这种功放的失真度可以做到最低。经过高、低音控制等处理的功放机,失真度肯定要高一些。一般消费者并不注重这一点,认为功能越多就一定越好,然也!功能与音质是一对矛盾,功能越多,就难免要牺牲一些音质,所以选购时应理性对待。如果我买功放,我一定选纯功放!  对一般消费者而言,选购功放时,对其性能的了解是比较盲目的。业内曾有一条:“选功放,看重量”的说法,的确有一定的道理。高质量的功放,重量是很重的(如果抱起来轻漂漂的,一定不是好功放)。如果你对其性能不太熟悉,首先可以掂一掂它的重量。  http://www.qtq888.com/electronicscience/audio/av1.htm#4

tda2040的高保真音频功率放大器 TDA2040

TDA2040是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。如图1所示,按引脚的形状引可分为H型和V型。该集成电路在32V电源电压下,RL=4Ω时可获得22W的输出功率。广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。

求低压音频功率放大器的总结 设计做完了 , 就差总结了 , 不会写 . 求高手帮忙写一个 ,

w

功率放大器和电压放大器的区别是什么?

对电压放大器的主要要求是使负载得到不失真的电压信号,主要指标是电压放大倍数、输人和输出阻抗等,输出功率并不一定大。功率放大器主要要求获得一定的不失真(或失真较小)的输出功率.

电动车有刷控制器的和普通音频功率放大器在原理上有相象之处,区别仅在于直流与交流的区别,那么请问如...

一般的音频放大电路是交流放大器 不可放大直流 但玩音响的都知道有纯直流放大的电路是可已的 一般功率稍大的价格相当贵 还要加给定等电路 还要看功率电压电流等指标合不合用且 效率极低 总之这样不好玩 现在的电机调速电路大多是脉冲调速 效率高 电机低速也很有劲 效率高意味着省电

功率放大器课程设计

还是你自己做吧。不要总想着在网上抄答案。

汽车音响的功率放大器是什么?

就是功放,比如意大利的舞仕刚柔mosconi AS系列 ,A CLASS系列,这种纯级功放,把模拟声音放大,现在还有数字处理器带出来的数字类功放如mosconi D2 DSP

音频放大器和音频功率放大器有什么区别

音频放大器是指小功率或是前级处理,音频功率放大器是指驱动扬声器的放大器。

丙类功率放大器效率高的原理是其通角小,其不失真的原因是(

因为有选频网络啊,带通滤波

高频小信号放大器和高频功率放大器的作用是什么及有什么不同?

1、小信号放大器通常主要放大的是电压信号。2、功率放大器主要放大的是电流信号。他们的构成是完全不同的,前者主要利用共射、共基电路为基础(特别是后者),而功率放大电路主要以谐振放大电路为基础(特别是丙类、丁类等谐振放大器)。原理、目的完全不同。

