反应

阅读 / 问答 / 标签

高铁酸钾(K2FeO4)和二氧化氯(ClO2)都是高效水处理剂,其工业制备的反应原理分别为2Fe(OH)3+3KClO+4

A.两个反应中Cl元素的化合价均降低,则KClO、KClO3做氧化剂,故A错误;B.ClO2做水处理剂,利用其强氧化性,而明矾净水利用胶体的吸附性,原理不同,故B错误;C.K2FeO4用于杀菌,利用其强氧化性,还原产物中铁离子水解生成胶体具有吸附性,还原产物还可用作净水剂,故C正确;D.制备等物质的量的K2FeO4和ClO2,转移的电子数之比为2×(6-3):2×(5-4)=3:1,故D错误;故选C.

华硕splendid安装后没反应?我的笔记本是X550CC,W7 64位,在官网下载的驱动安装后

您好!X550CC,驱动连接:http://www.asus.com.cn/Notebooks_Ultrabooks/X550CC/HelpDesk_Download/依次下载安装 芯片组驱动;公用程序-ATK快捷键驱动和splendid驱动。如果安装了,请在控制面板-程序卸载-把这些驱动卸载掉。然后重启机器在安装官网上下载的。请勿使用驱动软件或其他软件,在线更新驱动或系统的漏洞补丁,会导致驱动不兼容或其他错误问题。也可以尝试按FN+C键,也支持打开splendid软件。希望以上信息能够对您有所帮助!若以上回复还是没有帮助到您,您可以继续追问或联系华硕服务热线400,600-6655咨询!谢谢!

长颈漏斗反应停止的原理

长颈漏斗反应停止的原理是由于气压增大导致。在试管中反应,在试管中下部加一个塑料隔板(带孔)碳酸钙放在隔板上,组装后加入药品,当夹上导气管后药品倒流回长颈漏斗反应停止。长颈漏斗是漏斗的一种,主要用于固体和液体在锥形瓶中反应时随时添加液体药品。还可以用分液漏斗替代。产品介绍在使用时,注意漏斗的底部要在液面以下,这是为了防止生成的气体从长颈漏斗口逸出,起到液封的作用。

铁空气电池的电极反应

2Fe+O2+2H2O=2Fe(OH)2和O2+2H2O+4e-=4OH-。根据百度教育资料显示:铁空气电池是一种金属空气电池,其电极反应与一般电池相似,负极(铁电极):2Fe+O2+2H2O=2Fe(OH)2,正极(空气电极):O2+2H2O+4e-=4OH-。铁空气电池的正极反应主要是由氧气在酸性或碱性条件下的还原产生的,在铁空气电池中,氧气通过正极反应被还原为水,同时将电子传递给负极,从而产生电流。

二次电池种类及反应原理

什么叫电池?电池是一种能量转化与储存的装置,它主要通过化学反应将化学能或物理能转化为电能。电池是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。一次电池和二次电池一次电池,又叫不可充电电池或原电池,从电池单向化学反应中产生电能。原电池放电导致电池化学成分永久和不可逆的改变。但可充电电池,又叫二次电池,可在应用中放电,也可由充电器充电。所以,二次电池储存能量,而不是产生能量。电池由哪几部分构成?任何一种电池由四个基本部件组成,四个主要部件是两个不同材料的电极、电解质、隔膜和外壳。电池有多少种类?化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池)铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。什么是锌-锰干电池?锌-锰电池又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO 2 )为正极,电解质溶液采用中性氯化铵(NH 4 C1)、氧化锌(ZnC1 2 )的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。什么是碱性锌锰电池?指20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。什么是铅酸蓄电池?1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。什么是镉镍电池和金属氢化物电池?二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。什么是锂电池?指以金属锂或锂的化合物作活性物质的电池通称锂电池,分为一次锂电池和二次锂电池。什么是锂离子电池?指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。什么是燃料电池?指一种利用燃料(如氢气或含氢燃料)和氧化剂(如纯氧或空气中的氧)直接连接发电的装置。它具有效率高、电化学反应转换效率可达40%以上,且无污染气体排出的特点。酸性锌锰干电池锌-锰电池又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4C1)、氧化锌(ZnC12)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。酸性锌锰干电池是以锌筒作为负极,并经汞齐化处理,使表面性质更为均匀,以减少锌的腐蚀,提高电池的储藏性能,正极材料是由二氧化锰粉、氯化铵及碳黑组成的一个混合糊状物。正极材料中间插入一根碳棒,作为引出电流的导体。在正极和负极之间有一层增强的隔离纸,该纸浸透了含有氯化铵和氯化锌的电解质溶液,金属锌的上部被密封。这种电池是19世纪60年代法国的勒克兰谢(Leclanche)发明的,故又称为勒克兰谢电池或炭锌干电池,可表示为:(-)Zn|NH4Cl(20%)ZnCl2|MnO2,C(+)尽管这种电池的历史悠久,但对它的电化学过程尚未完全了解,通常认为放电时,电池中的反应如下:正极为阴极,锰由四价还原为三价 2MnO2+2H2O+2e-→2MnO(OH)+2OH- 负极为阳极,锌氧化为二价锌离子: Zn+2NH4Cl-→Zn(NH3)2Cl2+2H++2e- 总的电池反应为: 2MnO2+Zn+2NH4Cl-→2MnO(OH)+Zn(NH3)2Cl2 实践经验表明,该电池的电流-电压特性和二氧化锰的来源有关,也直接地依赖于锰的氧化价态、晶粒的大小及水化程度等。目前已全部以ZnCl2电解液代替NH4Cl,充分说明Zn2+与Cl-配合〔ZnCl2〕2-,而不必有NH4+存在,放电前pH=5,放电后pH上升到pH=7为中性。 该电池的特点:(1)开路电压为1.55V~1.70V;(2)原材料丰富,价格低廉;(3)型号多样1号~5号;(4)携带方便,适用于间歇式放电场合。缺点是:在使用过程中电压不断下降,不能提供稳定电压,且放电功率低,比能量小,低温性能差,在-20℃即不能工作。在高寒地区只可使用碱性锌锰干电池。碱性锌锰干电池碱性锌锰干电池指20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质溶液,采用了与锌锰电池不同的负极结构,负极由锌片改为锌粉,外壳改用钢皮,正极仍用石墨和二氧化锰。它是在1882年研制成功,1912年就已开发,到了1949年才投产问世。人们发现,当用KOH电解质溶液代替NH4Cl做电解质时,无论是电解质还是结构上都有较大变化,电池的比能量和放电电流都能得到显著的提高。 负极:Zn+2OH-=ZnO+H2O+2e- 正极:2MnO2+2H2O+2e-=2MnO(OH)+2OH- 总反应为: Zn + 2MnO2 +H2O= ZnO+ 2MnO(OH)碱性锌-锰干电池的优点 这类电池的电解液由原来的中性变为离子导电性更好的碱性,负极也由锌片改为锌粉,反应面积成倍增长,使放电电流大幅度提高。据测试,这类电池的容量和放电时间比普通锌锰干电池增加几倍。优越的性能使这类电池获得了迅速发展。 我国目前主要生产酸性锌锰电池、碱性锌锰电池,前者如大公、牡丹、中华、天鹅、555,后者如南孚、双鹿、白象等。仅根据1995年统计资料表明,全世界干电池总产量为250亿只,其中碱锰电池为70亿只。5年来,美国、欧洲和日本的碱锰电池年增长率超过12%,美、欧、日国内碱锰电池所占市场比例分别为72%、52%和29%。我国碱锰电也总产量近3亿只,仅占干电池总产量的3%,预计5年内将提高到10%~15%。从目前发展现况来看,南孚"、"双鹿"、"白象"等品牌已达到国际标准,生产速率最高200只/min,美国、日本已达300只/min以上。镍镉电池镍镉电池采用Ni(OH)2作为正极,CdO作为负极,碱液(主要为KOH)作为电解液,镍镉电池充电时,正极发生如下反应 Ni(OH)2 –e + OH- → NiOOH + H2O 负极发生的反应: Cd(OH)2 + 2e → Cd + 2OH- 总反应为:2Ni(OH)2 + Cd(OH)2→ 2NiOOH+ Cd+ 2H2O 放电时,反应逆向进行NiOOH + H2O + e→ Ni(OH)2 + OH- Cd + 2OH- + 2e→ Cd(OH)2 充电时,随着NiOOH浓度的增大,Ni(OH)2浓度的减小,正极的电势逐渐上升,而随着Cd的增多,Cd(OH)2的减小,负极的电势逐渐降低,当电池充满电时,正极、负极电位均达到一个平衡值,二者电势之差即为电池之充电电压。镍氢电池镍氢电池是二十世纪九十年代发展起来的一种新型绿色电池,具有高能量、长寿命、无污染等特点,因而成为世界各国竞相发展的高科技产品之一。镍氢电池的诞生应该归功于储氢合金的发现。早在20世纪六十年代末,人们就发现了一种新型功能材料储氢合金,储氢合金在一定的温度和压力条件下可吸放大量的氢,因此被人们形象地称为“吸氢海绵”。 其中有些储氢合金可以在强碱性电解质溶液中,反复冲放电并长期稳定存在,从而为我们提供了一种新型负极材料,并在此基础上发明了镍氢电池。镍氢电池中的储氢合金实际上是金属互化物。许多种类的金属互化物都已被运用在镍氢电池的制造上,它们主要分为两大类。最常见的是AB5一类,A是稀土元素的混合物(或者)再加上钛(Ti);B则是镍(Ni)、钴(Co)、锰(Mn),(或者)还有铝(Al)。而一些高容量电池的“含多种成分”的电极则主要由AB2构成,这里的A则是钛(Ti)或者钒(V),B则是锆(Zr)或镍(Ni),再加上一些铬(Cr)、钴(Co)、铁(Fe)和(或)锰(Mn)。所有这些化合物扮演的都是相同的角色:可逆地形成金属氢化物。电池充电时,氢氧化钾(KOH)电解液中的氢离子(H+)会被释放出来,由这些化合物将它吸收,避免形成氢气(H2),以保持电池内部的压力和体积。当电池放电时,这些氢离子便会经由相反的过程而回到原来的地方。镍氢电池正极活性物质为氢氧化镍(称氧化镍电极),负极活性物质为金属氧化物,也称贮氢合金(电极称贮氢电极),电解液为6N氢氧化钾,在电池充放电过程中的电池反应为:其中,M表示贮氢合金材料。电池的开路电压为: 1.2V~1.3V、因贮氢材料和制备工艺不同而有所不同。常见的镍氢电池SANYO公司所生产的镍氢电池铅酸蓄电池1859年法国普兰特(Plante)发明,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。我们应用的铅蓄电池是用硬橡胶或透明塑料制成长方形外壳,用含锑5%~8%的铅锑合金铸成格板,在正极格板上附着一层PbO2,负极格板上附着海绵状金属铅,两极均浸在一定浓度的硫酸溶液(密度为1.25—1.28g/cm3)中,且两极间用微孔橡胶或微孔塑料隔开。铅蓄电池的电压正常情况下保持2.0 V,当电压下降到1.85 V时,即当放电进行到硫酸浓度降低,溶液密度达1.18g/cm3时即停止放电,而需要将蓄电池进行充电;当密度增加至1.28g/cm3时,应停止充电。由于铅蓄电池的性能良好,价格低廉,目前汽车上使用的电池,有很多是铅蓄电池。由于它的电压稳定,使用方便、安全、可靠,又可以循环使用,因此广泛应用于国防、科研、交通、生产和生活中。这种电池缺点是比较笨重。 负极: Pb 正极: PbO2 电解质溶液: 30%H2SO4 总反应: Pb + PbO2 + 2H2SO4 = 2PbSO4↓+ 2H2O 负极反应:Pb + SO42-–+ 2e- = PbSO4 正极反应:PbO2 + 4H+ + SO42- + 2e- =PbSO4 + 2H2O应急灯用铅酸蓄电池锂离子电池锂离子电池的核心部分是锂离子及锂嵌合物。锂电池主要由阴极、阳极、能传导锂离子的电解质以及把阴阳极隔开的隔膜组成。锂电池的实质是一种浓差电池,其正负电极材料由两种不同的锂离子嵌入化合物组成,正极为不同类型的含锂化合物,负极则由石墨一类的物质形成层状结构,Li+可填充于其中。如图3,在充电时,阴极部分的锂离子脱嵌,离开含锂化合物,透过隔膜向阳极移动,并嵌入到阳极的层状结构中;反之在放电时,锂离子在负极脱嵌,移向正极并结合于正极的化合物之中。与传统锂电池不同的是,被氧化还原的物质不再是Li 和Li+,Li+只是伴随着两极材料本身发生放电而产生的氧化态的变化而反复脱嵌与嵌入,往返于两极之间,所以锂电池又被称作摇椅电池(Rocking chair battery)。此种电池的一个典型放电原理为:正 极:CoO2+Li++e-=LiCoO2负 极:LiC6-e-=6C+Li+总反应:CoO2+LiC6=LiCoO2+6C根据锂离子电池所用电解质材料不同,锂离子电池可以分为液态锂离子电池(lithium ion battery, 简称为LIB)和聚合物锂离子电池(polymer lithium ion battery, 简称为LIP)两大类。聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,电池的工作原理也基本一致。它们的主要区别在于电解质的不同, 锂离子电池使用的是液体电解质, 而聚合物锂离子电池则以固体聚合物电解质来代替, 这种聚合物可以是“干态”的,也可以是“胶态”的。由于用固体电解质代替了液体电解质,与液态锂离子电池相比,聚合物锂离子电池具有可薄形化、任意面积化与任意形状化等优点,也不会产生漏液与燃烧爆炸等安全上的问题,因此可以用铝塑复合薄膜制造电池外壳,从而可以提高整个电池的比容量;聚合物锂离子电池还可以采用高分子作正极材料,其质量比能量将会比目前的液态锂离子电池提高50%以上。此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比锂离子电池有所提高。基于以上优点,聚合物锂离子电池被誉为下一代锂离子电池。锂电池

铝-空气-海水 电池的原理(正负极反应)

负极4Al-12e-=4Al3+ 正极3O2+12e-+6H2O=12OH- 总反应式:4Al+3O2+6H2O=4Al(OH)3

如图是锂-空气电池的放电原理图(隔膜只允许锂离子通过).电池放电时的反应可表示为:4Li+O2+2H2O═4LiO

A.正极上氧气得电子发生还原反应,电极反应式为4e-+O2+2H2O=4OH-,故A错误;B.温度和压强未知导致气体摩尔体积未知,所以无法计算氧气的体积,故B错误;C.原电池放电时,阳离子向正极移动,所以氢离子向正极移动,故C正确;D.锂和水反应生成氢氧化锂和氢气,所以不能让金属锂与水性电解液直接接触,故D错误;故选C.

