barriers / 阅读 / 详情

相对论是什么?

2023-05-20 03:53:04

爱因思坦提出的著名理论,(作业)

TAG: 是什么
共4条回复
tt白

相对论(Principle of relativity relativism[5relEtivizEm] relativity[7relE5tiviti] theory of relativity)

相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915年。

由于牛顿定律给狭义相对论提出了困难,即任何空间位置的任何物体都要受到力的作用。因此,在整个宇宙中不存在惯性观测者。爱因斯坦为了解决这一问题又提出了广义相对论。

狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。

[编辑本段]

【编译目录】

《相对论》是爱因斯坦所著的一部在世界科学理论界影响巨大的著作,主要包括狭义相对论和广义相对论原理的阐述,中文版本由周学政、徐有智编译,编译目录如下:

·第一部分 狭义相对论

1.几何命题的物理意义

2.坐标系

3.经典力学中的空间和时间

4.伽利略坐标系

5.狭义相对性原理

6.经典力学中所用到的速度相加原理

7.光的传播定律与相对性原理的表面抵触

8.物理学的时间观

9.同时性的相对性

10.距离概念的相对性

11.洛伦兹变换

12.量杆和时钟在运动时的行为

13.速度相加原理:斐索试验

14.相对论的启发作用

15.狭义相对论的普遍性结果

16.经验和狭义相对论

17.四维空间

·第二部分 广义相对论

1.狭义和广义相对性原理

2.引力场

3.引力场的思想试验

4.惯性质量和引力质量相等是广义相对性公设的一个论据

5.等效原理

6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意

7.广义相对性原理的几个推论

8.在转动的参考物上的钟和量杆的行为

9.欧几里得和非欧几里得连续区域

10.高斯坐标

11.狭义相对论得时空连续区可以当作欧几里得连续区

12.广义相对论得时空连续区不是欧几里得连续区

13.广义相对论原理的严格表述

14.在广义相对性原理的基础上理解引力问题.

[编辑本段]

【提出过程】

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。

十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。

1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。

爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K"相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。

经典力学中的速度合成法则实际依赖于如下两个假设:

1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;

2.两点的空间距离与测量距离所用的尺的运动状态无关。

爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

如果设K坐标系中一个事件可以用三个空间坐标x、 y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由 x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x"、y"、z"、t"将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。

对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖。

[编辑本段]

【狭义理论】

·狭义相对论的概念

马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

·狭义论公式

相对论公式及证明

单位 符号 单位 符号

坐标: m (x,y,z) 力: N F(f)

时间: s t(T) 质量:kg m(M)

位移: m r 动量:kg*m/s p(P)

速度: m/s v(u) 能量: J E

加速度: m/s^2 a 冲量:N*s I

长度: m l(L) 动能:J Ek

路程: m s(S) 势能:J Ep

角速度: rad/s ω 力矩:N*m M

角加速度:rad/s^2α 功率:W P

一:

牛顿力学(预备知识)

(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt

(2)a=dv/dt,v=v0+∫adt

(注:两式中左式为微分形式,右式为积分形式)

当v不变时,(1)表示匀速直线运动。

当a不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

(二):质点动力学:

(1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。

(2)牛二:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=dp/dt

(3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡。

(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)

动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)

动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)

机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2

(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)

二、狭义相对论力学

(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)

1.基本原理:(1)相对性原理:所有惯性系都是等价的。

(2)光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出证明)

2.洛仑兹坐标变换:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

3.速度变换:

V(x)=(v(x)-u)/(1-v(x)u/c^2)

V(y)=v(y)/(γ(1-v(x)u/c^2))

V(z)=v(z)/(γ(1-v(x)u/c^2))

4.尺缩效应:△L=△l/γ或dL=dl/γ

5.钟慢效应:△t=γ△τ或dt=dτ/γ

6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)

(光源与探测器在一条直线上运动。)

7.动量表达式:P=Mv=γmv,即M=γm

8.相对论力学基本方程:F=dP/dt

9.质能方程:E=Mc^2

10.能量动量关系:E^2=(E0)^2+P^2c^2

(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)

马老四

狭义相对论

爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K"相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

广义相对论

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

Chen

有个简单的相对论的解释:

一个男人和一个漂亮女人说一个小时的话他会觉得时间过得好快

而这个男人如果坐在火盆上即使只带一分钟也会觉得时间过得好长

这是爱因斯坦笔记里面关于对相对论的解释

苏萦

这么大的题目 即便回答也只能用通俗的语言 我感到有点无解

相关推荐

相对论的公式是什么?