音频功率放大器实验报告_音频功率放大器课程设计报告

本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的 二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路u201eu201e) 四、主要仪器设备 五、实验步骤与过程 六、实验调试、实验数据记录 七、实验结果和分析处理 八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标: 负载阻抗:R L =4Ω 额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。 (3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。 三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源 的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um = V V =6.32V =63.2 i 100mV 通常前置级产生的噪声对整个系统的影响最大,因此前置级的增益不宜太高,一般选取该级增益为:A um 1=5~10 对音调控制电路无中频增益要求,一般选为:A um 2=1 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 因此,功放输出级电压增益应满足下式要求:A um 1A um 2A um 3≥A um 对于话筒放大器,话筒输出约为5mV ,而音源线路输出约为100mV ,因此,话筒放大器的电压增益应为:A 100mV umic ≥ 5mV =20。 确定A um 1=10,A um 2=1,A um 3=6.32,A umic =20。 P.3 2、功放电源电压的确定 为保证电路安全可靠工作,通常电路的最大输出功率P oM 比额定输出功率要大一些,一般取 P oM =1.5P o 。 最大输出电压V om = ≈ 7.75V ,峰峰值V pp =om =21.9V 。 考虑到功率管的饱和压降和串联电阻,电源电压必须大于输出峰-峰值电压。使用双电源,则为±12~14V。 3、话筒放大器的设计 话筒放大器电路图与给出图三相同,采用共射极放大电路放大,射极跟随器输出。 图2话筒放大电路 3.1 I c 1、I c 2的确定 电路的噪声系数与晶体管的工作点有关,晶体管I c 的选择应考虑噪声系数,9014型晶体管一般取几百微安。 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 这里取900微安。 3.2 U C 1、U E 2的选择 一般选取U C 1≈E C 1/2,U E 2≈E E 2/2 3.3 R 4、R 6、R 7的选取 P.4 R E C 1-U C 1I =E C 1,R E C 1 4= I E 2≈I C 2) 。 C 12I C 16+R 7≈2I C 1 R 4=5KΩ,R 6=R 7=2.5KΩ 3.4 R 2的确定 增益A u 1=R 4/R 2=10, R 2=500Ω 3.5 R 8、C 4的确定 R 3~5 8一般选取几百欧姆至几千欧姆,C 4≥ 2πf =3uF L R 8 取R 8为5.1K ,C 4为3.3uF 。 3.6 补偿电容C 1的选择 C 1为防止高频自激之用,一般取几十至几百pF 。 取C 1为270pF 。 3.7 耦合电容C 2 C ~5 2≥ 32πf ,这里C 0取2.2uF 。 L R i 1 3.8 R 1的选择 R 1的取值应与话筒的输出阻抗相当。由图知为18K 。 3.9 R 3、R 5为反馈电路,这里R 3=R 5=20K。 C 6隔直,为2.2uF 。 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 4、音调控制部分的设计 4.1选择电路形式及其工作原理 P.5 其增益为A =- Z f Z 。 i 当信号频率不同时,Z i ,Z f 也不同,从而增益随信号频率的改变而改变。 电路图如图所示。 图3音调控制电路 其中C28、C29较大,当低频时起作用,高频时可看作短路。C13、C14较小,低频时刻看作开路。 所以在低频时,C13、C14看作开路,又因为,运放的开环增益很大,输入阻抗很高,因此R17的影响可忽略不计。 运放增益A R 15-2P 1/j ωC 29+R 18 uL = R P 1/j ωC 。 15-128+R 14 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 分析极端情况,滑动变阻器滑到左端,A 29+R 18 uL = R 15P 1/j ωC R ,增益最大,滑动 14 变阻器滑到右端,A R 18 uL = R ,增益最小,可以看出滑动变阻器从左滑到 15P 1/j ωC 28+R 14 右,增益由大变小,在中间时为1,因此R15在低频时实现了低音的提升和衰减。 P.6 在高频时C28、C29看作短路,分析电路可得到与低频时相同的规律,高音的最大衰减量为A 28+R 30 u 2 min = R 30 R ,最大提升量为A u 2 max = R 28+R 30 R 。 30 4.2设计 ①确定转折频率,电路的带宽在50~15KHz之间 f L =f L 1=50Hz , f H =f H 1=15000kHz ②确定滑动变阻器数值。 因为运放的输入阻抗很高,一般R id >500k Ω,所以R15,R28选用100k Ω的线性电位器。 ③ C 28=C 29= 1 2πR =32nF 15f L 1 R R 28 14=R 17=R 18= f /f 1 =11.1K Ω L 2 L 1-④ R 3R 16= f H 2 /f =3.7K H 1-1 C 113=C 14= 2πf nF H 2R =1.416 ⑤C30为综合电容,与运放增益有关,会影响到音调控制的高频截止频率,这里C30为10pF 。 ⑥C31与R19共同组成同相输入的阻抗,平衡偏置电流,C31为1nF ,R19为39K 。 ⑦R29,R30与高音提升的增益有关,设高音增益最高为10,最低为1/10,则 R 29=R 30=11.1K 5、集成功放级设计 5.1根据额定功率Po 和负载RL 的要求来选择集成块。这里Po=10W,RL=4Ω,集成功实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 放选择TDA2030。 5.2参数确定 功放电路如图所示 P.7 图4集成功放电路 增益为A 1/j ωC 17P R 23 up =1+ 1/j ωC 。 18+R 24 中频段,C17可以视为开路,C18可以视为短路。 低频段,C17可以视为开路。 高频段,C18可以视为短路。 ①R 24的取值范围一般在几十欧姆至几千欧姆均可。取R 24为1K Ω。 ②根据中频增益确定R 23。 A um 3≤A R 23 up = R +1,R 23≥(A um 3-1) R 24=5.32K 24 取R 23为6K Ω。 ③C 17的选取 C 1 17≤ 2πR =1.7nF 23f H 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 取C 17为300pF 。 P.8 ④根据低频响应f L 来确定C 18。 C 18≥ 1 2πR =3.2u 24f L 取C 18为4.7u 。 ⑤R21的选取 考虑到差分放大器的平衡性,R21为功放的直流反馈电阻,因此R21=R23=6K。 ⑥D1、D2的作用是为防止输出脉冲电压损坏集成电路,一般选用开关二极管。 ⑦C19、R25 为了使负载喇叭在高频段仍为纯电阻,需要加补偿电阻R25和补偿电容C19,一般选取R25≈RL=4Ω,C 1 19= 2πf =1.3uF H (R L +R 8) ⑧R20,C36 R20为音量控制电阻,控制输入功放的电压,从而控制输出功率,这里取20K 的滑动变阻器。 C36为耦合电容,取10uF 。 6、前置放大电路设计 前置放大电路为运算放大器电路,为一同相放大电路,电路如图所示。 实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ P.9

高频放大器和高频功率放大器的区别在哪里?

高频放大器放大高频小信号使发射机末级获得足够大的发射功率。高频功放和其它放大器一样,其输入和输出端的管外电路均由直流馈线电路和匹配网络两部分组成。高频功率放大器原理:利用光的折射功能:将高频已调波信号进行功率放大用途:发射机的末级高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,分为甲类(导通角=360度)、乙类(导通角=180度)、甲乙类(导通角=180度~360度)。

音频放大器和音频功率放大器有什么区别

一、指代不同1、音频放大器:是指在给定失真率条件下,能产生最大功率输出以驱动某一负载(例如扬声器)的放大器。2、音频功率放大器:在产生声音的输出元件上重建输入的音频信号的设备。二、原理不同1、音频放大器:利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。2、音频功率放大器:是以要求的音量和功率水平在发声输出元件上高效率、低失真地重现音频输入信号。音频信号的频率范围为20Hz~20KHz,因此音频放大器必须具有良好的频率响应。三、特点不同1、音频放大器:在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。2、音频功率放大器:是给负载提供足够大的电流驱动能力,实现功率放大。D类功放工作在开关状态,理论上无需静态电流,具有很高的效率。参考资料来源:百度百科-功率放大器参考资料来源:百度百科-音频放大器

求一个15瓦左右的音频功率放大器的原理图!!!越简单越好,谢谢

用傻瓜功放

功率放大器电路图求解

功率放大器上课都要上好几节课的,这里想讲清楚有点难了

求大神,帮我讲讲这个高保真音频功率放大器电路的原理: 1.像R1R2这种接地的支路电阻的作用是什么

1、R1是限流电阻,因为流入放大器输入端的电流很小,必须要有路径放电。 R2是反馈电阻2、喇叭呈感性,因此需要R13以及C16进行相位补偿。3、D1和D2是防止喇叭突然极性翻转对电路损害。

为什么丙类功率放大器的输出功率与效率大于丙类倍频器

功率放大器工作在基波频率上。丙类功率放大器的输出功率与效率大于丙类倍频器的原因是丙类功率放大器工作在基波频率上,丙类功率放大器原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器。

音频功率放大器怎么设计?