光合作用和呼吸作用的区别光反应和暗反应的原理及方

光反应:条件:光照、光合色素、光反应酶.场所:叶绿体的类囊体薄膜.(色素)①水的光2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下).②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下).影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度等.意义:①光解水,产生氧气.②将光能转变成化学能,产生ATP,为暗反应提供能量.③利用水光解的产物氢离子,合成NADPH,为暗反应提供还原剂NADPH.暗反应(实质是一系列的酶促反应)条件:暗反应酶.场所:叶绿体基质.影响因素:温度、CO2浓度、酸碱度等.不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同.这是植物对环境的适应的结果.暗反应可分为C3、C4和CAM三种类型.三种类型是因二氧化碳的固定这一过程的不同而划分的.对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体.叶绿体中含有C5.起到将CO2固定成为C3的作用.C3再与NADPH及ATP提供的能量反应,生成糖类(CH2O)并还原出C5.被还原出的C5继续参与暗反应.光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化).CO2+H2O(叶绿体、酶、光照)=======O2+(C6H10O5)n植物呼吸作用过程:有机物+氧(通过线粒体) →二氧化碳+水+能量 化学式:有机物(一般为葡萄糖 C6H12O6)+O2 →(条件:酶)CO2+H2O+能量.或者:C6H12O6+6O2→6CO2+6H2O+2821kJ 植物在有氧条件下 ,将有机化合物氧化 ,产生CO2和水的过程.此过程中产生的能量可以部分地用于各种生命活动.植物组织在供氧不足或无氧时,其中的有机物可以部分分解,产生少量 CO2 并释放少量能量.这就是发酵作用 ,有时又称为无氧呼吸.与此相区别,氧气供应充分时的呼吸也称为有氧呼吸.三碳植物中的绿色部分,在光下以二磷酸核酮糖的氧化产物乙醇酸为底物,继续氧化,产生CO2光合作用是植物吸收二氧化碳,放出氧气,发生在白天(有阳光)呼吸作用是植物吸收氧气,放出二氧化碳,发生在晚上(没阳光)

oculus以身份继续没反应

1、首先,打开oculus中的C:WindowslSystem32、driversletc。2、其次,找到hosts这个文件,用记事本打开。3、最后,在该文件的末尾添加字符:157.240.11.49graph.oculus.com,之后将桌面保存的文件后缀.txt删掉,之后复制该文件。

丙酮与肼化反应化学方程式

丙酮与肼化反应化学方程式:前提是你会写二四二硝基苯肼的结构式 我在这里就以化学式代替c6h3(no2)2nhnh2+hcho===>c6h3(no2)2nhn=c-h2反应后生成的是二四二硝基苯腙 苯肼中nh2去掉两个氢 与甲醛中碳原子相连 碳原子去掉氧也就成了腙类n=c现象是生成黄色或橙红色沉淀甲醛,乙醛,丙酮都会和2,4-二硝基苯肼反应生成2,4-二硝基苯腙,现象是生成黄色或红色晶体。 这是苯肼鉴别醛、酮的特征反应。扩展资料:肼基甲酰胺作为新的氨甲酰化试剂与缺电子氮杂芳环反应、与N-芳基丙烯酰胺的串联氨甲酰化/环化反应以及苯炔促进烯/炔丙基肼衍生物[2,3]-σ迁移重排反应。肼基甲酰胺作为一种新型氨甲酰化试剂参与反应。以5 mol%的CuCO3为催化剂,25 mol%的AlCl3为路易斯酸。参考资料来源:知网-肼衍生物的去肼化偶联、加成以及重排反应研究

简易灭火器反应原理是什么?

简易灭火器是利用碳酸钠和硫酸铝反应制成的方程式:Al2(SO4)3+6NaHCO3=3Na2SO4+2Al(OH)3↓+6CO2↑反应中生成了大量的CO2形成泡沫并在CO2的压力下喷射出来,我们知道燃烧的的三要素是可燃物、助燃剂、温度达到燃点,灭火器喷出的泡沫会覆盖在燃烧物上CO2又比空气的密度大,这样就阻断了助燃剂空气的来源,同时泡沫中水分的蒸发带走了大量的热,使得温度降低到燃烧物的燃点以下;燃烧的三要素被破坏了两个燃烧就自然无法继续了。

酰肼RCONHNH2上的氮会与醛酮发生反应吗?哪个氮反应活性更高?

这个化学我都不太清楚,你说的什么意思?什么氮气反应率反应性更高?

焰色反应原理

焰色反应原理如下:1、焰色反应,也称作焰色测试及焰色试验,是某些金属或它们的化合物在无色火焰中灼烧时使火焰呈现特殊颜色的反应。其原理是每种元素都有其个别的光谱。样本通常是粉或小块的形式。用一根清洁且较不活泼的金属丝(例如铂或镍铬合金)盛载样本,再放到无光焰(蓝色火焰)中。在化学上,常用来测试某种金属是否存在于化合物。同时利用焰色反应,人们在在烟花中有意识地加入特定金属元素,使焰火更加绚丽多彩。2、焰色反应是物理变化。它并未生成新物质,焰色反应是物质原子内部电子能级的改变,通俗的说是原子中的电子能量的变化,不涉及物质结构和化学性质的改变。焰色反应是某些金属或它们的挥发性化合物在无色火焰中灼烧时使火焰呈现特征的颜色的反应。有些金属或它们的化合物在灼烧时能使火焰呈特殊颜色。3、进行焰色反应应使用铂丝(镍丝、铁丝)。把嵌在玻璃棒上的金属丝在稀盐酸里蘸洗后,(这是因为金属氧化物与盐酸反应生成的氯化物在灼烧时易气化而挥发;若用硫酸,由于生成的硫酸盐的沸点很高,少量杂质不易被除去而干扰火焰的颜色)放在酒精灯的火焰(最好是煤气灯,因为它的火焰颜色浅、温度高,若无的话用酒精喷灯也可以)里灼烧,直到跟原来的火焰的颜色一样时。再用金属丝蘸被检验溶液,然后放在火焰上,这时就可以看到被检验溶液里所含元素的特征焰色。

NHN-4210屏幕没有反应什么原因?

可能原因:1、主机故障或者主机显示输出部分故障。2、屏幕故障。建议找当地的官方售后检测下,确认故障原因。

田忌赛马反应了一般系统论的哪条原理

田忌赛马反应了一般系统论的博弈论。田忌赛马所用的数学知识是“博弈论”。这是一种专门研究斗争的方法,后来被称为“对策论”,或者叫做“博弈论”。在第二次世界大战的时候,这些知识在军事上发挥了很大的作用。田忌所代表的一方的上、中、下三批马,每个层次的质量都劣于齐王的马。但是,田忌用完全没有优势的下马对齐王有完全优势的上马,再用拥有相对比较优势上、中马对付齐王的中、下马,结果稳赢。大输,小赢,小赢>输少赢多,是博弈论最早的例子之一。田忌赛马的故事孙膑是春秋战国时期的著名军事家,他同齐国的将军田忌很要好。田忌经常同齐威王赛马,马分三等,在比赛时,总是以上马对上马,中马对中马,下马对下马。因为齐威我每一个等级的马都要比田忌的强,所以田忌屡战屡败。孙膑知道此事以后,对田忌说:“再同他比一次吧,我有办法使你得胜。”临场赛马那天,孙膑先以下马对齐威王的上马,再以上马对他的中马,最后以中马对他的下马。比赛结果,一败两胜,田忌赢了。同样的马匹由于调换了一下比赛程序,就得到了反败为胜的结果。最终赢得齐王的千金赌注。因此田忌把孙膑推荐给齐威王。齐威王向他请教了兵法,于是把他当成老师。

PRP血清学反应是指什么

血清学反应(serologicreactions)是指相应的抗原和抗体在体外进行的结合反应。由于抗体主要存在于血清中,进行这类反应时一般都要用含有抗体的血清作为实验材料,所以把体外的抗原、抗体反应称为血清学反应。这类反应是根据抗原、抗体具有高度特异性的原理来进行实验的,即用已知的一方来检测另一方的存在。既可定性,又可定量。可用已知抗体来检测未知抗原,如鉴定病原微生物;也可用已知抗原来检测未知抗体,如协助诊断某种疾病。  血清学反应的一般特点是:  (1)抗原与抗体的结合具有高度特异性,但当两种不同抗原分子上有共同抗原决定簇存在时,则与抗体结合时可出现交叉反应。  (2)抗原与抗体的结合是分子表面的结合。两者的结合虽相当稳定,但是可逆的,在一定条件下可发生解离,解离后的抗原、抗体性质不变。  (3)抗原、抗体的结合按一定比例,只有在比例适当时才会出现可见反应。若抗原、抗体比例不合适,就会有未结合的抗原或抗体游离于上清液中,不能形成大块免疫复合物,故不能呈现可见反应。  (4)血清学反应可分两个阶段进行,但其间无严格界限。在第一阶段,抗原和抗体特异性结合,此阶段反应很快,几秒钟或几分钟即可完成,但无可见反应;在第二阶段,反应进入可见阶段,反应进行的很慢,往往需几分钟甚至几十分钟以至数日方可完成。而且常受电介质、温度、pH等诸多外界因素的影响。  常进行的血清学反应主要包括凝集、沉淀、补体结合和中和实验四种基本类型。

PRP血清学反应是指什么

血清学反应(serologicreactions)是指相应的抗原和抗体在体外进行的结合反应。由于抗体主要存在于血清中,进行这类反应时一般都要用含有抗体的血清作为实验材料,所以把体外的抗原、抗体反应称为血清学反应。这类反应是根据抗原、抗体具有高度特异性的原理来进行实验的,即用已知的一方来检测另一方的存在。既可定性,又可定量。可用已知抗体来检测未知抗原,如鉴定病原微生物;也可用已知抗原来检测未知抗体,如协助诊断某种疾病。  血清学反应的一般特点是:  (1)抗原与抗体的结合具有高度特异性,但当两种不同抗原分子上有共同抗原决定簇存在时,则与抗体结合时可出现交叉反应。  (2)抗原与抗体的结合是分子表面的结合。两者的结合虽相当稳定,但是可逆的,在一定条件下可发生解离,解离后的抗原、抗体性质不变。  (3)抗原、抗体的结合按一定比例,只有在比例适当时才会出现可见反应。若抗原、抗体比例不合适,就会有未结合的抗原或抗体游离于上清液中,不能形成大块免疫复合物,故不能呈现可见反应。  (4)血清学反应可分两个阶段进行,但其间无严格界限。在第一阶段,抗原和抗体特异性结合,此阶段反应很快,几秒钟或几分钟即可完成,但无可见反应;在第二阶段,反应进入可见阶段,反应进行的很慢,往往需几分钟甚至几十分钟以至数日方可完成。而且常受电介质、温度、pH等诸多外界因素的影响。  常进行的血清学反应主要包括凝集、沉淀、补体结合和中和实验四种基本类型。

普通锌锰干电池的反应原理是什么

以下是碱性锌锰干电池的反应(后附酸性锌锰干电池反应).正极为阴极反应:MnO2+H2O+e→MnO(OH)+OH-MnO(OH)在碱性溶液中有一定的溶解度MnO(OH)+H2O+OH-→Mn(OH)4-Mn(OH)4-+e→Mn(OH)42-负极为阳极反应:Zn+2OH-→Zn(OH)2+2eZn(OH)2+2OH-→Zn(OH)42-总的电池反应为:Zn+MnO2+2H2O+4OH-→Mn(OH)42-+Zn(OH)42-酸性锌锰干电池反应:正极为阴极,锰由四价还原为三价2MnO2+2H2O+2e→2MnO(OH)+2OH-负极为阳极,锌氧化为二价锌离子:Zn+2NH4Cl→Zn(NH3)2Cl2+2H++2e总的电池反应为:2MnO2+Zn+2NH4Cl→2MnO(OH)+Zn(NH3)2Cl2不懂的话可以问我追问:那普通锌锰干电池的正负极分别是什么