1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv2、狭义相对论:S(R4,η_αβ)3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)4、相对长度公式L=Lo* √(1-v^2/c^2)Lo5、相对质量公式M=Mo/√(1-v^2/c^2)Mo6、相对时间公式t=to* √(1-v^2/c^2)to7、质能方程E=mc^2相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。扩展资料:狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
2023-02-14 13:14:061

相对论公式是什么?

相对论公式有四种,是根据速度、长度、质量跟时间来定论的。分别如下:1、相对速度基本公式:△v=|v1-v2|/√(1-v1v2/c^2)两物体速度是v1,v2,它们之间速度的差是△v。2、相对长度基本公式:L=Lo* √(1-v^2/c^2)Lo是物体静止是的长度,L是物体的运动时的长度,v是物体速度,c是光速。3、相对质量基本公式:M=Mo/√(1-v^2/c^2)Mo是物体静止时的质量,M是物体的运动时的质量,v是物体速度,c是光速。4、相对时间基本公式:t=to* √(1-v^2/c^2)to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。相对论公式含义:在狭义相对论中,当一个参考系相对于另一个参考系发生变化时,那么这个参考系的时空属性相对于另一个参考系也会发生变化,而架起两个参考系的桥梁就是光速。狭义相对论在光速不变的原理上建立了两个参考系的联系:当一个参考系相对于你所在的参考系运动时,它的速度越接近你所在参考系的光速,那么这个参考系相对于你所在参考系的时间变缓,长度变短,质量变大。
2023-02-14 13:14:471

相对论公式是什么?

相对论是一门基础科学的庞大的系统,所以其中的公式也很多,基本公式就是利用洛伦兹变换推出的质量、速度的关系式,还有就是质能守恒定律,E=mc²。相对论的质量和速度公式是m=m0/(v/u-1)=m0/√(1-v^2/c^2)。质量与速度关系式推导:S"系(其中静止一小球a",质量m0)相对S系(其中静止一小球a,质量m0)沿x轴正向以速度v运动,设a"相对S系的质量为m,根据系统的对称性,a相对S"系的质量也为m。广义相对论包括如下几条基本假设:1、广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。2、爱因斯坦场方程(详见广义相对论条目):它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。在本质上,所有的物理学问题都涉及采用哪个时空观的问题。在二十世纪以前的经典物理学里,人们采用的是牛顿的绝对时空观。而相对论的提出改变了这种时空观,这就导致人们必须依相对论的要求对经典物理学的公式进行改写,以使其具有相对论所要求的洛伦兹协变性而不是以往的伽利略协变性。
2023-02-14 13:15:291

相对论公式 相对论介绍

1、公式:R_uv-1/2×R×g_uv=κ×T_uv。 2、相对论(Special Theory of Relativity)是阿尔伯特·爱因斯坦在1905年发表的题为 《论动体的电动力学》一文中提出的区别于牛顿时空观的新的平直时空理论。 3、这个理论的出发点是两条基本假设:狭义相对性原理和光速不变原理。理论的核心方程式是洛伦兹变换(群)(见惯性系坐标变换)。 4、相对论预言了牛顿经典物理学所没有的一些新效应(相对论效应),如时间膨胀 、长度收缩、横向多普勒效应、质速关系、质能关系等。狭义相对论已经成为现代物理理论的基础之一:一切微观物理理论(如基本粒子理论)和宏观引力理论(如广义相对论)都满足狭义相对论的要求。这些相对论性的动力学理论已经被许多高精度实验所证实。
2023-02-14 13:18:381

相对论的质量和速度公式是怎样的

楼上所说的是相对论的质量和能量公式:E=MC^2 相对论的质量与速度关系公式: M"=M/[(1-V^2/C^2)^(1/2)] 有这个式子可见,在爱因斯坦的光速不可超越假设下,物体的速度V越接近光速C,其相对论质量M"就会远大于其静止质量M.V->C 时,M"->无穷.
2023-02-14 13:19:421