音频功率放大器电路设计 一、题目 音频功率放大器 二、电路特点 本电路由于采用了集成四运算放大器μPC324C和高传真功率集成块TDA2030,使该电路在调试中显得比较简单,不存在令初学者感到头疼的调试问题;与此同时它还具有优良的电气性能: ① 输出功率大:在±16V的电源电压下,该电路能在4Ω负载上输出每路不少于15W的不失真功率,或在8Ω负载上输出每路不少于10W的不失真功率,其相对应的音乐功率分别为30W和20W。 ② 失真小:放大器在输出上述功率时,最大非线性失真系数小于1%,而频宽却能达到14kHz以上,音域范围内的频率失真很小,具备高传真重放的基本条件。 ③ 噪音低:若把输入端短路,在扬声器1米外基本上听不到噪音,放送高传真节目时有一种宁静、舒适的感觉;另外由于使用性能优异的功率集成块,放大器的开机冲击声也很小。 该电路所采用的高传真功率集成块TDA2030是意大利SGS公司的产品,是目前音质较好的一种集成块,其电气性能稳定、可靠,能适应常时间连续工作,集成块内具有过载保护和热切断保护电路。电气性能参数如下: 电源电压Vcc ±6V~±18V 输出峰值电流 3.5A 功率带宽(-3dB)BW 10Hz~140KHz 静态电流Icco(电源电流) <60μA 谐波失真度 <0.5% 三、电路图(另附) 四、电路原理 该电路是由前置输入级、中间级和输出级三部分组成的。 前置输入级是由集成运放1/4μPC324C组成的源级输出器,它具有输入阻抗较高而输出阻抗较低的特点。 中间级是由集成运放1/4μPC324C以及由R4、R5、R6;C4、C5、C6;Rw2、Rw3、组成的选频网络一起构成的电压并联负反馈式音调控制放大电路。它具有高低音提升或衰减功能。其工作原理如下:输入信号通过C4耦合,分两路输入运放,一路由R4、C4、Rw3输入到5反相端。集成运放B输出端经过R6、C5反馈到反相端,形成电压并联反馈;另一路由Rw2、C6、 R5、输入到反相端。在此电路中,选频网络中电容量较大的C4、C5对高频信号(高音)可看作短路,电容量叫小的C6对低频信号(低音)可看作开路,所有这些电容对中频信号(中音)可认为开路。根据反相比例运算关系可知,当Rw2、Rw3滑臂在中点时,放大倍数为-1。当Rw3滑点在A端,C4被短路,C5、Rw3并联与R6串联后阻抗增加,对低频信号来说负反馈增强,增益下降,其低音衰减过程,当Rw2滑至C处,R5、R6和R3并联后的阻抗减小,对高频信号负反馈削弱,增益提高,对高音起提升作用;在D点,R5、C6与R6并联后的阻抗减小,并联后阻抗减小,对高频信号负反馈增强,对高音起衰减作用。 输出级是功率放大器,它由集成运放TDA2030和桥式整流电路组成,其中组件C8、R9为电源退耦电路。 由于该电路为双声道功率放大器,所以下部分电路与上部分电路完全对称,故电路原理同上。 五、印刷电路板设计图(另附) 六、元器件清单及使用仪表工具 电阻: R1 1K R2 1K R3 10 R4 100K R5 100K R6 3.3K R7 100K R8 3.3K R9 10 R10 100K R11 100K R12 100K R13 10K R14 10K R15 10K R16 10K R17 1K R18 1K R19 1.5K R20 1.5K R21 10K R22 10K R23 20K R24 20K R25 100K R26 10K R27 100K R28 10K 电容: C1 2200μ/16V C2 2200μ/16V C3 33μ/16V C4 33μ/16V C6 0.1 C7 220μ/16V C8 220μ/16V C9 10μ/16V C11 10μ/16V C12 10μ/16V C13 33μ/16V C14 33μ/16V C16 10μ/16V C17 0.033 C18 0.033 C19 3300 C21 10μ/6V C22 10μ/16V C23 0.047 C23 0.047 C25 300 C26 300 C20 3300 C15 10μ/16V C5 0.1 C10 10μ/16V 其它组件: TDA2030(两块)、QSZ2A50V、μPC324C(四块)、滑动变阻器Rw1、Rw2、Rw3、Rw4,散热片。 仪表工具:万用表。 七、电路制作及调试过程 首先在拿到电路图纸后,看清、弄懂逻辑电路图和印刷电路图。在熟知电路的原理和特性后,将印有印刷电路图的贴纸贴在所分发的金属板上,接着用小刀对其进行雕刻,将多余的贴纸刮去,并用盐酸和双氧水比例为1:3的溶液进行腐蚀。然后用清水把腐蚀后的电路板洗净,并在其上对照印刷电路板进行描点、打点,过后用砂纸将其打磨光滑,再用松香水均匀地涂抹在电路板上。收集齐所需的元件,并对元器件的质量进行判定。(注意:预留的集成块管脚的空间要准确,不能有太大的误差;同时二极管、电解电容的极性一定不能接反。)最后进行元器件的焊接,必须在集成块焊好的情况下才能接着对二极管、RC元件及导线等进行焊接。(因为集成块不能受热,所以动作一定要干净利落。) 在确认电路焊接无误后,开始进行电路的调试。先把电源接在③、④线上,⑥、①线接地,②、⑤线接入扬声器,用万用表对集成运放TDA2030和μPC324C的各引出管脚测出它们之间的电压与电流,并与其典型值进行对比,看看是否有明显的差距,判断集成电路工作是否正常。

功率放大器的配置原则是什么?

1.输出功率要稳定,通过阻抗匹配来实现;2.输出功率要足够大,即放大器自身的损耗要求小;3.在功率已经满足要求的前提下,要实现一定频率范围内的信号可以进行功率放大.

功率放大器为什么实现的是电流放大?

不全是,在电压放大后还得进行电流放大,这样功率才可以被放大 不是的,可以查查功率放大原理 功率放大器就是放大功率嘛。音频功放的设计理念一般

功率放大器是什么?