干电池的反应原理

kg

干电池原理反应化学方程式

正极材料:MnO2、石墨棒 负极材料:锌片 电解质:NH4Cl、ZnCl2及淀粉糊状物 电池符号可表示为 (-) Zn|ZnCl2、NH4Cl(糊状)‖MnO2|C(石墨) (+) 负极:Zn-2e=Zn2+ 正极:2MnO2+2NH4++2e=Mn2O3+2NH3+H2O 总反应:Zn+2MnO2+2NH4+= Zn2++Mn2O3+2NH3+H2O

干电池原理反应化学方程式

正极材料:MnO2、石墨棒 负极材料:锌片 电解质:NH4Cl、ZnCl2及淀粉糊状物 电池符号可表示为 (-) Zn|ZnCl2、NH4Cl(糊状)‖MnO2|C(石墨) (+) 负极:Zn-2e=Zn2+ 正极:2MnO2+2NH4++2e=Mn2O3+2NH3+H2O 总反应:Zn+2MnO2+2NH4+= Zn2++Mn2O3+2NH3+H2O

干电池的反应原理

通过化学反应实现电子转移从而产生电流,具体如下正极为阴极反应:MnO2+H2O+e→MnO(OH)+OH-MnO(OH)在碱性溶液中有一定的溶解度MnO(OH)+H2O+OH-→Mn(OH)4-Mn(OH)4-+e→Mn(OH)42-负极为阳极反应:Zn+2OH-→Zn(OH)2+2eZn(OH)2+2OH-→Zn(OH)42-总的电池反应为:Zn+MnO2+2H2O+4OH-→Mn(OH)42-+Zn(OH)42-酸性锌锰干电池反应:正极为阴极,锰由四价还原为三价2MnO2+2H2O+2e→2MnO(OH)+2OH-负极为阳极,锌氧化为二价锌离子:Zn+2NH4Cl→Zn(NH3)2Cl2+2H++2e总的电池反应为:2MnO2+Zn+2NH4Cl→2MnO(OH)+Zn(NH3)2Cl2还有什么不明白的欢迎提出来

酒精杀菌属于物理反应还是化学反应

物理变化所谓化学反应是要生成新的物质,是原子重新组成新的分子。而物理变化只是物质状态与结构的改变酒精蒸发只是从溶液状态吸热蒸发,变成了气态,所以是物理变化

丙酮和三氟甲苯反应

丙酮和三氟甲苯(TFP)可以发生亲核取代反应,生成一种有机化合物叫做α,α,α,-三氟丙基苯甲醇(TFPAC)。反应机理如下:1. 丙酮中的羰基(C=O)在一个亲核试剂的攻击下变成一个离子,这个离子称为“罗兰离子”(经典阐述,实际上更为复杂)。2. TFP通过它的三氟甲基(CF3)进行亲核进攻,攻击羰基碳原子。3. 羰基中的另一个氧原子将一个质子转移给TFP,形成一个负离子。4. 然后,负离子与一个质子结合,生成TFPAC。反应方程式如下:CH3COCH3 + CF3C6H5 → CF3CH2C6H4CH(OH)CH3在实验室中,这种反应可以通过丙酮和TFP在异丙醇中的存在下进行。反应条件一般为室温下,反应时间约为1至2小时。这种反应可以用于有机合成中,因为TFPAC是一种很有用的中间体,可以用于制备其他化合物。

针对微生物培养、动物细胞培养、植物细胞培养这三种细胞培养,请问如何选择相应的生物反应器?

你的问题问的有歧义,生物反应器常用于基因工程,是体外生物反应装置,比如让羊的乳汁中具有我们所需要的蛋白质,那么就将特定基因导入羊的基因组,如果能在乳腺细胞中成功表达,那么这只羊叫做“乳腺反应器”。在细胞工程中似乎没有这种说法。可能是我知识有限,请你也在看看。呵呵再有问题再联系

高中生物的全部显色反应,谢谢

高中生物实验的显色反应( 1.斐林试剂 :配制:1)甲液质量浓度为 0.1g/ml,取10gNaOH溶于蒸馏水,稀释至100ml .2)乙液质量浓度为0.05g/ml,取5gCuSO4溶于蒸馏水,稀释至100ml .用时甲乙两夜等量混合,水浴加热,且必须现配现用.鉴别可溶性还原糖(葡萄糖,果糖,麦芽糖)时产生砖红色沉淀. 2.双缩脲试剂:配制:1)甲液质量浓度为 0.1g/ml,取10gNaOH溶于蒸馏水,稀释至100ml .2)乙液质量浓度为0.01g/ml,取1gCuSO4溶于蒸馏水,稀释至100ml .先加入甲液,再加入乙液.用于检测蛋白质 中的肽键.应注意的是蛋白质一定有肽键,有肽键的不一定是蛋白质,如尿素.鉴定蛋白质时,产生紫色反应. 3.班氏尿糖定性试剂:配制:称取17.4克无水硫酸铜(CuSO4)溶解于100毫升热蒸馏水中,冷却后,稀释到150毫升.称取柠檬酸钠(Na2CO3)100克,加蒸馏水600毫升,加热使之溶解,冷却后,稀释到850毫升.把硫酸铜溶液倾入柠檬酸钠及碳酸钠溶液中,搅匀后即为班氏尿糖定性试剂.使用方法同斐林试剂. 4.苏丹红Ⅲ /Ⅳ:配制:取0.1g苏丹Ⅲ,溶解在20ml95%酒精中.用于鉴定脂肪被苏丹红Ⅲ染为橘黄色,被苏丹红Ⅳ染为红色.鉴定时,先制备临时装片,再进行显微观察. 5.甲基绿吡罗红染色剂:用于观察DNA和RNA在细胞中的分布情况.必须现用现配.DNA遇到甲基绿为蓝绿色,RNA遇到吡罗红为红色. 6.盐酸:配置解离液或改变溶液的PH值. 7.碘液:用于鉴定淀粉的存在,遇到淀粉变为蓝色.(用于光合作用实验). 8.龙胆紫溶液:用于染色体着色,可将染色体染成紫色,显色反应. 9.醋酸洋红溶液:为碱性染料.与龙胆紫溶液一样,都是用于染色体着色,但它却是将染色体染成红色. 10.层析液:配置:苯+丙酮.用于色素的层析,即将色素在滤纸上分离开. 11.二氧化硅:可使绿叶研磨充分. 12.碳酸钙:防止在研磨时,叶绿体中的色素受到破坏. 13.0.3g/ml的蔗糖溶液:相当于30%的蔗糖溶液,用于质壁分离实验.不会使细胞致死,且细胞分离后可复原. 14.胰蛋白酶:用于分离蛋白质.用于动物细胞培养时分解组织,使组织细胞分散开,制成细胞悬浮液. 15.秋水仙素:巨毒.人工诱导染色体组加倍.原理:化学诱变因子抑制有丝分裂时纺锤体的形成. 16.氢氧化钠:用于吸收二氧化碳或改变溶液的PH值.用于细胞呼吸. 17.碳酸氢钠:提供二氧化碳.用于细胞光合作用. 18.澄清石灰水:鉴定二氧化碳. 19.溴麝香草酚蓝水溶液:检测二氧化碳.溴麝香草酚蓝水溶液由蓝色变为黄色 20.重铬酸钾的浓硫酸溶液:检测酒精在酸性条件下,酒精使橙色的重铬酸钾的浓硫酸溶液变为灰绿色.用于探究酵母菌的呼吸方式. 21.健那绿染色剂:专一性用于线粒体染色的活细胞染料.将线粒体染成蓝绿色 22.解离液:固定细胞形态,使细胞分散开. 23.95%的酒精溶液:用于提取叶绿体中的色素.用于与15%的盐酸等体积混合后解离根尖. 24.二苯胺:配制:称取1.5g二苯胺,溶于100mL冰醋酸中,再加1.5mL浓硫酸,避光保存.DNA遇二苯胺(沸水浴)会染成蓝色

我在反应抗日的电视里看到一个奇怪的场面,敌人把坐在凳子上的人的脚下放砖头,她就很疼,这是什么刑?为

不能试

lcu反应的是

强度单位。lcu反应的是生活事件对个体心理刺激的强度单位,ICU又名重症监护室,是对危重病人、需要监护抢救病人的集中治疗地。ICU病房里有丰富的人力、物力和技术能力,通常可以保障抢救患者的资源。

定向爆破的原理(铝热反应的应用)

铝热剂:铝+金属氧化物。这个反应是放热反应,就是利用这点做定向暴破

爆破地震的反应谱

如上所述,虽然已将爆破地震的安全振速作为建(构)筑物是否破坏的判据,据以判断该建(构)筑物在一定的爆破情况下是否安全,但是,对于建筑结构可承受爆破地震荷载数值还无法确定。因为,安全振速不能确定爆炸振动对建(构)筑物产生的地震荷载(地震力)。地震荷载与一般荷载不同,一般荷载与结构的动力特性无关,可以独立确定。而地震荷载不仅取决于地震烈度,即地震时受到的影响和破坏程度的大小,还与建筑物的动力特性等因素有密切关系,如结构的自振周期、阻尼等。我国与世界上大多数国家对自然地震的抗震设计规范,采用了反应谱理论来确定地震荷载。?3.1 反应谱的概念?用一个阻尼谐和振动子(即单自由度体系)来模拟真实建筑物,然后考察此振动子在承受地震引起的速度、加速度、位移特性。我们将实测到的地面加速度曲线作为确定反应谱的输入,对于某一个自振频率 阻尼的组合情况求出对于地面加速度的最大反应,这一最大反应就是反应谱曲线上的一个点。因此,反应谱的定义是单自由度体系对于给定的地面加速度考虑阻尼时的最大反应(加速度、速度、位移)与系统的自振频率(或周期)的关系曲线。?反应谱计算理论是根据地震时的实测记录,通过分析计算所绘制的加速度反应谱曲线为依据的。?3.2 反应谱分析在爆破地震中的应用?爆破振动波形可进行直观分析,为什么还要进行反应谱分析?振动强度的物理量中,如振幅的大小,振动持续的时间的长短等在所测波形中容易了解。然而,象频率的高低、分布情况、能量的大小等物理量,从波形图中不易得到。只有通过频谱分析才能获得振动各参量中的各频率成分和分布范围,得到主振幅的频率值。?爆破地震频谱分析很重要,它对各种结构物,地下工程等,在爆破作用下的动力分析,提供了不可缺少的振动参数。?3.3 频谱分析?地震波是质点作周期性振动的弹性波,波动可能是瞬态的、周期性的或随机性的。?分析地震的作用,所关心的是地震通过时质点产生的运动。谐振运动的基本运动方程为:u=umax sinwt (3)??式中:u是在t时刻的质点位移;umax是位移幅值;w 是角频率,w =2πf,f为频率。对式(3)求导,得到质点作谐振动的速度(V)和加速度(a)。 若只考虑最大值,则 实际上,地震波中质点的运动不是简单的谐振动,位移幅值和周期都不是固定常数,而随时间变化。但上述各参量幅值间的关系,可用来分析地震波中质点的运动。爆破产生的振动波中包含各种成分的波。图1是一较典型的爆炸地震图。地震图中三条曲线分别记录了质点位置矢量在三个方向上(纵向L,垂直方向Z,横向T)的分量。可以看出,最先记录下的是体波,尔后是表面波。各谐波分量中振幅最大的分量的频率为主频率。求算主频率的方法是对波形进行傅里叶谱分析,因质点的振动波形是时间的函数,通过傅里叶变换把振动波形的振幅随时间变化的函数变换成振幅随频率变化的函数,即由时域变成频域。?3.3.1 频谱分析是以傅里叶级数和傅里叶积分为基础。波形分析采用傅里叶积分的方法,是把时间域里的信号x(t)变换为频率域里的函数x(w)之间的关系,记录波形只在持续的时间T内,x(t)才存在傅里叶变换。??式中:x(t):是爆破振动量(如位移、加速度等 )的时间历程;x(w):为x(t)的频谱;w是角频率;j=-1是复数单位。?对有限长波形的傅里叶变换是一复数。? ?x(w)=R(w)+jI(w) (7)??式中实部: ?虚部: 谱的幅值为 相位谱为: 快速傅里叶变换(即FFT算法),是通过把整个数据序列,分离成若干个较短的序列来计算离散傅里叶变换(DFT),以替代整个序列的DFT。FFT算法有多种计算结构形式,常用的柯立 杜开法是使数列成2P的数据序列。FFT法可达到较快较高的速度和精度,达到实时分析的效果和替代繁杂的计算。因此用它编制成软件,在计算机上进行频谱分析。3.3.2 进行实测的爆破地震测试系统框图如图2所示。?使用上述系统可以把爆破地震直接进行记录分析打印,得到频谱分析的结果,找出振动波形中的主频率。该系统可用笔记本式电脑直接在现场进行测试。?找出主频率,以此来判断地震波对结构的影响,以及分析结构在地震波作用下的反应,求算出爆破地震荷载的大小和方向。?