相对论的基本原理公式

相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。下面整理了相对论的基本原理公式,供大家参考。 相对论的基本原理公式 1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv 2、狭义相对论:S(R4,η_αβ) 3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2) 4、相对长度公式L=Lo* √(1-v^2/c^2)Lo 5、相对质量公式M=Mo/√(1-v^2/c^2)Mo 6、相对时间公式t=to* √(1-v^2/c^2)to 7、质能方程E=mc^2 相对论 相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。
2023-02-14 13:20:031

相对论时间公式

相对论时间公式是:t=to*√(1-v^2/c^2)。to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。由此可知速度越大,物体时间走得越慢,当物体以光速运动,物体的时间就不再流逝,从而时间停止。相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。
2023-02-14 13:21:061

爱因斯坦相对论中的公式

L=L*{1-(V/C)^2}^0.5(尺缩效应)T"=T/{1-(V/C)^2}^0.5(增时效应)M"=M/{1-(V/C)^2}^0.5(质变效应)E=MC^2是爱因斯坦发现的,且在相对论中
2023-02-14 13:21:283

相对论粒子能量公式

公式如下:质能互变公式:E=mc^2即E(能量)=m(质量)×c(光速)的平方相对论E=mc2。
2023-02-14 13:21:491

相对论的公式有哪些,都表示什么?

相对论是一门基础科学的庞大的系统,所以其中的公式也很多,基本公式就是利用洛伦兹变换推出的质量、速度的关系式,还有就是质能守恒定律,E=mc²。
2023-02-14 13:22:101

相对论质量公式推导

我学了一点,建议你先学好量子力学,然后自己也会了
2023-02-14 13:22:363

相对论速度加法计算公式

相对论速度加法计算公式: V=(v+u)/{1+[(v*u)/(c^2)] }
2023-02-14 13:23:184

请问爱因斯坦的狭义相对论公式E=mc^2中的每个字母分别代表什么?如何计算?有什么物理意义?

直接百度不是更快捷。。。。⊙﹏⊙
2023-02-14 13:24:004

相对论的公式?

E=mc2(平方)
2023-02-14 13:24:212

相对论中质量与速度关系式、速度合成公式详细的推导过程

质量与速度关系式推导:S"系(其中静止一小球a",质量m0)相对S系(其中静止一小球a,质量m0)沿x轴正向以速度v运动,设a"相对S系的质量为m,根据系统的对称性,a相对S"系的质量也为m;假设两小球碰撞后合为一体,相对S"系速度为u",相对S系速度为u,在两参照系中动量守恒定律都成立,S系:mv=(m+m0)u,S"系:-mv=(m+m0)u"。由速度合成公式,u"=(u-v)/(1-uv/c^2),而根据系统的对称性,u"=-u,可得:(v/u)^2-2v/u+(v/c)^2=0,解得:v/u=1±√(1-v^2/c^2),由于v>u,故取v/u=1+√(1-v^2/c^2)。所以m=m0/(v/u-1)=m0/√(1-v^2/c^2).速度合成公式推导: V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))  =(dx/dt-u)/(1-(dx/dt)u/c^2)  =(v(x)-u)/(1-v(x)u/c^2)  同理可得V(y),V(z)的表达式。
2023-02-14 13:25:231

相对论的公式以及讲解

1.相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速。2.相对长度公式L=Lo*√(1-v^2/c^2)Lo是物体静止是的长度,L是物体的运动时的长度,v是物体速度,c是光速。由此可知速度越大,物体长度越压缩,当物体以光速运动,物体的运动方向长度为0.3.相对质量公式M=Mo/√(1-v^2/c^2)Mo是物体静止时的质量,M是物体的运动时的质量,v是物体速度,c是光速。由此可知速度越大,物体质量越大,当物体以光速运动,物体的质量为正无穷4.相对时间公式t=to*√(1-v^2/c^2)to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。由此可知速度越大,物体时间走得越慢,当物体以光速运动,物体的时间就不再流逝,从而时间停止。5。质能方程E=mc^2质量和能量本质相同
2023-02-14 13:25:441

爱因斯坦广义相对论中公式E=mc 2分别指什么?