功率放大器的特点是尽可能高的功率转换效率功率放大器的输出功率是通过晶体管将直流电源的直流功率转换而来,转换时功率管和电路中的耗能元件都要消耗功率,用P表示负载所得功率,P<SUB>E</SUB>表示直流电源提供的总功率,η表示转换效率,则η=(Po/P<SUB>E</SUB>)*100%,η的大小反映了电源的利用率。例如,某放大器的效率η=50%,说明电源提供的直流功率只有一半转换成了输出功率传给了负载,另一半消耗在电路内部,这部分电能使管子和元件等温度升高,严重时会烧坏晶体管。要重视功放管的散热问题,为了保证功率管的安全工作,一般给大功率管加装散热片。如何提高效率、减小功耗是功率放大器的一个重要问题。

功率放大器怎么分析

高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在 “低频电子线路”课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于 180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的了类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至 20000 Hz,高低频率之比达 1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百 kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为 10 kHz,如中心频率取为 1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率响应很宽的传输线作负载。这样,它可以在很宽的范围内变换工作频率,而不必重新调谐。综上所述可见,高频功率放大器与低频功率放大器的共同之点是要求输出功率大,效率高;它们的不同之点则是二者的工作频率与相对频宽不同,因而负载网络和工作状态也不同。高频功率放大器的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)等。这几项指标要求是互相矛盾的,在设计放大器时应根据具体要求,突出一些指标,兼顾其他一些指标。例如实际中有些电路,防止干扰是主要矛盾,对谐波抑制度要求较高,而对带宽要求可适当降低等。功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。放大器的工作状态可分为甲类、乙类和丙类等。为了提高放大器的工作效率,它通常工作在乙类、丙类,即晶体管工作延伸到非线性区域。但这些工作状态下的放大器的输出电流与输出电压间存在很严重的非线性失真。低频功率放大器因其信号的频率覆盖系数大,不能采用谐振回路作负载,因此一般工作在甲类状态;采用推挽电路时可以工作在乙类。高频功率放大器因其信号的频率覆盖系数小,可以采用谐振回路作负载,故通常工作在丙类,通过谐振回路的选频功能,可以滤除放大器集电极电流中的谐波成分,选出基波分量从而基本消除了非线性失真。所以,高频功率放大器具有比低频功率放大器更高的效率。高频功率放大器因工作于大信号的非线性状态,不能用线性等效电路分析,工程上普遍采用解析近似分析方法——折线法来分析其工作原理和工作状态。这种分析方法的物理概念清楚,分析工作状态方便,但计算准确度较低。以上讨论的各类高频功率放大器中,窄带高频功率放大器:用于提供足够强的以载频为中心的窄带信号功率,或放大窄带已调信号或实现倍频的功能,通常工作于乙类、丙类状态。宽带高频功率放大器:用于对某些载波信号频率变化范围大得短波,超短波电台的中间各级放大级,以免对不同fc的繁琐调谐。通常工作于甲类状态。

简述高频谐振功率放大器的工作原理

VCC:集电极直流电压作用:给放大管合理的静态偏置,提供直流能量

简述高频谐振功率放大器的工作原理

1.高频谐振功率放大器原理 高频谐振功率放大器原理电路如图3-1所示。图中,L2、L3是扼流圈,分别提供晶体管基极回路、集电极回路的直流通路。R10、C9产生射极自偏压,并经由扼流圈L2加到基极上,使基射极间形成负偏压,从而放大器工作于丙类。C10是隔直流电容,L4、C11组成了放大器谐振回路负载,它们与其他参数一起,对信号中心频率谐振。L1、C8与其他参数一起,对信号中心频率构成串联谐振,使输入信号能顺利加入,并滤除高次谐波。C8还起隔直流作用。R12是放大器集电极负载。

功率放大器的原理和组成是什么?

利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流放大,就完成了功率放大。

功率放大器的工作原理是什么?

功放(功率放大器)的原理就是利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。 因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。而场效应管则是用栅极电压来控制源极与漏极的电流,其控制作用用跨导表示,即栅极变化一毫伏,源极电流变化一安,就称跨导为1,功率放大器就是利用这些作用来实现小信号控制大信号,从而使多级放大器实现了大功率的输出,并非真的将功率放大了!

数控音频功率放大器设计的工作原理是什么和有些什么基本功能?

音频功率放大器电路设计一、题目 音频功率放大器二、电路特点本电路由于采用了集成四运算放大器μPC324C和高传真功率集成块TDA2030,使该电路在调试中显得比较简单,不存在令初学者感到头疼的调试问题;与此同时它还具有优良的电气性能:① 输出功率大:在±16V的电源电压下,该电路能在4Ω负载上输出每路不少于15W的不失真功率,或在8Ω负载上输出每路不少于10W的不失真功率,其相对应的音乐功率分别为30W和20W。② 失真小:放大器在输出上述功率时,最大非线性失真系数小于1%,而频宽却能达到14kHz以上,音域范围内的频率失真很小,具备高传真重放的基本条件。③ 噪音低:若把输入端短路,在扬声器1米外基本上听不到噪音,放送高传真节目时有一种宁静、舒适的感觉;另外由于使用性能优异的功率集成块,放大器的开机冲击声也很小。该电路所采用的高传真功率集成块TDA2030是意大利SGS公司的产品,是目前音质较好的一种集成块,其电气性能稳定、可靠,能适应常时间连续工作,集成块内具有过载保护和热切断保护电路。电气性能参数如下:电源电压Vcc ±6V~±18V输出峰值电流 3.5A功率带宽(-3dB)BW 10Hz~140KHz静态电流Icco(电源电流) <60μA谐波失真度 <0.5%三、电路图(另附)四、电路原理该电路是由前置输入级、中间级和输出级三部分组成的。前置输入级是由集成运放1/4μPC324C组成的源级输出器,它具有输入阻抗较高而输出阻抗较低的特点。 中间级是由集成运放1/4μPC324C以及由R4、R5、R6;C4、C5、C6;Rw2、Rw3、组成的选频网络一起构成的电压并联负反馈式音调控制放大电路。它具有高低音提升或衰减功能。其工作原理如下:输入信号通过C4耦合,分两路输入运放,一路由R4、C4、Rw3输入到5反相端。集成运放B输出端经过R6、C5反馈到反相端,形成电压并联反馈;另一路由Rw2、C6、 R5、输入到反相端。在此电路中,选频网络中电容量较大的C4、C5对高频信号(高音)可看作短路,电容量叫小的C6对低频信号(低音)可看作开路,所有这些电容对中频信号(中音)可认为开路。根据反相比例运算关系可知,当Rw2、Rw3滑臂在中点时,放大倍数为-1。当Rw3滑点在A端,C4被短路,C5、Rw3并联与R6串联后阻抗增加,对低频信号来说负反馈增强,增益下降,其低音衰减过程,当Rw2滑至C处,R5、R6和R3并联后的阻抗减小,对高频信号负反馈削弱,增益提高,对高音起提升作用;在D点,R5、C6与R6并联后的阻抗减小,并联后阻抗减小,对高频信号负反馈增强,对高音起衰减作用。 输出级是功率放大器,它由集成运放TDA2030和桥式整流电路组成,其中组件C8、R9为电源退耦电路。 由于该电路为双声道功率放大器,所以下部分电路与上部分电路完全对称,故电路原理同上。五、印刷电路板设计图(另附)六、元器件清单及使用仪表工具电阻:R1 1K R2 1K R3 10 R4 100K R5 100KR6 3.3K R7 100K R8 3.3K R9 10 R10 100KR11 100K R12 100K R13 10K R14 10K R15 10KR16 10K R17 1K R18 1K R19 1.5K R20 1.5KR21 10K R22 10K R23 20K R24 20K R25 100KR26 10K R27 100K R28 10K电容:C1 2200μ/16V C2 2200μ/16V C3 33μ/16V C4 33μ/16VC6 0.1 C7 220μ/16V C8 220μ/16V C9 10μ/16VC11 10μ/16V C12 10μ/16V C13 33μ/16V C14 33μ/16VC16 10μ/16V C17 0.033 C18 0.033 C19 3300C21 10μ/6V C22 10μ/16V C23 0.047 C23 0.047C25 300 C26 300 C20 3300 C15 10μ/16VC5 0.1 C10 10μ/16V其它组件:TDA2030(两块)、QSZ2A50V、μPC324C(四块)、滑动变阻器Rw1、Rw2、Rw3、Rw4,散热片。仪表工具:万用表。七、电路制作及调试过程首先在拿到电路图纸后,看清、弄懂逻辑电路图和印刷电路图。在熟知电路的原理和特性后,将印有印刷电路图的贴纸贴在所分发的金属板上,接着用小刀对其进行雕刻,将多余的贴纸刮去,并用盐酸和双氧水比例为1:3的溶液进行腐蚀。然后用清水把腐蚀后的电路板洗净,并在其上对照印刷电路板进行描点、打点,过后用砂纸将其打磨光滑,再用松香水均匀地涂抹在电路板上。收集齐所需的元件,并对元器件的质量进行判定。(注意:预留的集成块管脚的空间要准确,不能有太大的误差;同时二极管、电解电容的极性一定不能接反。)最后进行元器件的焊接,必须在集成块焊好的情况下才能接着对二极管、RC元件及导线等进行焊接。(因为集成块不能受热,所以动作一定要干净利落。)在确认电路焊接无误后,开始进行电路的调试。先把电源接在③、④线上,⑥、①线接地,②、⑤线接入扬声器,用万用表对集成运放TDA2030和μPC324C的各引出管脚测出它们之间的电压与电流,并与其典型值进行对比,看看是否有明显的差距,判断集成电路工作是否正常。