佳能primazoom70f为什么按快门没反应?

3,快门问题:可能是相机快门出现故障或损坏。这种 情况下需要将相机送到专业的维修站修理或更换配件。 4,其他问题:可能还会有其他问题导致相机无法正常 工作,例如相机失去了功能、拍摄功能因为误操作而关 闭、指示灯关闭等。这种情况下需要根据具体情况进行 诊断和处理。 总之,如果按下快门没有反应,建议检查电池和胶卷是 否正常安装,如果没有发现问题,可能是相机快门故 障,需要寻求专业维修帮助。

化学反应速率比值法原理

化学反应速率比值法原理:若要比较不同条件下用不同物质表示的化学反应进行的快慢,必须把题中所给的速率转化成同一个单位的同一个物质的速率才具有可比性。而这个转化的过程用到的就是速率比等于计量数的比,涉及到你所说的用各物质表示的反应速率除以各自的化学计量数,然后比较大小,这句话的前提必须是各物质表示的速率的单位是相同的,如果不同一定要记得先进行单位的换算。瞬时反应速率平均反应速率,其大小也与指定时间以及时间间隔有关。随着反应的进行,开始时反应物的浓度较大,单位时间内反应的进行,开始时反应物的浓度较大,单位时间反应浓度减小得较快,反应产物浓度增加也较快,也就是反应较快;在反应后期,反应物的浓度变小,单位时间内反应物减小得较慢,反应产物浓度增加也较慢,也就是反应速率较慢。以上内容参考:百度百科-化学反应速率

吸热反应遵循能量最低原理吗?既然能量越低物质越稳定,那么为什么会有吸热反应??

所有反应都必须遵循Gibbs free Energy公式 指吉布斯自由能G。,△G=△H-T△S (△H=enthalpy 焓变, △S= entropy 熵变) 当△G小于0 , 正反应进行; 当△G大于0 , 逆反应进行; 当△G等于0 , 反应平衡。 例如CaCO3(固体) 加热 --- CaO(固体) + CO2 (气体)△H=178.3KJ/mol 属于吸热反应, △S=0.25 KJ/k.mol 你可以带入公式, 算算T 是多少是正反应进行(△G小于0)。 对, 跟内能没关系应为这个反应生成CO2 气体, 内能高于固体。 只跟吉布斯自由能G有关。 追问: 还是没解决我的问题啊- - 回答: 结论 吸热反应 不遵循能量最低原理。 追问: 自发的 吸热反应 呢?自发的吸热反应也属于能量最低原理所说的 “一切自然变化进行的方向都是使能量降低” 啊 回答: 自发的 吸热反应 包括 自由基反应 , 由于activation energy (中文应该就是初始激活能) 很低, 导致自发的吸热反应进行。 “一切自然变化进行的方向都是使能量降低”这个理论是错误的, 你见过 化学反应 能量图(reaction energy diagram)吗? 追问: 那正确的能量最低原理的叙述应该是? 化学反应 能量图我想我应该看过 回答: 我马上能想起正确的 能量最低原理 的叙述应该是(Hund"s rule)叙述 电子排列 从最 低能量 轨道开始。 当然 有机化学 里比较thermodynamic 和 kinetic 产物时, 前者一定是两者能量最低的, 不过初始 激活能 很高) 如果有人说所有反应都是朝着能量低的产物方向去的, 你应该回他一句: it"s rubbish. 追问: 那 键能 大的时候,能量就低是何解? 回答: 键能大的时候, 如N2, 能量低的意思是指它的 化学反应 活性低, 不易反应, 化学反应需要的初始激活能很高。 而作为气体分子, 它的动能活性大于其他液体和固体分子。 追问: 键能 高的时候,难反应。所以说分子的能量低,对吧? 回答: 键能 高的时候,难反应, 这只能说明反应需要的初始激活能高, 不代表分子的能量低。 追问: 那就是说, 键能 高的时候,反应活性就低咯? 还有你上面说的正确的能量最低原理括号里写着 洪特 定律,这两者有关系吗?? 麻烦能再概括一次能量最低原理吗?最好能有原话。 回答: 好了, 我实在不想多概括了, 你多读读相关书籍吧。 以后有例题欢迎问我。

乳化作用是化学反应还是物理变化

http://baike.baidu.com/view/570123.html?wtp=tt

NACL和NACLO反应的方程式?

ClO-有很强的氧化性,无论是酸性,中性,还是碱性环境中.尤其在酸性环境中氧化性最强. 由于Cl2有很强的氧化性,所以要将Cl-氧化成Cl2,ClO-必须在酸性环境中才行,反应如下: ClO- + Cl- + 2H+ == Cl2↑ + H2O 反应:Cl2 + 2OH- == ClO- + Cl- + H2O 也说明在碱性环境中,Cl2氧化性比ClO-强. 反应:Cl2 + H2O =可逆= ClO- + Cl- + 2H+ 说明在中性环境中,两者氧化性相当. 【综】:NaCl与NaClO不反应,但是酸化后,ClO-可以将Cl-氧化成Cl2,发生归中反应. ClO- + Cl- + 2H+ == Cl2↑ + H2O

氯化钠与水反应方程式

电解 饱和 NaCl溶液正极:Cl2 负极:H2反应方程式:2NaCl+2H2O==通电==2NaOH+H2↑+Cl2↑反应后溶液呈碱性电解 不饱和 NaCl溶液正极:不产生气泡(生成Cl2完全被水吸收)负极:H2反应方程式:NaCl+H2O==通电==NaClO+H2↑反应后溶液一般呈碱性

为什么说加硅铁是放热反应?

硅铁就是铁和硅组成的铁合金。 硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的铁硅合金。由于硅和氧很容易化合成二氧化硅,所以硅铁常用于炼钢时作脱氧剂,同时由于SiO2生成时放出大量的热,在脱氧的同时,对提高钢水温度也是有利的。同时,硅铁还可作为合金元素加入剂,广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,硅铁在铁合金生产及化学工业中,常用作还原剂

NaCl能和什么反应

AgNO3

氯化钠和稀盐酸反应方程式是什么?

氯化钠与稀盐酸不发生化学反应,所以没有反应方程式。化学反应的本质是旧化学键的断裂与此同时新化学键的生成(必须要有新物质生成)。氯化钠+稀盐酸假使化学键断裂,但是不能生成新的化学键,所以氯化钠与稀盐酸不发生反应。氯化钠与稀盐酸不反应,可以大量存在于该溶液中。氯化钠的性质氯化钠是白色无臭结晶粉末。熔点801℃,沸点1465℃,微溶于乙醇、丙醇、丁烷,在和丁烷互溶后变为等离子体,易溶于水,水中溶解度为35.9g(室温)。NaCl分散在酒精中可以形成胶体,其水中溶解度因氯化氢存在而减少,几乎不溶于浓盐酸。无臭味咸,易潮解。易溶于水,溶于甘油,几乎不溶于乙醚。以上内容参考 百度百科--氯化钠

NaCl能和什么反应?

1.和AgNO3能反应 AgNO3+NaCl=AgCl↓+NaNO3 2.和水在通电条件下可以反应 2NaCl+2H2O=(通电)H2↑+Cl2↑+2NaOH 3.把氯化钠(固体)加热到熔融状态,再通电也可以反应 2NaCl=(通电)2Na+Cl2↑ 4.氯化钠和氟气能反应 2NaCl+F2=2NaF+Cl2 5.和硝酸亚汞能反应 NaCl+HgNO3=HgCl↓+NaNO3 6.和氢气可以反应 2NaCl+H2=(△)2Na+HCl 注意:以上反应中第1、2、4、5个反应是将氯化钠配成溶液再反应,第6个反应是用氯化钠固体反应.

洗头剂的原理是化学反应还是乳化

洗头剂的原理是乳化原理,具体解释如下:由于表面活性剂的作用,使本来不能互相溶解的两种液体能够混到一起的现象称为乳化现象,具有乳化作用的表面活性剂称为乳化剂.洗头剂乳化机理如下:加入洗发剂后,由于表面活性剂的两亲性质,使之易于在油水界面上吸附并富集,降低了界面张力 界面张力是影响乳状液稳定性的一个主要因素。因为乳状液的形成必然使体系界面积大大增加,也就是对体系要做功,从而增加了体系的界面能,这就是体系不稳定的来源。

乳化反应的乳状液的制备

乳状液的制备在确定其合理的配方后,其乳化技术也是极其重要的。化妆品的制备主要是混合技术。虽然混合技术比较单纯,但作为化妆品,要求有多种功能和性质,要制备出性质优良和稳定的乳状液等化妆品,并不是一件简单的事。(一)乳化技术乳状液是由水相和油相所组成的,乳状液的制备一般是先分别制备出水相和油相,然后再将它们混合而得到乳状液。1、水相的制备按照配方,将水溶性物质如甘油、胶质原料等尽可能溶于水中。制备水相的温度,在很大程度上取决于油相中各成分的物理性质,水相的温度应接近油相的温度,如低于油相的温度。不宜超过10℃。在制备乳状液时,乳化剂的加入方式由多种,将乳化剂加入水中构成水相,然后在激烈搅拌下加入油相,形成乳状液的方法,常叫做剂在水中法的乳化方法。2 、油相的制备根据配方,将全部油相成分一起溶解于一容器内,如油相成分中有高熔点的蜡、脂肪酸、醇等,则这时需要加热,融化油性成分,使其保持液体状态。另若油相溶液在冷却时,趋于凝固或冻结,则这时应使油相的温度保持在凝固温度以上至少10℃,以使油相保持液体状态,便于与水相进行乳化。当乳化剂使用非离子型表面活性剂时,常是将亲水性或亲油性乳化剂溶于油相中。用这种方法制备乳状液,常叫做剂在油中法。若能乳状液配方中有使用脂肪酸,则将脂肪酸溶于油相中,而将碱溶于水中,两相混合,即在界面形成皂。而得到稳定的乳状液。这种制备乳状液的方法叫做初生皂法,是一种较传统的制备乳状液的方法。(二)乳化方法制备乳状液的乳化方法,除了前述的初生皂法、剂在水中法、剂在油中法之外,还有:1、油、水混合法通常此法是水、油两相分别在两个容器内进行,将亲油性的乳化剂溶于油相,将亲水性乳化剂溶于水相,而乳化在第三容器内(或在流水作业线之内)进行。每一相以少量而交替地加于乳化容器中,直至其中某一相已加完,另一相余下部分以细流加入。如使用流水作业系统,则水、油两相按其正确比例连续投入系统中。2、转相乳化法在一较大容器中制备好内相,乳化就在此容器中进行。(如若要制取O/W型乳状液,就在乳化容器中制备油相。)将已制备好的另一相(外相,在例中为水相),按细流形式或一份一份地加入。起先形成W/O型乳状液,水相继续增加,乳状液逐渐增稠,但在水相加至66%以后,乳状液就突然发稀,并转变成O/W型乳状液,继续将余下地水相较快速加完,而最终得到O/W型乳状液。类似本例可制得W/O型乳状液。此种方法称为转相乳化法,由此法得到的乳状液其颗粒分散的很细,且均匀。3、低能乳化法低能乳化法简记为LEE。通常的乳化方法大都是将外相、内相加热到80℃(75-90℃)左右进行乳化,然后进行搅拌、冷却,在这过程中需要消耗大量的能量。但从理论上看进行乳化并不需要这么多的能量,乳化需要的能量只影响乳状液的分散度和由表面活性剂引起的表面张力的降低,理论上可以计算出所需的能量,它与通常乳化所消耗的能量相比少得很多,即表明通常的乳化方法存在着大量能量的浪费,如冷却水所带走的热量都是白白丢弃了。因此,J.J.Lin(林约瑟夫)提出了低能乳化法。其方法原理是,在进行乳化时,外相不全部加热,而是将外相分成两部分,α相与β相,α和β分别表示α相与β相的重量分数(此处α+β=1),只是对β相部分进行加热,由内相与β相进行乳化,制成浓缩乳状液,然后用常温的α外相进行稀释,最终得到乳状液。其原理可表示如下图 显然,这种乳化方法节省了许多能量,节能效率随外相/内相和α/β的比值增大而增大。这种方法不仅节约了能源,而且可提高乳化产品的效率,如缩短了制造时间,因为可大大缩短冷却过程时间,且可减少冷却水的使用节约了能量。这种低能乳化法不仅用于制造乳液和膏霜,还可以用于制造香波,但它主要适用于制备O/W型乳状液。上述所介绍的低能乳化法,其实只是一个基本原理,实际应用时,可依据乳状液的类型,油、水相的比例及其粘度等具体要求,设计出可行的低能乳化方案,其具体操作过程,对乳状液的质量都有影响。

氯化钠既可以与什么反应又可以与什么反应他是什么氧化物?

氯化钠(NaCl)是一种常见的盐,它是由氯原子和钠原子组成的化合物。氯化钠可以与水反应生成氯化钠溶液,反应方程式如下:NaCl + H2O = NaOH + HCl其中,NaCl表示氯化钠,H2O表示水,NaOH表示氢氧化钠,HCl表示盐酸。氯化钠还可以与硫酸反应生成硫酸钠和氯气,反应方程式如下:NaCl + H2SO4 = NaHSO4 + HCl其中,NaCl表示氯化钠,H2SO4表示硫酸,NaHSO4表示硫酸钠

油和醋混合的乳化反应以及形成原理?