狭义相对论指出在宇宙中唯一不变的是光线在真空中的速度,其它任何事物——速度、长度、质量和经过的时间,都随观察者的参考系(特定观察)而变化(即所谓的洛沦兹坐标变换,代替牛顿用的伽利略变换)。该理论解决了许多困扰了物理学家们很长时间的问题,这个理论形成了一个著名的公式:E=MC^2,也就是能量(E)等于质量(M)乘以光速(C)的平方.广义相对论解释了引力作用和加速度作用没有差别的原因,还解释了引力是如何和时空弯曲联系起来的。利用数学,爱因斯坦指出物体使周围空间、时间弯曲,在物体具有很大的相对质量(例如一颗恒星)时,这种弯曲可使从它旁边经过的任何其它事物,即使是光线,改变路径。广义相对论指出,时空曲率将产生引力。当光线经过一些大质量的天体时,它的路线是弯曲的,这源于它沿着大质量物体所形成的时空曲率。因为黑洞是极大的质量的浓缩,它周围的时空非常弯曲,即使是光线也无法逃逸。BIB}广义相对论是狭义相对论的进一步发展,它建立了对一切参考系皆取相同形式的物理定律,且将引力同时空的几何性质联系起来,从而将物质、引力场和时空结合为一体,是一种发展了的引力理论。
2023-02-14 13:26:051

怎么证明爱因斯坦的相对论中速度相加的 公式,求

相对速度公式: △v=|v1-v2|/√(1-v1v2/c^2) 两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速.
2023-02-14 13:26:471

关于相对论速度变换公式

首先纠正一个关于相对论的理解错误,相对论不是有关光的理论,更不是视觉错觉。所以,由于“光是最大信息传递速度,光花更长时间追上另一个物体”得到公式是错误的!虽然相对论在推导时好像怎么也离不开光,但它不只是个简单的电磁波理论。记住这句话:狭义相对论是一个关于时空的理论。(广义相对论是一个关于引力的理论。)你的极限没错,但是相对论解决的可不单单是极限的问题。钟慢效应不是一个假设,而是由理论推导得到的,也就是说你得出的第二个式子虽然极限一样,在小变化范围内也看不出什么问题,但它不是由相对论基础假设推导得到的。类似的公式我还可以造出好几个,比如t=t0(1-v^3/c^3)^1/3、t=t0(1-v^4/c^4)^1/2、t=t0(1-v/c)^1/2等等的,我甚至可以构造对数、e指数等等的式子,这些都符合量纲运算,而且极限都一样。但它们都仅仅是猜想,不符合实验现象(这才是最主要的),更没有理论推导。时间膨胀的公式,在相对论的体系中是从洛伦兹变换得来的,而洛伦兹变换是从相对论两个基本假设推到的(虽然历史上洛伦兹变换一开始只是为了协调牛顿定律与实验现象之间的矛盾,但是其真正的物理含义直到狭义相对论过后才揭示出来),这两个基本假设是:(狭义)相对性原理和光速不变原理。从某种程度上说,狭义相对论所有结论都可以从这两个假设得到,包括洛伦兹变换,也包括钟慢尺缩,这其中有严格的数学推导,而不是你所谓的“想想”得来的式子。但从另一方面来说,如果推翻这两个假设,那么时间膨胀的式子也可能真的不正确。在此基础上如果你能提出符合实验现象(这点非常重要)的假设,并且经过一步步推导,那么也有可能真的是“你想”的那个式子。但遗憾的是20世纪中前期已经有无数人想到了这一点,无一例外地失败了。所以我们暂时只能“屈服于”爱因斯坦,用“他的”时间膨胀的公式。
2023-02-14 13:27:081

爱因斯坦相对论公式?

E=M*C^2
2023-02-14 13:27:296

怎样推导相对论速度叠加公式?