功率放大器 原理,直流变交流吗?谢谢

音频放大器输出的是交流电(0Hz除外)。

求直流电动机中的功率放大器的工作原理!!

直流电机驱动以互补放大为多数、将单片机编程脉宽变化小信号电压提高到能使电机有一定的力N驱动直流电机负载。

功率放大器原理及电路中各元器件的作用

原理是以小控大

步进电机驱动电源功率放大器电路种类以及工作原理是什么?

达林顿管

BTL功率放大器的BTL电路的组成及工作原理

一相同相放大一个反相放大,然后串联输出,喇叭电压高一倍,喇叭得到的功率是4 倍。

小型功率放大器的电路原理,要简单一点

就是一个推挽放大电路。

低频功率放大器原理是什么。

是指主要工作在低频状态下的功率放大器,把微弱的低频信号放大,其电子元件适应与低频状态(多为 音频信号)。在高频状态下其放大作用与效率降低,甚至无放大作用

高频电子线路(10) 丙类高频功率放大器的工作原理

http://203.208.37.104/search?q=cache:gesPo3NWXT4J:www2.zsc.edu.cn/jpkc/users/gpdzxl/06%E5%B9%B4%E9%AB%98%E9%A2%91%E7%94%B5%E5%AD%90%E7%BA%BF%E8%B7%AF%E6%8E%88%E8%AF%BE%E6%95%99%E6%A1%88%E7%AC%AC7%E6%AC%A1.doc+%E4%B8%99%E7%B1%BB%E9%AB%98%E9%A2%91%E5%8A%9F%E7%8E%87%E6%94%BE%E5%A4%A7%E5%99%A8%E7%9A%84%E5%B7%A5%E4%BD%9C%E5%8E%9F%E7%90%86&hl=zh-CN&ct=clnk&cd=6&gl=cn&lr=lang_zh-CN&client=firefox-a&st_usg=ALhdy29f4k6jSF9CrkVISrSjvH1zZM9hkg

无输出电容的功率放大器(OCL)的工作原理

OCL的工作原理其实很简单:1)OCL的关键在末级,它是用双电源(±)两个互补的射极跟随器组成,这样的配置很简单地就解决了输出0点的问题。2)射极跟随器主要担负了电流放大的作用,也可以说转换了输出阻抗,一方面由于输出电流增大,也就是功率大了,输出阻抗小了,就可以直接带动低阻抗的负载——喇叭。3)由于射极跟随器没有电压放大作用,所以必须在电压放大级解决信号电压的幅度问题,所以前一级(推动级)所输出的信号电压幅度,就是必须达到最后功放输出的幅度,这就是设计上的要点。

功率放大器的原理是什么?

功率放大器的原理:是一种可放大交直流信号的单通道高压放大器,功率放大器是一种电子实验室常用的测试仪器,通常是在实验过程中帮助输出信号达到最大输出功率用以驱动某一特定的负载的装置。功率放大器主要是放大电压、电流来放大功率,具体的指标你可以根据自己需求

音频功率放大器原理是什么

音频功率放大器是一种电子电路,它的作用是将输入信号的电压或电流放大到一定的值,以提高音频设备的音量。它通常由三部分组成:输入电路、放大电路和输出电路。输入电路接收音频信号,放大电路对信号进行放大,输出电路将放大后的信号输送到扬声器或其他音频设备。不同类型的音频功率放大器采用不同的技术来实现放大,如电子管、晶体管、集成电路等。