1、乳化原理在制备乳状液时,是将分散相以细小的液滴分散于连续相中,这两个互不相溶的液相所形成的乳状液是不稳定的,而通过加入少量的乳化剂则能得到稳定的乳状液。对此,科学工作者从不同的角度提出了不同的理论解释,这些乳状液的稳定机理,对研究、生产乳状液的化妆品有着重要的理论指导意义。(1)定向楔理论 这是1929年哈金斯(Harkins)早期提出的乳状液稳定理论。他认为在界面上乳化剂的密度最大,乳化剂分子以横截面较大的一端定向的指向分散介质,即总是以“大头朝外,小头朝里”的方式在小液滴的外面形成保护膜,从几何空间结构观点来看这是合理的,从能量角度来说是复合能量最低原则的,因而形成的乳状液相对稳定。并以此可解释乳化剂为一价金属皂液及二价金属皂液时,形成稳定的乳状液的机理。乳化剂为一价金属皂在油-水界面上作定向排列时,以具有较大极性头基团伸向水相;非极性的碳氢键深入油相,这时不仅降低了界面张力,而且也形成了一层保护膜,由于一价金属皂的极性部分之横界面比非极性碳氢键的横界面大,于是横界面大的一端排在外圈,这样外相水就把内相油完全包围起来,形成稳定的O/W型的乳状液。而乳化剂为二价金属皂液时,由于非极性碳氢键的横界面比极性基团的横界面大,于是极性基团(亲水的)伸向内相,所以内相是水,而非极性碳氢键(大头)伸向外相,外相是油相,这样就形成了稳定的W/O型乳状液。 这种形成乳状液的方式,乳化剂分子在界面上的排列就像木楔插入内相一样,故称为“定向楔”理论。此理论虽能定性的解释许多形成不同类型乳状液的原因,但常有不能用它解释的实例。理论上不足之处在于它只是从几何结构来考虑乳状液的稳定性,实际影响乳状液稳定的因素是多方面的。何况从几何上看,乳状液液滴的大小比乳化剂的分子要大得多,故液滴得曲表面对于其上得定向分子而言,实际近于平面,故乳化剂分子两端的大小就不是重要的,无所谓楔形插入了。(2)界面张力理论 这种理论认为界面张力是影响乳状液稳定性的一个主要因素。因为乳状液的形成必然使体系界面积大大增加,也就是对体系要做功,从而增加了体系的界面能,这就是体系不稳定的来源。因此,为了增加体系的稳定性,可减少其界面张力,使总的界面能下降。由于表面活性剂能够降低界面张力,因此是良好的乳化剂。凡能降低界面张力的添加物都有利于乳状液的形成及稳定。在研究一系列的同族脂肪酸作乳化剂的效应时也说明了这一点。随着碳链的增长,界面张力的降低逐渐增大,乳化效应也逐渐增强,形成较高稳定性的乳状液。但是,低的界面张力并不是决定乳状液稳定性的唯一因素。有些低碳醇(如戊醇)能将油-水界面张力降至很低,但却不能形成稳定的乳状液。有些大分子(如明胶)的表面活性并不高,但却是很好的乳化剂。固体粉末作为乳化剂形成相当稳定的乳状液,则是更极端的例子。因此,降低界面张力虽使乳状液易于形成,但单靠界面张力的降低还不足以保证乳状液的稳定性。总之,可以这样说,界面张力的高低主要表明了乳状液形成之难易,并非为乳状液稳定性的必然的衡量标志。(3)界面膜的稳定理论 在体系中加入乳化剂后,在降低界面张力的同时,表面活性剂必然在界面发生吸附,形成一层界面膜。界面膜对分散相液滴具有保护作用,使其在布朗运动中的相互碰撞的液滴不易聚结,而液滴的聚结(破坏稳定性)是以界面膜的破裂为前提,因此,界面膜的机械强度是决定乳状液稳定的主要因素之一。与表面吸附膜的情形相似,当乳化剂浓度较低时,界面上吸附的分子较少,界面膜的强度较差,形成的乳状液不稳定。乳化剂浓度增高至一定程度后,界面膜则由比较紧密排列的定向吸附的分子组成,这样形成的界面膜强度高,大大提高了乳状液的稳定性。大量事实说明,要有足够量的乳化剂才能有良好的乳化效果,而且,直链结构的乳化剂的乳化效果一般优于支链结构的。此结论都与高强度的界面膜是乳状液稳定的主要原因的解释相一致。如果使用适当的混合乳化剂有可能形成更致密的“界面复合膜”,甚至形成带电膜,从而增加乳状液的稳定性。如在乳状液中加入一些水溶性的乳化剂,而油溶性的乳化剂又能与它在界面上发生作用,便形成更致密的界面复合膜。由此可以看出,使用混合乳化剂,以使能形成的界面膜有较大的强度,来提高乳化效率,增加乳状液的稳定性。在实践中,经常是使用混合乳化剂的乳状液比使用单一乳化剂的更稳定,混合表面活性剂的表面活性比单一表面活性剂往往要优越得多。基于上述两段得讨论,可以得出这样得结论:降低体系得界面张力,是使乳状液体系稳定的必要条件:而形成较牢固的界面膜是乳状液稳定的充分条件。(4)电效应的稳定理论 对乳状液来说,若乳化剂是离子型的表面活性剂,则在界面上,主要由于电离还有吸附等作用,使得乳状液的液滴带有电荷,其电荷大小依电离强度而定;而对非离子表面活性剂,则主要由于吸附还有摩擦等作用,使得液滴带有电荷,其电荷大小与外相离子浓度及介电常熟和摩擦常数有关。带电的液滴靠近时,产生排斥力。使得难以聚结,因而提高了乳状液的稳定性。乳状液的带电液滴在界面的两侧构成双电层结构,双电层的排斥作用,对乳状液的稳定有很大的意义。双电层之间的排斥能取决于液滴大小及双电层厚度1/κ,还有ξ电势(或电势φ0)。当无电介质表面活性剂存在存在时,虽然界面两侧的电势差ΔV很大,但界面电位φ0却很小,所以液滴能相互靠拢而发生聚沉,这对乳状液很不利。当有电解质表面活性剂存在时,令液滴带电。O/W型的乳状液多带负电荷;而W/O型的多带正电荷。这时活性剂离子吸附在界面上并定向排列,以带电端指向水相,便将反号离子吸引过来形成扩散双电层。具有较高的φ0及较厚的双电层,而使乳状液稳定。若在上面的乳状液中加入大量的电解质盐,则由于水相中反号离子的浓度增加,一方面会压缩双电层,使其厚度变薄,另一方面他会进入表面活性剂的吸附层中,形成一层很薄的等电势层,此时,尽管电势差值不便,但是φ0减小,双电层的厚度也减薄,因而乳状液的稳定性下降。(5)固体微粒 作为乳化剂的稳定理论许多固体微粒,如碳酸钙、粘土、碳黑、石英、金属的碱式硫酸盐、金属氧化物以及硫化物等,可以作为乳化剂起到稳定乳状液的作用。显然,固体微粒只有存在于油水界面上才能起到乳化剂的作用。固体微粒是存在于油相、水相还是在它们的界面上,取决于油、水对固体微粒润湿性的相对大小,若固体微粒完全被水润湿,则在水中悬浮,微粒完全被油润湿,则在油中悬浮,只有当固体微粒既能被水、也能被油所润湿,才会停留在油水界面上,形成牢固的界面层(膜),而起到稳定作用。这种膜愈牢固,乳状液愈稳定。这种界面膜具有前述的表面活性剂吸附于界面的吸附膜类似的性质。

Na与NaCl溶液反应的化学方程式和现象

4Na+2H2O=4NaH+O2

氯化钠会与什么反应?

和硝酸银反应生成氯化银沉淀;和较浓的硫酸反应生成氯化氢(高沸点酸制低沸点酸)

NaCl能和什么反应?

1.和AgNO3能反应 AgNO3+NaCl=AgCl↓+NaNO3 2.和水在通电条件下可以反应 2NaCl+2H2O=(通电)H2↑+Cl2↑+2NaOH 3.把氯化钠(固体)加热到熔融状态,再通电也可以反应 2NaCl=(通电)2Na+Cl2↑ 4.氯化钠和氟气能反应 2NaCl+F2=2NaF+Cl2 5.和硝酸亚汞能反应 NaCl+HgNO3=HgCl↓+NaNO3 6.和氢气可以反应 2NaCl+H2=(△)2Na+HCl 注意:以上反应中第1、2、4、5个反应是将氯化钠配成溶液再反应,第6个反应是用氯化钠固体反应.

化学工作者从有机反应:RH+Cl2(g)光RCl(l)+HCl(g)受到启发,提出的在农药和有机合

这道题答案是A卤代烃一般都不溶于水,而盐酸是水溶的,水洗会分层,水层(溶解有氯化氢)和油层(卤代烃),然后再分液就可以分离了蒸馏法一般用于分离两种互溶的液体,这里氯化氢是气体,所以不行升华法,固体升华,这里也不行有机溶剂萃取,一般也是用于分离两种液体的所以这道题是A有疑问请追问望采纳谢谢

急需减少和增长碳链的化学反应方程式和反应的类型

增长碳链: 1.武慈法:RX+R`X—(Na)—RR`+NaX.武慈法副反应多 2.格氏试剂法:RH+Cl2——RCl+HCl,RCl+Mg—(乙醚中)—RMgCl, RMgX+R`X——RR`+MgX2/RMgX+CO2+H2O——RCooH+Mg(OH)X.常用方法,相关的还有有机铜锂法. 3.腈化物水解法:RCl+NaCN——RCN,RCN+2H2O——RCOOH+NH3,用于一个碳的增长. 4.炔化物取代/加成法:C2H2+Na—(EtNa)—C2HNa(乙炔钠),C2HNa+RX——RCCH C2H2+C2H2——CH2=CH-C2H2 5.环氧乙烷法:(CH2)O+RMgX——RCH2CH2OH,常用于增长两个碳. 6.醛酮缩合法:CH3CHO+CH3CHO——CH3CH(OH)CH2CHO—加热—CH3CH=CHCHO 减少碳链: 1.烯烃氧化法:RCH=CH2—KMnO7—RCOOH 2.脱羧法:RCOOH—CaO—RH+CaCO3,-R要简单

用空间效应及电子效应解释卤代烃发生双分子亲核取代反应的活性排序?

你这里比较的是:被取代的活性次序,实际上就是RI,RBr,RCl,RF中各个卤素原子的离去顺序。这个顺序,就是RI>RBr>RCl>RF。影响这个顺序的因素是R-X键断裂时的键能,而不是键的极性。在这四个物质中,键能:C-F>C-Cl>C-Br>C-I,键能越低越容易断裂;另外,还有离去基团的碱性:F- > Cl- > Br- > I-,而碱性越弱,形成的负离子越稳定(碱性越弱,负电荷就越容易分散,就越稳定)。综上,这个反应的顺序就是RI>RBr>RCl>RF。还有,键的极性强弱不是判断键断裂难易程度的标准,要看键能。而且,通常极性强的键,往往结合的更为紧密,键能很高。供参考

打铁花的化学反应方程式

打铁花的化学反应方程式为:Fe2O3 + 3CO = 2Fe + 3CO2(反应条件为高温)。

确山打铁花是吸热反应吗?

确山打铁花是放热反应。滚热的铁水被木瓢舀起,泼到城墙上,铁水经过泼洒和城墙碰撞,形成细小的颗粒四处飞散,大大增加了和氧气的接触表面积,氧气和铁水快速反应,形成四氧化三铁,放出大量的热,放出耀眼的桔黄色光线,非常的漂亮。

什么是木桶原理反应用?

水桶效应是指一只水桶想盛满水,必须每块木板都一样平齐且无破损,如果这只桶的木板中有一块不齐或者某块木板下面有破洞,这只桶就无法盛满水。是说一只水桶能盛多少水,并不取决于最长的那块木板,而是取决于最短的那块木板。也可称为短板效应。一个水桶无论有多高,它盛水的高度取决于其中最低的那块木板。

巴普洛夫反应什么意思?

巴甫洛夫效应就是经典条件反射,即一个刺激和另一个带有奖赏或惩罚的无条件刺激多次联结,可使个体学会在单独呈现该一刺激时,也能引发类似无条件反应的条件反应。原理具体如下:1.实验开始时,先呈现铃声,狗并未分泌唾液,此时铃声仅是中性刺激。2.之后,让铃声先于食物数秒钟出现。这样将铃声与食物多次配对后,当只给铃声而无食物时,也引起狗分泌唾液。3.中性刺激铃声因与食物的多次配对而成为食物的信号,即条件刺激,从而引起狗分泌唾液这一条件反应。巴甫洛夫将铃声与唾液分泌之间联系的建立称为条件反射。扩展资料巴甫洛夫效应的学说成果1.巴甫洛夫学说坚持主观现象与客观现象之间的辩证统一,强调一切主观活动都是由外界影响所致的因果决定论,主张采用条件反射法这一客观的实验法来科学地研究心理现象。2.因此,巴甫洛夫学说又坚持心理现象与生理现象之间的辩证统一,主张从中枢神经活动的规律中探明心理活动的生理机制。3.此外,坚持机体与环境之间的辩证统一,把条件反射视为机体与外部世界相互作用的要素,是在机体与外界维持平衡的过程中不断建立起来和变化着的,它服从事物运动和发展的规律。参考资料:百度百科:巴甫洛夫学说

什么唯一不变就是永远在变反应了什么原理

这是涉及到哲学层面的原理,辩证唯物主义认为:世界的统一性在于它的物质性,物质是世界所发生的一切变化的基础。运动是物质的存在形式,物质的运动是绝对的,静止是相对的。辩证法:辩证法的规律是从自然界和人类社会的历史中抽引出来的,实质上可以归结为以下3个规律:从量转化为质和质转化为量的规律;对立的相互渗透的规律;否定之否定规律。辩证法相关辩证法是关于一切运动最普遍的规律的科学。运动的根源在于矛盾。矛盾双方只存在于它们的相互依存和相互联系之中。人们要认识物质世界的运动规律,必须通过实践,人应该在实践中证明自己思维的真理性。

氧化铜和碳反应在什么情况下生成CO?

曾经有一位中学教师在用酒精喷灯加热的条件下(约800度)进行这个反应,得到的主要是二氧化碳和铜。我的意见是:一氧化碳只有在很高的温度(一千度还是不够的)下才能生成,因为较低温度下二氧化碳才是较稳定的产物,这不完全是氧多还是少的问题。或者把你的问题转化一下:假使碳被氧化成二氧化碳,那么在氧化铜用完后,二氧化碳能否将多余的碳氧化?这是很难的,需要货真价实的高温,绝对要一千度以上。具体的数值,可以用热力学参数估算一下,随便找一本《普通化学原理》即可。

锌锰原电池的正极反应应该怎么写?是NH4+得电子,还是MnO2得电子?

正极反应:2MnO2+2H++2e-=2MnO(OH)负极反应:Zn+2NH4Cl=Zn(NH3)Cl+2H++2e-

SO2 能否与 汞 发生反应?

你还是好好钻研一下《普通化学原理》吧

高中化学怎么正确书写反应热方程式

物质的稳定性和什么最有关,稀有气体为什么不容易和其他气体产生反应(本质是什么?

指氦、氖、氩、氪、氙、氡以及不久前发现的Uuo7种元素,又因为它们在元素周期表上位于最右侧的零族,因此亦称零族元素。稀有气体单质都是由单个原子构成的分子组成的,所以其固态时都是分子晶体。除氦以外,稀有气体原子的最外电子层都是由充满的ns和np轨道组成的,它们都具有稳定的8电子构型。稀有气体的电子亲合势都接近于零,与其它元素相比较,它们都有很高的电离势。因此,稀有气体原子在一般条件下不容易得到或失去电子而形成化学键。表现出化学性质很不活泼,不仅很难与其它元素化合,而且自身也是以单原子分子的形式存在,原子之间仅存在着微弱的范德华力(主要是色散力)。在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱。如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应。原子越小,电子所受约束越强,元素的“惰性”也越强。

被核辐射辐射到会有什么反应?

恶心,呕吐,细胞发生癌变

人体受到核辐射影响后会有什么反应?

急性初期症状:恶心呕吐发热腹泻短时间内大剂量电离辐射引起的放射性损伤,称急性放射病。较长时间超过允许剂量的辐射损伤,称慢性放射病。此病常见于接受过量射线的工作人员、公众及核武器爆炸的罹难者,主要引发造血功能障碍、内脏出血、组织坏死、感染及恶性变等。其中,核辐射导致的全身外照射损伤主要出现在急性放射病典型病程的初期,表现为恶心、呕吐、疲劳、发热和腹泻。“假愈期”患者持续时间长短不同,症状有所缓解。严重的发展到了极期则有感染、出血和胃肠症状。经恰当治疗后上述症状逐渐缓解。而局部照射损伤是随受照剂量的不同,在受照部位可能出现红斑、水肿、干性脱皮和湿性脱皮、起水泡、疼痛、坏死、坏疽或脱发等症状。局部皮肤损伤通常持续几周到几个月,严重者常规方法难以治愈。不过,外照射多见于核电站工作人员。体内污染引起的内照射一般没有明显的早期症状,除非摄入量很高,但这种情况非常罕见。4000毫西弗/次辐射可致死“当量剂量”是反映各种射线或粒子被吸收后引起的生物效应强弱的辐射量。其国际标准单位是“西弗”,定义是每千克人体组织吸收1焦耳为1西弗。西弗是个非常大的单位,因此通常使用毫西弗、微西弗。1毫西弗=1000微西弗。对日常工作中不接触辐射性工作的人来说,每年正常的天然辐射(主要是因为空气中的氡辐射)为1000~2000微西弗。一次小于100微西弗的辐射,对人体无影响。与放射相关的工人,一年最高辐射量为50000微西弗。一次性遭受4000毫西弗会致死。

人暴露在高度核辐射下会当场致死吗?比如直接被核反应堆漏射

不单单会辐射死你。直接爆炸炸死你

如图所示,反应电动机工作原理的实验装置是(  )A.B.C.D

A、图中是奥斯特实验,说明了通电导体周围存在磁场,不符合题意;B、当闭合开关后,通电导体在磁场中受力运动,是电动机的原理,符合题意;C、当导体在磁场中做切割磁感线运动时,检流计的指针会发生偏转,说明会产生感应电流,这是电磁感应现象,是发电机的原理,不符合题意;D、当转动线圈时,电路中就会产生电流,即是利用的电磁感应现象,即是发电机的原理,不符合题意.故选B.

药物合成反应中缩写NCA是什么 ? 结构式怎么写?

NCA(N-氯代乙酰胺)

勒夏特列原理只用于化学反应吗?物理作用适应吗?

勒夏特列原理是一个化学原理,用于化学反应也是有条件的,只适用于具有平衡的化学反应,不是平衡反应的化学反应也不适用。勒夏特列原理不适用于物理作用。

二氧化硫使品红褪色是物理还是化学反应?

物理变化

二氧化硫使品红褪色是氧化还原反应吗?

选13。1.活性炭使品红褪色得原理是因为活性炭具有吸附性。3.SO2的漂白原理是SO2与有色物质结合生成了不稳定的无色物质。2456的原理都是因为强氧化性导致褪色。

二氧化硫使品红褪色是物理还是化学反应

化学反应,二氧化硫与品红反应生成不稳定无色物质

剪映为什么键盘反应慢?

剪映我觉得就是你的这个就是软件就是反应比较慢的这个样子的,所以最后导致你的键盘也是有问题的,这个最后就是键盘有问题的。下面是关于键盘的扩展资料。构造外壳,有的键盘采用塑料暗钩的技术固定在键盘面板和底座两部分,实现无金属螺丝化的设计,所以分解时要小心以免损坏。键盘为了适应不同用户的需要,常规键盘具有CapsLock(字母大小写锁定)、NumLock(数字小键盘锁定)、ScrollLock(滚动锁定键)三个指示灯(部分无线键盘已经省略这三个指示灯),标志键盘的当前状态。这些指示灯一般位于键盘的右上角,不过有一些键盘采用键帽内置指示灯,这种设计可以更容易地判断键盘当前状态,但工艺相对复杂,所以大部分普通键盘均未采用此项设计。[1]盘区、Num数字辅助键盘区、F键功能键盘区、控制键区,对于多功能键盘还增添了快捷键区。键盘电路板是整个键盘的控制核心,它位于键盘的内部,主要担任按键扫描识别,编码和传输接口的工作。键帽的反面可见都是键柱塞,直接关系到键盘的寿命,其摩擦系数直接关系到按键的手感。一般键帽的印刷有四种技术:a.油墨印刷技术,b.激光蚀刻技术,c.二次成型技术, d.热升华印刷技术。分类普通型一般台式机键盘的分类可以根据击键数、按键工作原理、键盘外形等分类。键盘的种类很多,一般可分为触点式和无触点式还有雷射式(镭射激光键盘)三大类前者借助于金属把两个触点接通或断开以输入信号,后者借助于霍尔效应开关(利用磁场变化)和电容开关(利用电流和电压变化)产生输入信号。

为什么LAMP反应扩增出来的产物跑电泳是梯形条带

可以把lamp产物想象成很扩增目标的多聚体,多少个单位聚集在一起都有,所以有梯度带,有时梯度带到点样孔间还有糊带

高一上学期化学反应方程式及离子方程式各50个(人教版)