简述高频谐振功率放大器的工作原理

一、丙类谐振功率放大器电路电路图如1-1所示图1-1丙类谐振功率放大器LC谐振网络为放大器的并联谐振网络。谐振网络的谐振频率为信号的中心频率。作用:滤波、匹配。VBB:基极直流电压作用:保证三极管工作在丙类状态。VBB的值应小于放大管的导通电压Uon;通常取VBB≤0。VCC:集电极直流电压作用:给放大管合理的静态偏置,提供直流能量。二、丙类谐振功率放大器的工作原理ui→uBE→iB→iC→uCui为余弦电压,可表示为ui=UimCOSωct则:uBE=VBB+ui=VBB+UimCOSωct根据三极管的转移特性可得到集电极电流iC,为余弦脉冲波,如图4-2所示:图1-2iC波形根据傅立叶级数的理论,iC可分解为:ic=Ico+iC1+iC2+iC3+………+iCn+………式中:Ico为直流电流分量iC1为基波分量;iC1=Icm1COSωctiC2为二次谐波分量;iC2=Icm2COS2ωctiCn为n次谐波分量;iCn=IcmnCOSnωct其中,它们的大小分别为:Ico=iCmax·α0(θ)Icm1=iCmax·α1(θ)Icmn=iCmax·αn(θ)iCmax是ic波形的脉冲幅度。αn(θ)的大小可根据余弦脉冲分解系数表查。Ic信号的导电角可以用下面的公式进行计算当iC信号通过谐振网络时,由于谐振网络的作用,可得其谐振网络压降为:uc=RIcm1COSωct=UcmCOSωctuCE=VCC-uc=VCC-UcmCOSωct各信号的波形如图1-3所示:图1-3波形图三、功率关系直流功率:PV=VCCICO输出功率:PO=Icm1Ucm放大管功耗:PT=PV-PO效率:η=PO/PV丙类谐振功率放大器的性能分析一、丙类谐振功率放大器的工作状态欠压状态:管子导通时均处于放大区;临界状态:管子导通时从放大区进入临界饱和;过压状态:管子导通时将从放大区进入饱和区;在实际工作中,丙类放大器的工作状态不但与Ubm有关,还与VCC、VBB和R有关。在丙类谐振功放中,工作状态不同,放大器的输出功率和管耗就大不相同,因此必须分析各种工作状态的特点,以及Ubm、VCC、VBB和R的变化对工作状态的影响,即对丙类谐振功放的特性进行分析。

音频音响的功率放大器的工作原理是?

功放放大的是“声功率”,也就是提升“响度”,通俗的讲就是让你听到比原始声音更大的声音,但最终表现还是音箱完成的,音箱是“换能”设备,也就是能量转换设备,它将电能转换为声能。其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。一、功放是什么?   功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。 二、功放的种类   按用途不同,可以分为AV功放,Hi-Fi功放。   AV功放是专门为家庭影院用途而设计的放大器,一般都具备4个以上的声道数以及环绕声解码功能,且带有一个显示屏。该类功放以真实营造影片环境声效让观众体验影院效果为主要目的。Hi-Fi功放是为高保真地重现音乐的本来面目而设计的放大器,一般为两声道设计,且没有显示屏。三、功放的性能指标   功放的主要性能指标有输出功率,频率响应,失真度,信噪比,输出阻抗,阻尼系数等。   1、输出功率:单位为W,由于各厂家的测量方法不一样,所以出现了一些名目不同的叫法。例如额定输出功率,最大输出功率,音乐输出功率,峰值音乐输出功率。   2、音乐功率:是指输出失真度不超过规定值的条件下,功放对音乐信号的瞬间最大输出功率。 音响功放工作原理详解   3、额定输出功率:当谐波失真度为10%时的平均输出功率。也称做最大有用功率。通常来说,峰值功率大于音乐功率,音乐功率大于额定功率,一般的讲峰值功率是额定功率的5--8倍。   4、峰值功率:是指在不失真条件下,将功放音量调至最大时,功放所能输出的最大音乐功率。

功率放大器的原理

功率放大器的原理如下:功率放大器是使输入讯号进行放大的器件,它的作用是将电信号(电流或电压)放大到足够大到可以驱动负载的输出功率;而将输出讯号的能量转换成相应的光信号或其它所需形式的信息。在实际应用上,由于各种不同的应用场合对电源的要求是不同的,所以需要采用不同形式的功放以适应其工作条件。比如当使用电池作为电源时就要用充电式功放、直流式功放的组合;如果要求有较大的动态范围和较低的噪音水平则应选用高频变压器耦合型功放等等。晶体管串联谐振电路是一种最简单的开关元件-双极型三极管构成的复合全波整流电路。它由两个相同的管子并联而成一个pn结电容网络和一个公共电极构成。当外加交流正弦电压vf通过r1、c1、b1形成回路时.在r2、c2处产生自感电动势em1,并在em1两端感应出交流分量vi2。该分量的幅值取决于r2、c2间的距离以及两管子的相对位置关系即a=v2/r2,其中a称为等效电阻率或非线性系数。它与所加电压的大小及两极管的集电极电位差有关;b为流过两管子电流的有效值大小与管子的结构参数有关.若取β=1~3,则β越小电流越大反之越小;vc为流过两管子电流的有效值占整个通路有效值的百分比即占空比β=i/vc=(1/2)[1+(1-β)]。

功率放大器的原理

功率放大器是一种电路,它可以将输入的小信号放大成输出的大信号,是电子设备中不可或缺的部分。功率放大器的工作原理基于晶体管的非线性特性。晶体管将电压转化为电流,且输出的电流与输入电压的关系是非线性的。通过适当的偏置和负载匹配,可以将输入的小信号转换为输出的大信号。此外,功率放大器还需要一个稳定的电源来提供所需的电能。在实际应用中,功率放大器需要注意保持适当的偏置和负载匹配,以避免过度失真或者损坏电路。

功率放大器的基本原理是什么

功率放大器是一种电子电路,它能够将输入信号的功率放大到更高的水平,从而使其能够驱动更大的负载。功率放大器的工作原理通常是通过操纵电流或电压来实现的。有几种常见的功率放大器类型,如电压放大器、电流放大器和功率放大器。电压放大器通常通过操纵电压来实现放大,而电流放大器则通过操纵电流来实现放大。功率放大器则是将电压和电流相结合,以提供最大的放大效果。功率放大器可以用于各种应用,包括音频功放、激光器、医疗设备等。常见的功率放大器结构包括单端放大器、双端放大器和混合式放大器。单端放大器只能从单个端口接收输入,而双端放大器则可以从两个端口接收输入。混合式放大器则是将单端放大器和双端放大器的优点相结合,能够从单个端口或两个端口接收输入。是的,您想了解功率放大器的其他方面吗?例如,您可能想了解功率放大器的常见用途、功率放大器的性能参数、功率放大器的分类方法、功率放大器的常见结构、功率放大器的工作原理、功率放大器的设计方法等。或者,您也可以提出其他关于功率放大器的问题,我会尽力回答的。

OTL或OCL功率放大器为什么会产生交越失真?如何克服交越失真?