高一化学方程式 1、硫酸根离子的检验: BaCl2 + Na2SO4 = BaSO4↓+ 2NaCl 2、碳酸根离子的检验: CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl 3、碳酸 钠与盐酸反应: Na2CO3 + 2HCl = 2NaCl + H2O + CO2↑ 4、木炭还原氧化铜: 2CuO + C 高温 2Cu + CO2↑ 5、铁片与硫酸 铜溶液反应: Fe + CuSO4 = FeSO4 + Cu 6、氯化钙与碳酸钠溶液反应 :CaCl2 + Na2CO3 = CaCO3↓+ 2NaCl 7、钠在空气中燃烧:2Na + O2 △ Na2O2 钠与氧气反应:4Na + O2 = 2Na 2O 8、过氧化钠与水反应:2Na2O2 + 2H2O = 4NaOH + O2↑ 9、过氧 化钠与二氧化碳反应:2Na2O2 + 2CO2 = 2Na2CO3 + O2 10、钠与水反 应:2Na + 2H2O = 2NaOH + H2↑ 11、铁与水蒸气反应:3Fe + 4H2O( g) = F3O4 + 4H2↑ 12、铝与氢氧化钠溶液反应:2Al + 2NaOH + 2H2 O = 2NaAlO2 + 3H2↑ 13、氧化钙与水反应:CaO + H2O = Ca(OH)2 14、氧化铁与盐酸反应:Fe2O3 + 6HCl = 2FeCl3 + 3H2O 15、氧化铝与盐酸反应:Al2O3 + 6HCl = 2AlCl3 + 3H2O 16、氧化铝 与氢氧化钠溶液反应:Al2O3 + 2NaOH = 2NaAlO2 + H2O 17、氯化铁 与氢氧化钠溶液反应:FeCl3 + 3NaOH = Fe(OH)3↓+ 3NaCl 18、硫酸 亚铁与氢氧化钠溶液反应:FeSO4 + 2NaOH = Fe(OH)2↓+ Na2SO4 19 、氢氧化亚铁被氧化成氢氧化铁:4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3 20、氢氧化铁加热分解:2Fe(OH)3 △ Fe2O3 + 3H2O↑ 21、实验室 制取氢氧化铝:Al2(SO4)3 + 6NH3u2022H2O = 2Al(OH)3↓ + 3(NH3) 2SO4 22、氢氧化铝与盐酸反应:Al(OH)3 + 3HCl = AlCl3 + 3H2O 2 3、氢氧化铝与氢氧化钠溶液反应:Al(OH)3 + NaOH = NaAlO2 + 2H2O 24、氢氧化铝加热分解:2Al(OH)3 △ Al2O3 + 3H2O 25、三氯化铁 溶液与铁粉反应:2FeCl3 + Fe = 3FeCl2 26、氯化亚铁中通入氯气:2FeCl2 + Cl2 = 2FeCl3 27、 二氧化硅与氢氟酸反应:SiO2 + 4HF = SiF4 + 2H2O 硅单质与氢 氟酸反应:Si + 4HF = SiF4 + 2H2↑ 28、二氧化硅与氧化钙高温反 应:SiO2 + CaO 高温 CaSiO3 29、二氧化硅与氢氧化钠溶液反应:Si O2 + 2NaOH = Na2SiO3 + H2O 30、往硅酸钠溶液中通入二氧化碳:Na 2SiO3 + CO2 + H2O = Na2CO3 + H2SiO3↓ 31、硅酸钠与盐酸反应:N a2SiO3 + 2HCl = 2NaCl + H2SiO3↓ 32、氯气与金属铁反应:2Fe + 3Cl2 点燃 2FeCl3 33、氯气与金属铜反应:Cu + Cl2 点燃 CuCl2 34、氯气与金属钠反应:2Na + Cl2 点燃 2NaCl 35、氯气与水反应: Cl2 + H2O = HCl + HClO 36、次氯酸光照分解:2HClO 光照 2HCl + O2↑ 37、氯气与氢氧化钠溶液反应:Cl2 + 2NaOH = NaCl + NaClO + H2O 38、氯气与消石灰反应:2Cl2 + 2Ca(OH)2 = CaCl2 + Ca(ClO)2 + 2H2O 39、盐酸与硝酸银溶液反应:HCl + AgNO3 = AgCl↓ + HNO3 40、漂白粉长期置露在空气中:Ca(ClO)2 + H2O + CO2 = CaCO3↓ + 2HClO 41、二氧化硫与水反应:SO2 + H2O ≈ H2SO3 42、氮气与氧 气在放电下反应:N2 + O2 放电 2NO 43、一氧化氮与氧气反应:2NO + O2 = 2NO2 44、二氧化氮与水反应:3NO2 + H2O = 2HNO3 + NO 45 、二氧化硫与氧气在催化剂的作用下反应:2SO2 + O2 催化剂 2SO3 4 6、三氧化硫与水反应:SO3 + H2O = H2SO4 47、浓硫酸与铜反应:Cu + 2H2SO4(浓) △ CuSO4 + 2H2O + SO2↑ 48、浓硫酸与木炭反应:C + 2H2SO4(浓) △ CO2 ↑+ 2SO2↑ + 2H2O 49、浓硝酸与铜反应:Cu + 4HNO3(浓) = Cu(NO3)2 + 2H2O + 2NO2↑ 50、稀硝酸与铜反应:3 Cu + 8HNO3(稀) △ 3Cu(NO3)2 + 4H2O + 2NO↑ 51、氨水受热分解:NH3u2022H2O △ NH3↑ + H2O 52、氨气与氯化氢反 应:NH3 + HCl = NH4Cl 53、氯化铵受热分解:NH4Cl △ NH3↑ + HC l↑ 54、碳酸氢氨受热分解:NH4HCO3 △ NH3↑ + H2O↑ + CO2↑ 5 5、硝酸铵与氢氧化钠反应:NH4NO3 + NaOH △ NH3↑ + NaNO3 + H2O 56、氨气的实验室制取:2NH4Cl + Ca(OH)2 △ CaCl2 + 2H2O + 2NH3 ↑ 57、氯气与氢气反应:Cl2 + H2 点燃 2HCl 58、硫酸铵与氢氧化 钠反应:(NH4)2SO4 + 2NaOH △ 2NH3↑ + Na2SO4 + 2H2O 59、SO2 + CaO = CaSO3 60、SO2 + 2NaOH = Na2SO3 + H2O 61、SO2 + Ca(O H)2 = CaSO3↓ + H2O 62、SO2 + Cl2 + 2H2O = 2HCl + H2SO4 63、 SO2 + 2H2S = 3S + 2H2O 64、NO、NO2的回收:NO2 + NO + 2NaOH = 2NaNO2 + H2O 65、Si + 2F2 = SiF4 66、Si + 2NaOH + H2O = NaSi O3 +2H2↑ 67、硅单质的实验室制法:粗硅的制取:SiO2 + 2C 高温 电炉 Si + 2CO (石英沙)(焦碳 ) (粗硅) 粗硅转变为纯硅:Si(粗) + 2Cl2 △ SiCl4 SiCl4 + 2H2 高温 Si(纯)+ 4HCl 非金属单质(F2 ,Cl2 , O2 , S, N2 , P , C , Si) 1, 氧化性: F2 + H2 === 2HF F2 +Xe(过量)===XeF2 2F2(过量)+Xe===XeF4 nF2 +2M===2MFn (表示大部分金属) 2F2 +2H2O===4HF+O2 2F2 +2NaOH===2NaF+OF2 +H2O F2 +2NaCl===2NaF+Cl2 F2 +2NaBr===2NaF+Br2 F2+2NaI ===2NaF+I2 F2 +Cl2 (等体积)===2ClF 3F2 (过量)+Cl2===2ClF3 7F2(过量)+I2 ===2IF7 Cl2 +H2 ===2HCl 3Cl2 +2P===2PCl3 Cl2 +PCl3 ===PCl5 Cl2 +2Na===2NaCl 3Cl2 +2Fe===2FeCl3 Cl2 +2FeCl2 ===2FeCl3 Cl2+Cu===CuCl2 2Cl2+2NaBr===2NaCl+Br2 Cl2 +2NaI ===2NaCl+I2 5Cl2+I2+6H2O===2HIO3+10HCl Cl2 +Na2S===2NaCl+S Cl2 +H2S===2HCl+S Cl2+SO2 +2H2O===H2SO4 +2HCl Cl2 +H2O2 ===2HCl+O2 2O2 +3Fe===Fe3O4 O2+K===KO2 S+H2===H2S 2S+C===CS2 S+Fe===FeS S+2Cu===Cu2S 3S+2Al===Al2S3 S+Zn===ZnS N2+3H2===2NH3 N2+3Mg===Mg3N2 N2+3Ca===Ca3N2 N2+3Ba===Ba3N2 N2+6Na===2Na3N N2+6K===2K3N N2+6Rb===2Rb3N P2+6H2===4PH3 P+3Na===Na3P 2P+3Zn===Zn3P2 2.还原性 S+O2===SO2 S+O2===SO2 S+6HNO3(浓)===H2SO4+6NO2+2H2O 3S+4 HNO3(稀)===3SO2+4NO+2H2O N2+O2===2NO 4P+5O2===P4O10(常写成P2O5) 2P+3X2===2PX3 (X表示F2,Cl2,Br2) PX3+X2===PX5 P4+20HNO3(浓)===4H3PO4+20NO2+4H2O C+2F2===CF4 C+2Cl2===CCl4 2C+O2(少量)===2CO C+O2(足量)===CO2 C+CO2===2CO C+H2O===CO+H2(生成水煤气) 2C+SiO2===Si+2CO(制得粗硅) Si(粗)+2Cl===SiCl4 (SiCl4+2H2===Si(纯)+4HCl) Si(粉)+O2===SiO2 Si+C===SiC(金刚砂) Si+2NaOH+H2O===Na2SiO3+2H2 3,(碱中)歧化 Cl2+H2O===HCl+HClO (加酸抑制歧化,加碱或光照促进歧化) Cl2+2NaOH===NaCl+NaClO+H2O 2Cl2+2Ca(OH)2===CaCl2+Ca(ClO)2+2H2O 3Cl2+6KOH(热,浓)===5KCl+KClO3+3H2O 3S+6NaOH===2Na2S+Na2SO3+3H2O 4P+3KOH(浓)+3H2O===PH3+3KH2PO2 11P+15CuSO4+24H2O===5Cu3P+6H3PO4+15H2SO4 3C+CaO===CaC2+CO 3C+SiO2===SiC+2CO 二,金属单质(Na,Mg,Al,Fe)的还原性 2Na+H2===2NaH 4Na+O2===2Na2O 2Na2O+O2===2Na2O2 2Na+O2===Na2O2 2Na+S===Na2S(爆炸) 2Na+2H2O===2NaOH+H2 2Na+2NH3===2NaNH2+H2 4Na+TiCl4(熔融)===4NaCl+Ti Mg+Cl2===MgCl2 Mg+Br2===MgBr2 2Mg+O2===2MgO Mg+S===MgS Mg+2H2O===Mg(OH)2+H2 2Mg+TiCl4(熔融)===Ti+2MgCl2 Mg+2RbCl===MgCl2+2Rb 2Mg+CO2===2MgO+C 2Mg+SiO2===2MgO+Si Mg+H2S===MgS+H2 Mg+H2SO4===MgSO4+H2 2Al+3Cl2===2AlCl3 4Al+3O2===2Al2O3(钝化) 4Al(Hg)+3O2+2xH2O===2(Al2O3.xH2O)+4Hg 4Al+3MnO2===2Al2O3+3Mn 2Al+Cr2O3===Al2O3+2Cr 2Al+Fe2O3===Al2O3+2Fe 2Al+3FeO===Al2O3+3Fe 2Al+6HCl===2AlCl3+3H2 2Al+3H2SO4===Al2(SO4)3+3H2 2Al+6H2SO4(浓)===Al2(SO4)3+3SO2+6H2O (Al,Fe在冷,浓的H2SO4,HNO3中钝化) Al+4HNO(稀)===Al(NO3)3+NO+2H2O 2Al+2NaOH+2H2O===2NaAlO2+3H2 2Fe+3Br2===2FeBr3 Fe+I2===FeI2 Fe+S===FeS 3Fe+4H2O(g)===Fe3O4+4H2 Fe+2HCl===FeCl2+H2 Fe+CuCl2===FeCl2+Cu Fe+SnCl4===FeCl2+SnCl2 (铁在酸性环境下,不能把四氯化锡完全 还原为单质锡 Fe+SnCl2==FeCl2+Sn) 三, 非金属氢化物(HF,HCl,H2O,H2S,NH3) 1,还原性: 4HCl(浓)+MnO2===MnCl2+Cl2+2H2O 4HCl(g)+O2===2Cl2+2H2O 16HCl+2KMnO4===2KCl+2MnCl2+5Cl2+8H2O 14HCl+K2Cr2O7===2KCl+2CrCl3+3Cl2+7H2O 2H2O+2F2===4HF+O2 2H2S+3O2(足量)===2SO2+2H2O 2H2S+O2(少量)===2S+2H2O 2H2S+SO2===3S+2H2O H2S+H2SO4(浓)===S+SO2+2H2O 3H2S+2HNO(稀)===3S+2NO+4H2O 5H2S+2KMnO4+3H2SO4===2MnSO4+K2SO4+5S+8H2O 3H2S+K2Cr2O7+4H2SO4===Cr2(SO4)3+K2SO4+3S+7H2O H2S+4Na2O2+2H2O===Na2SO4+6NaOH 2NH3+3CuO===3Cu+N2+3H2O 2NH3+3Cl2===N2+6HCl 8NH3+3Cl2===N2+6NH4Cl 4NH3+3O2(纯氧)===2N2+6H2O 4NH3+5O2===4NO+6H2O 4NH3+6NO===5N2+6HO(用氨清除NO) NaH+H2O===NaOH+H2 4NaH+TiCl4===Ti+4NaCl+2H2 CaH2+2H2O===Ca(OH)2+2H2 2,酸性: 4HF+SiO2===SiF4+2H2O (此反应广泛应用于测定矿样或钢样中SiO2的含量) 2HF+CaCl2===CaF2+2HCl H2S+Fe===FeS+H2 H2S+CuCl2===CuS+2HCl H2S+2AgNO3===Ag2S+2HNO3 H2S+HgCl2===HgS+2HCl H2S+Pb(NO3)2===PbS+2HNO3 H2S+FeCl2=== 2NH3+2Na==2NaNH2+H2 (NaNH2+H2O===NaOH+NH3) 3,碱性: NH3+HCl===NH4Cl NH3+HNO3===NH4NO3 2NH3+H2SO4===(NH4)2SO4 NH3+NaCl+H2O+CO2===NaHCO3+NH4Cl (此反应用于工业制备小苏打,苏打) 4,不稳定性: 2HF===H2+F2 2HCl===H2+Cl2 2H2O===2H2+O2 2H2O2===2H2O+O2 H2S===H2+S 2NH3===N2+3H2 四,非金属氧化物 低价态的还原性: 2SO2+O2===2SO3 2SO2+O2+2H2O===2H2SO4 (这是SO2在大气中缓慢发生的环境化学反应) SO2+Cl2+2H2O===H2SO4+2HCl SO2+Br2+2H2O===H2SO4+2HBr SO2+I2+2H2O===H2SO4+2HI SO2+NO2===SO3+NO 2NO+O2===2NO2 NO+NO2+2NaOH===2NaNO2 (用于制硝酸工业中吸收尾气中的NO和NO2) 2CO+O2===2CO2 CO+CuO===Cu+CO2 3CO+Fe2O3===2Fe+3CO2 CO+H2O===CO2+H2 氧化性: SO2+2H2S===3S+2H2O SO3+2KI===K2SO3+I2 NO2+2KI+H2O===NO+I2+2KOH (不能用淀粉KI溶液鉴别溴蒸气和NO2) 4NO2+H2S===4NO+SO3+H2O 2NO2+Cu===4CuO+N2 CO2+2Mg===2MgO+C (CO2不能用于扑灭由Mg,Ca,Ba,Na,K等燃烧的火灾) SiO2+2H2===Si+2H2O SiO2+2Mg===2MgO+Si 3,与水的作用: SO2+H2O===H2SO3 SO3+H2O===H2SO4 3NO2+H2O===2HNO3+NO N2O5+H2O===2HNO3 P2O5+H2O===2HPO3 P2O5+3H2O===2H3PO4 (P2O5极易吸水,可作气体干燥剂 P2O5+3H2SO4(浓)===2H3PO4+3SO3) CO2+H2O===H2CO3 4,与碱性物质的作用: SO2+2NH3+H2O===(NH4)2SO3 SO2+(NH4)2SO3+H2O===2NH4HSO3 (这是硫酸厂回收SO2的反应.先用氨水吸收SO2, 再用H2SO4处理: 2NH4HSO3+H2SO4===(NH4)2SO4+2H2O+2SO2 生成的硫酸铵作化肥,SO2循环作原料气) SO2+Ca(OH)2===CaSO3+H2O (不能用澄清石灰水鉴别SO2和CO2.可用品红鉴别) SO3+MgO===MgSO4 SO3+Ca(OH)2===CaSO4+H2O CO2+2NaOH(过量)===Na2CO3+H2O CO2(过量)+NaOH===NaHCO3 CO2+Ca(OH)2(过量)===CaCO3+H2O 2CO2(过量)+Ca(OH)2===Ca(HCO3)2 CO2+2NaAlO2+3H2O===2Al(OH)3+Na2CO3 CO2+C6H5ONa+H2O===C6H5OH+NaHCO3 SiO2+CaO===CaSiO3 SiO2+2NaOH===Na2SiO3+H2O (常温下强碱缓慢腐蚀玻璃) SiO2+Na2CO3===Na2SiO3+CO2 SiO2+CaCO3===CaSiO3+CO2 五,金属氧化物 1,低价态的还原性: 6FeO+O2===2Fe3O4 FeO+4HNO3===Fe(NO3)3+NO2+2H2O 2,氧化性: Na2O2+2Na===2Na2O (此反应用于制备Na2O) MgO,Al2O3几乎没有氧化性,很难被还原为Mg,Al. 一般通过电解制Mg和Al. Fe2O3+3H2===2Fe+3H2O (制还原铁粉) Fe3O4+4H2===3Fe+4H2O 3,与水的作用: Na2O+H2O===2NaOH 2Na2O2+2H2O===4NaOH+O2 (此反应分两步:Na2O2+2H2O===2NaOH+H2O2 ; 2H2O2===2H2O+O2. H2O2的制备可利用类似的反应: BaO2+H2SO4(稀)===BaSO4+H2O2) MgO+H2O===Mg(OH)2 (缓慢反应) 4,与酸性物质的作用: Na2O+SO3===Na2SO4 Na2O+CO2===Na2CO3 Na2O+2HCl===2NaCl+H2O 2Na2O2+2CO2===2Na2CO3+O2 Na2O2+H2SO4(冷,稀)===Na2SO4+H2O2 MgO+SO3===MgSO4 MgO+H2SO4===MgSO4+H2O Al2O3+3H2SO4===Al2(SO4)3+3H2O (Al2O3是两性氧化物: Al2O3+2NaOH===2NaAlO2+H2O) FeO+2HCl===FeCl2+3H2O Fe2O3+6HCl===2FeCl3+3H2O Fe2O3+3H2S(g)===Fe2S3+3H2O Fe3O4+8HCl===FeCl2+2FeCl3+4H2O 六,含氧酸 1,氧化性: 4HClO3+3H2S===3H2SO4+4HCl HClO3+HI===HIO3+HCl 3HClO+HI===HIO3+3HCl HClO+H2SO3===H2SO4+HCl HClO+H2O2===HCl+H2O+O2 (氧化性:HClO>HClO2>HClO3>HClO4, 但浓,热的HClO4氧化性很强) 2H2SO4(浓)+C===CO2+2SO2+2H2O 2H2SO4(浓)+S===3SO2+2H2O H2SO4+Fe(Al) 室温下钝化 6H2SO4(浓)+2Fe===Fe2(SO4)3+3SO2+6H2O 2H2SO4(浓)+Cu===CuSO4+SO2+2H2O H2SO4(浓)+2HBr===SO2+Br2+2H2O H2SO4(浓)+2HI===SO2+I2+2H2O H2SO4(稀)+Fe===FeSO4+H2 2H2SO3+2H2S===3S+2H2O 4HNO3(浓)+C===CO2+4NO2+2H2O 6HNO3(浓)+S===H2SO4+6NO2+2H2O 5HNO3(浓)+P===H3PO4+5NO2+H2O 6HNO3+Fe===Fe(NO3)3+3NO2+3H2O 4HNO3+Fe===Fe(NO3)3+NO+2H2O 30HNO3+8Fe===8Fe(NO3)3+3N2O+15H2O 36HNO3+10Fe===10Fe(NO3)3+3N2+18H2O 30HNO3+8Fe===8Fe(NO3)3+3NH4NO3+9H2O 2,还原性: H2SO3+X2+H2O===H2SO4+2HX (X表示Cl2,Br2,I2) 2H2SO3+O2===2H2SO4 H2SO3+H2O2===H2SO4+H2O 5H2SO3+2KMnO4===2MnSO4+K2SO4+2H2SO4+3H2O H2SO3+2FeCl3+H2O===H2SO4+2FeCl2+2HCl 3,酸性: H2SO4(浓) +CaF2===CaSO4+2HF H2SO4(浓)+NaCl===NaHSO4+HCl H2SO4(浓) +2NaCl===Na2SO4+2HCl H2SO4(浓)+NaNO3===NaHSO4+HNO3 3H2SO4(浓)+Ca3(PO4)2===3CaSO4+2H3PO4 2H2SO4(浓)+Ca3(PO4)2===2CaSO4+Ca(H2PO4)2 3HNO3+Ag3PO4===H3PO4+3AgNO3 2HNO3+CaCO3===Ca(NO3)2+H2O+CO2 (用HNO3和浓H2SO4不能制备H2S,HI,HBr,(SO2) 等还原性气体) 4H3PO4+Ca3(PO4)2===3Ca(H2PO4)2(重钙) H3PO4(浓)+NaBr===NaH2PO4+HBr H3PO4(浓)+NaI===NaH2PO4+HI 4,不稳定性: 2HClO===2HCl+O2 4HNO3===4NO2+O2+2H2O H2SO3===H2O+SO2 H2CO3===H2O+CO2 H4SiO4===H2SiO3+H2O 七,碱 低价态的还原性: 4Fe(OH)2+O2+2H2O===4Fe(OH)3 与酸性物质的作用: 2NaOH+SO2(少量)===Na2SO3+H2O NaOH+SO2(足量)===NaHSO3 2NaOH+SiO2===NaSiO3+H2O 2NaOH+Al2O3===2NaAlO2+H2O 2NaOH+Cl2===NaCl+NaClO+H2O NaOH+HCl===NaCl+H2O NaOH+H2S(足量)===NaHS+H2O 2NaOH+H2S(少量)===Na2S+2H2O 3NaOH+AlCl3===Al(OH)3+3NaCl NaOH+Al(OH)3===NaAlO2+2H2O (AlCl3和Al(OH)3哪个酸性强?) NaOH+NH4Cl===NaCl+NH3+H2O Mg(OH)2+2NH4Cl===MgCl2+2NH3.H2O Al(OH)3+NH4Cl 不溶解 3,不稳定性: Mg(OH)2===MgO+H2O 2Al(OH)3===Al2O3+3H2O 2Fe(OH)3===Fe2O3+3H2O Cu(OH)2===CuO+H2O 八,盐 1,氧化性: 2FeCl3+Fe===3FeCl2 2FeCl3+Cu===2FeCl2+CuCl2 (用于雕刻铜线路版) 2FeCl3+Zn===2FeCl2+ZnCl2 FeCl3+Ag===FeCl2+AgC Fe2(SO4)3+2Ag===FeSO4+Ag2SO4(较难反应) Fe(NO3)3+Ag 不反应 2FeCl3+H2S===2FeCl2+2HCl+S 2FeCl3+2KI===2FeCl2+2KCl+I2 FeCl2+Mg===Fe+MgCl2 2,还原性: 2FeCl2+Cl2===2FeCl3 3Na2S+8HNO3(稀)===6NaNO3+2NO+3S+4H2O 3Na2SO3+2HNO3(稀)===3Na2SO4+2NO+H2O 2Na2SO3+O2===2Na2SO4 3,与碱性物质的作用: MgCl2+2NH3.H2O===Mg(OH)2+NH4Cl AlCl3+3NH3.H2O===Al(OH)3+3NH4Cl FeCl3+3NH3.H2O===Fe(OH)3+3NH4Cl 4,与酸性物质的作用: Na3PO4+HCl===Na2HPO4+NaCl Na2HPO4+HCl===NaH2PO4+NaCl NaH2PO4+HCl===H3PO4+NaCl Na2CO3+HCl===NaHCO3+NaCl NaHCO3+HCl===NaCl+H2O+CO2 3Na2CO3+2AlCl3+3H2O===2Al(OH)3+3CO2+6NaCl 3Na2CO3+2FeCl3+3H2O===2Fe(OH)3+3CO2+6NaCl 3NaHCO3+AlCl3===Al(OH)3+3CO2 3NaHCO3+FeCl3===Fe(OH)3+3CO2 3Na2S+Al2(SO4)3+6H2O===2Al(OH)3+3H2S 3NaAlO2+AlCl3+6H2O===4Al(OH)3 5,不稳定性: Na2S2O3+H2SO4===Na2SO4+S+SO2+H2O NH4Cl===NH3+HCl NH4HCO3===NH3+H2O+CO2 2KNO3===2KNO2+O2 2Cu(NO3)3===2CuO+4NO2+O2 2KMnO4===K2MnO4+MnO2+O2 2KClO3===2KCl+3O2 2NaHCO3===Na2CO3+H2O+CO2 Ca(HCO3)2===CaCO3+H2O+CO2 CaCO3===CaO+CO2 MgCO3===MgO+CO2 3Fe + 4H2O( g) = Fe3O4 + 4H2↑

高中化学必修一和必修二的所有化学方程式。包括有机化合物的反应式和离子方程式

1硫酸根离子的检验: BaCl2 + Na2SO4 = BaSO4↓+ 2NaCl 2.碳酸根离子的检验: CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl3. 碳酸钠与盐酸反应: Na2CO3 + 2HCl = 2NaCl + H2O + CO2↑4.木炭还原氧化铜: 2CuO + C 高温 2Cu + CO2↑ 5.铁片与硫酸铜溶液反应: Fe + CuSO4 = FeSO4 + Cu6. 氯化钙与碳酸钠溶液反应:CaCl2 + Na2CO3 = CaCO3↓+ 2NaCl 7、钠在空气中燃烧:2Na + O2 △ Na2O2 钠与氧气反应:4Na + O2 = 2Na2O 8、过氧化钠与水反应:2Na2O2 + 2H2O = 4NaOH + O2↑ 9、过氧化钠与二氧化碳反应:2Na2O2 + 2CO2 = 2Na2CO3 + O2 10、钠与水反应:2Na + 2H2O = 2NaOH + H2↑ 11、铁与水蒸气反应:3Fe + 4H2O(g) = F3O4 + 4H2↑ 12、铝与氢氧化钠溶液反应:2Al + 2NaOH + 2H2O = 2NaAlO2 + 3H2↑ 13、氧化钙与水反应:CaO + H2O = Ca(OH)2 14、氧化铁与盐酸反应:Fe2O3 + 6HCl = 2FeCl3 + 3H2O 15、氧化铝与盐酸反应:Al2O3 + 6HCl = 2AlCl3 + 3H2O 16、氧化铝与氢氧化钠溶液反应:Al2O3 + 2NaOH = 2NaAlO2 + H2O 17、氯化铁与氢氧化钠溶液反应:FeCl3 + 3NaOH = Fe(OH)3↓+ 3NaCl 18、硫酸亚铁与氢氧化钠溶液反应:FeSO4 + 2NaOH = Fe(OH)2↓+ Na2SO4 19、氢氧化亚铁被氧化成氢氧化铁:4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3 20、氢氧化铁加热分解:2Fe(OH)3 △ Fe2O3 + 3H2O↑ 21、实验室制取氢氧化铝:Al2(SO4)3 + 6NH3·H2O = 2Al(OH)3↓ + 3(NH3)2SO4 22、氢氧化铝与盐酸反应:Al(OH)3 + 3HCl = AlCl3 + 3H2O 23、氢氧化铝与氢氧化钠溶液反应:Al(OH)3 + NaOH = NaAlO2 + 2H2O 24、氢氧化铝加热分解:2Al(OH)3 △ Al2O3 + 3H2O 25、三氯化铁溶液与铁粉反应:2FeCl3 + Fe = 3FeCl2 26、氯化亚铁中通入氯气:2FeCl2 + Cl2 = 2FeCl3 27、二氧化硅与氢氟酸反应:SiO2 + 4HF = SiF4 + 2H2O 硅单质与氢氟酸反应:Si + 4HF = SiF4 + 2H2↑ 28、二氧化硅与氧化钙高温反应:SiO2 + CaO 高温 CaSiO3 29、二氧化硅与氢氧化钠溶液反应:SiO2 + 2NaOH = Na2SiO3 + H2O 30、往硅酸钠溶液中通入二氧化碳:Na2SiO3 + CO2 + H2O = Na2CO3 + H2SiO3↓

谁能把高一化学必修一涉及的所有化学反应方程式列出来,离子方程式?

我有自创的方程式整理联系我

高中化学反应的离子方程式

你先加分我在给你弄啊,那得多少啊,也不知道你加不加

灭火器倒置时反应的离子方程式是什么(

如果要倒置的话 应该是泡沫灭火器 Al2(SO4)3+6NaHCO3==3Na2SO4+2Al(OH)3↓+6CO2↑ 离子方程式应该是Al3++3HCO3-=Al(OH)3↓+3CO2↑

蛋白质沉淀有哪几种方法?哪些是可逆的沉淀反应

蛋白质可逆沉淀一般发生在盐析的时候,即在蛋白质溶液中加浓盐溶液,让蛋白质析出,这种情况下蛋白质的空间构象依然完整,复溶后蛋白依然具有生物学活性.蛋白质不可逆沉淀一般认为是蛋白质变性,即蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其生物活性丧失.蛋白质可逆沉淀多用于提取纯化,例如利用盐析法从牛奶中制备酪蛋白.蛋白质不可逆沉淀可用于灭菌,消毒,例如医疗器械高温灭菌.

光化学反应 80%以上的产物是

自由基

高炉炼铁过程中还原成铁的主要反应原理是不是Fe3O4=3Fe+2O2?

主要是Fe2O3+3CO=2Fe+3CO2Fe3O4+4CO=3Fe+4CO2

什么是取代反应?

只发生在有机物中的反应由无机物例Br Cl取代有机物中的H
 首页 上一页  7 8 9 10 11 12 13 14 15 16 17  下一页  尾页