OTL和OCL本身就工作在甲乙类,已经加入了直流偏置防止交越失真,若仍然出现交越失真,则说明提供的直流偏置不够,不足以克服管子的死区电压,此时需要增大直流偏执,具体操作就是增大提供偏置的电阻阻值,或者增加二极管。克服交越失真的措施是:避开死区电压区,使每一晶体管处于微导通状态,一旦加入输入信号,使其马上进入线性工作区可以给互补管一个静态偏置。利用二极管和电阻的压降产生偏置电压,利用VBE扩大电路产生偏置电压,利用电阻上的压降产生偏置电压。交越失真出现在乙类放大电路,甲类放大电路失真最小但是效率较低10%左右,乙类有交越失真但是其效率高,所以出现了甲乙类放大电路,比甲类效率高,比乙类失真小。扩展资料:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。“两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。OTL电路的优点是只需要一组电源供电。缺点是需要能把一组电源变成了两组对称正、负电源的大电容;低频特性差。省去输出端大电容的功率放大电路,省去了输出电容,使系统的低频响应更加平滑。缺点是必须用双电源供电,增加了电源的复杂性。握奇数据研发的一种身份认证技术方案。它的实体产品介质是高端有显示屏幕和操作按键的USBKEY.用于网上银行的个人账户操作的安全认证。它的安全体现在在现有的非对称加密体系下引入了人机交互功能,使用户实时清晰自己做的交易细节并予以确认方可实现交易,最大限度的保证了交易者的资金安全。参考资料来源:百度百科--OTL电路

OTL或OCL功率放大器为什么会产生交越失真?如何克服交越失真?

  交越失真:  电子学名词,是指放大电路中,输出信号并非输入信号的完全、真实的放大,而是多多少少走了样,这种走样即是失真。引起失真有多种,此为失真的一种形式。  我们在分析时,是把三极管的门限电压看作为零,但实际中,门限电压不能为零,且电压和电流的关系不是线性的,在输入电压较低时,输出电压存在着死区,此段输出电压与输入电压不存在线性关系,产生失真。这种失真出现在通过零值处,因此它被称为交越失真。  由于晶体管的门限电压不为零,比如硅三极管,NPN型在0.7V以上才导通,这样在0~0.7就存在死区,不能完全模拟出输入信号波形,PNP型小于-0.7V才导通,比如当输入的交流的正弦波时,在-0.7~0.7之间两个管子都不能导通,输出波形对输入波形来说这就存在失真,即为交越失真。  我们克服交越失真的措施是:避开死区电压区,使每一晶体管处于微导通状态,一旦加入输入信号,使其马上进入线性工作区可以给互补管一个静态偏置。  1.利用二极管和电阻的压降产生偏置电压  2.利用VBE扩大电路产生偏置电压  3.利用电阻上的压降产生偏置电压  交越失真出现在乙类放大电路,甲类放大电路失真最小但是效率较低10%左右,乙类有交越失真但是其效率高,所以出现了甲乙类放大电路,比甲类效率高,比乙类失真小。

OTL功率放大器为什么会产生交越失真

OTL功放是甲乙类,交越失真出现在乙类放大电路,甲类放大电路失真小,甲乙类放大电路,比甲类效率高,比乙类失真小。甲乙类有直流偏置防止交越失真,如果出现交越失真,应该是直流偏置不够,不足以克服管子的死区电压。调整下直流偏执,就是增大提供偏置的电阻阻值来增加直流偏置。也有其他方法:   1.利用二极管和电阻的压降产生偏置电压2.利用VBE扩大电路产生偏置电压3.利用电阻上的压降产生偏置电压百度百科上也有些解释:我们在分析时,是把三极管的门限电压看作为零,但实际中,门限电压不能为零,且电压和电流的关系不是线性的,在输入电压较低时,输出电压存在着死区,此段输出电压与输入电压不存在线性关系,产生失真。这种失真出现在通过零值处,因此它被称为交越失真。 由于晶体管的门限电压不为零,比如硅三极管,NPN型在0.7V以上才导通,这样在0~0.7就存在死区,不能完全模拟出输入信号波形,PNP型小于-0.7V才导通,比如当输入的交流的正弦波时,在-0.7~0.7之间两个管子都不能导通,输出波形对输入波形来说这就存在失真,即为交越失真。

OTL功率放大器的输出电压波形出现交越失真时,消除失真的方法

我们在分析时,是把三极管的门限电压看作为零,但实际中,门限电压不能为零,且电压和电流的关系不是线性的,在输入电压较低时,输出电压存在着死区,此段输出电压与输入电压不存在线性关系,产生失真。这种失真出现在通过零值处,因此它被称为交越失真。  由于晶体管的门限电压不为零,比如硅三极管,NPN型在0.7V以上才导通,这样在0~0.7就存在死区,不能完全模拟出输入信号波形,PNP型小于-0.7V才导通,比如当输入的交流的正弦波时,在-0.7~0.7之间两个管子都不能导通,输出波形对输入波形来说这就存在失真,即为交越失真。  我们克服交越失真的措施是:避开死区电压区,使每一晶体管处于微导通状态,一旦加入输入信号,使其马上进入线性工作区可以给互补管一个静态偏置。1.利用二极管和电阻的压降产生偏置电压2.利用VBE扩大电路产生偏置电压3.利用电阻上的压降产生偏置电压交越失真出现在乙类放大电路,甲类放大电路失真最小但是效率较低10%左右,乙类有交越失真但是其效率高,所以出现了甲乙类放大电路,比甲类效率高,比乙类失真小

设计一个关于OTL功率放大器的实验报告

“OTL功率放大器”设计报告一个电子系统总要带上一定的输出系统,例如使扬声器发出声音等等。为了使负载能正常工作,与负载相连的最后一级放大电路不仅要向负载提供足够的电压,还要向负载提供足够的电流,即提供足够的功率,因此放大电路的最后一级一般称为功率放大器,简称为功放级。在通信系统和各种电子设备中有着广泛的应用。 由于我家的收音机的功放部分坏了,我想设计一个功放修好它,看了几本参考书,知道了有关功放方面以下几个知识点:一、我对低频功率放大器的几点认识1、低频功率放大器的几个主要指标要求即:输出功率,效率和非线性失真。[1]输出功率要足够大。功率放大器的基本任务是放大信号功率,所以它是主要的技术指标也就是保证向负载输出足够大的信号功率。为此,要求晶体管必须提供尽可能大的电压和电流,它经常要早接近管子的极限状态下工作。这样设计功率放大器时,首先要根据输出功率的大小,选择合适的晶体管,以保证在大功率输出下管子能正常工作。[2]效率要高。功率放大器实质上是把小输入信号放大成大输出功率信号,这是一个将电源电能转化为信号能量,输送给负载的过程。因此在电路中,存在一个转换效率问题。如果能把电源供给的直流功率较多地变成交流输出功率则电路的效率就高。反之,电路效率就低。[3]非线性失真小。功率放大器的晶体管工作在大信号放大状态,管子输入和输出特性曲线都存在着非线性,不可避免地会产生非线性失真。应当正确选择管子的静态工作点和集电极等效负载电阻(RL"),另外根据输出功率的大小,适当选择激励级的内阻Rs(输出电阻),也可减少非线性失真。 2、功率放大器的种类和特点功率放大器由于三极管工作状态和电路形式不同,可分成不同的种类,按晶体管工作状态可分为:甲类,乙类和甲乙类。所谓甲类是指在整个信号周期内晶体管一直是导通的,它的集电极总有电流流过;乙类是指在信号的半个周期内晶体管导通,另半个周期晶体管截止;而甲乙类是公于甲类和乙类之间,晶体管导通时间大于半个周期,小于一个周期。按电路形式分:有输出变压器耦合功率放大器和(OTL)无输出变压器耦合功率放大器。无输出变压器的乙类推挽功率放大器简称为OTL电路。相当于采用输出变压器的乙类推挽功率放大器而言,OTL电路具有便于集成化,频率性好等优点。二、课题技术指标输出功率Po = 1W 负载(喇叭阻抗)RL= 8 欧姆三、设计OTL功率放大器1、OTL功率放大器设计原则1、设计指标的给出:输出功率Po=1W;负载电阻RL =8欧姆2、电路设计图中,是我设计的功放输出级,它由互补对称电路组成,T1是NPN型管,T2是PNP型管,当Vi在正半周时,T2截止,T1导通。T1有放大作用,电流I1流过负载RL。在Vi负半周时,T1截止,T2导通。T2有放大作用,I2流过负载RL。这种电路无论哪个管子工作,都相当一个射级输出器,使输出电流足够大,而且输出电阻很小,负载可以得到很大的有效功率 。这种电路利用两只特性对称的反型管相辅组成,互相补足来完成推挽放大的功能,我们家他为互补对称电路。但是,由于每只管子输出电压Vbe和IC之间都不是理想线性关系,并且都是死区电压VT。为次,在管子的基极和发射级之间,应加有一定的静态偏压VBE,以便克服交越失真。 3、设计步骤 (1)决定电源电压Ec根据输出功率和负载的设计要求,已知Pom=1W ,RL=8欧姆所以 Ec=(8PomRL)1/2=10V(2)选取R16和R17R16和R17是射极电流电阻,主要用来稳定静态工作点,一般取:R16= R17=0.5欧姆。(3)选择大功率管T1和T2 SD05C选取大功率管只要考虑三个参数,即晶体管C-E极间承受的最大反向电压BVCEO,集电极最大电流ICM和集电极最大功耗PCM。(A) 当电源电压EC确定之后,T1和T2承受的最大反压:VCEMAX=EC(B) 若忽略管压降,每管最大集电极电流为:IC1MAX=(EC/(RL+R16))/2因为T1和T2的射级电阻R16和R17选得过小,符合管稳定性差,过大又会损耗较多的输出功率。一般取: R16=R17=(0.05-0.1)RL(C) 单管最大集电极功耗:--

OTL功率放大器为什么会产生交越失真

交越失真:  电子学名词,是指放大电路中,输出信号并非输入信号的完全、真实的放大,而是多多少少走了样,这种走样即是失真。引起失真有多种,此为失真的一种形式。  我们在分析时,是把三极管的门限电压看作为零,但实际中,门限电压不能为零,且电压和电流的关系不是线性的,在输入电压较低时,输出电压存在着死区,此段输出电压与输入电压不存在线性关系,产生失真。这种失真出现在通过零值处,因此它被称为交越失真。  由于晶体管的门限电压不为零,比如硅三极管,npn型在0.7v以上才导通,这样在0~0.7就存在死区,不能完全模拟出输入信号波形,pnp型小于-0.7v才导通,比如当输入的交流的正弦波时,在-0.7~0.7之间两个管子都不能导通,输出波形对输入波形来说这就存在失真,即为交越失真。  我们克服交越失真的措施是:避开死区电压区,使每一晶体管处于微导通状态,一旦加入输入信号,使其马上进入线性工作区可以给互补管一个静态偏置。  1.利用二极管和电阻的压降产生偏置电压  2.利用vbe扩大电路产生偏置电压  3.利用电阻上的压降产生偏置电压  交越失真出现在乙类放大电路,甲类放大电路失真最小但是效率较低10%左右,乙类有交越失真但是其效率高,所以出现了甲乙类放大电路,比甲类效率高,比乙类失真小。

OTL功率放大器的简介?OTL的全称?

电子管OTL功率放大器,全称为Tube Output Transformerless Amplifier这里有很详细的介绍图,希望可以帮到你^_^http://www.lpbbs.com.cn/viewthread.php?tid=1454

功率放大器中的单位Vamp是什么意思?

是符号,没有单位