设物体相对于K系,K"系和K"相对于K系的速度分别是u,u"和v,根据洛伦兹变换x"=γ(x-vt),t"=γ(t-vx/c^2),(γ为膨胀系数)分别对式子两边微分:dx"=γ(dx-vdt)dt"=γ(dt-vdx/c2)两式相除:u"=dx"/dt"=(u-v)/(1-uv/c^2)
2023-02-14 13:28:111

相对论速度加法计算公式那为大虾解释一下~~不胜感激

v"是物体相对于K"系的速度。u是K系相对于K"系的速度。一般地,把K系固定于一个物体如A上,把K"系固定于地面上。为帮助你理解,举一个例子。在地面上观察到有两个飞船a,b分别以+0.9c,-0.9c的速度向相反的方向飞行。那么飞船a相对飞船b的速度多大? 解:把K系固定于飞船b上,把K"系固定于地面上,那么飞船a相对于地面(也就是K"系)的速度大小是0.9c=v"。而K系相对于K"系的速度(也就是飞船b相对于地面的速度)u=0.9c根据公式,V(飞船a相对飞船b的速度)==(v"+u)/{1+[(v*u)/(c^2)] } =(0.9c+0.9c)/(1+0.81)=0.994c这样说,你懂了没有?
2023-02-14 13:28:322

相对论的公式

相对论分为狭义相对论和广义相对论 狭义相对论基于两条基本原理:光速不变原理和相对性原理,从这两条基本原理能推出相对论中所有的公式. 入门的公式有以下几条,不方便打出来,可以自己百度去: 1)洛伦兹坐标变换 2)尺缩效应与钟慢效应 3)运动质量的大小 4)质能方程 5)能量-动量的张量表示、电场-磁场的张量表示,以及其他一系列协变量的张量表示 广义相对论的基本原理只需把狭义中的“相对性原理”扩展为“广义相对性原理”即可,但是其基本原理都是用张量代数和黎曼几何来描述的,需要很深厚的数学功底,公式什么的自己找书去学吧.
2023-02-14 13:29:341

谁能给我解释一下相对论性多普勒效应以及它的公式?

是不矛盾的,假设光波的波长在一惯性系中"同时"得到的一周期波两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测得的波长也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这个思想同样可运用于光波上,还可以从狭义相对论的角度来解释光的多普勒效应。根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。  光波的频率与波长可同是变化,而速度不变,这一点表现在光的颜色变化上。
2023-02-14 13:29:561

狭义相对论公式是什么?

狭义相对论的公式:S(R⁴,η_αβ)。狭义相对论是阿尔伯特·爱因斯坦在1905年发表的题为 《论动体的电动力学》一文中提出的区别于牛顿时空观的新的平直时空理论。狭义相对论是对艾萨克·牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空,其数学形式为闵可夫斯基几何空间。意义:狭义相对论不但可以解释经典物理学所能解释的全部物理现象,还可以解释一些经典物理学所不能解释的物理现象,并且预言了不少新的效应。它导致了光速是极限速度,导致了不同地点的同时性只有相对意义。此外,按照狭义相对论,光子的静止质量必须是零。
2023-02-14 13:30:381

爱因斯坦相对论产生的所有公式

还有质能方程E=m*c*c
2023-02-14 13:32:013

狭义相对论时间延缓公式推导问题

不用修改。
2023-02-14 13:32:226

狭义相对论五个公式

狭义相对论五个公式:V(x)=(v(x)-u)/(1-v(x)u/c^2)。V(y)=v(y)/(γ(1-v(x)u/c^2))。V(z)=v(z)/(γ(1-v(x)u/c^2))。△L=△l/γ或dL=dl/γ。△t=γ△τ或dt=dτ/γ。狭义相对论不仅包括如时间膨胀等一系列推论,而且还包括麦克斯韦-赫兹方程变换等。狭义相对论需要使用引入张量的数学工具。狭义相对论是对牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空,其数学形式为闵可夫斯基几何空间。现在对于物理理论新的分类标准,是以其理论是否是决定论来划分经典与非经典的物理学,非量子理论都可以叫经典或古典理论。在此意义上,狭义相对论仍然是一种经典的理论。
2023-02-14 13:33:031

相对论七大公式是什么?

1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv2、狭义相对论:S(R4,η_αβ)3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)4、相对长度公式L=Lo* √(1-v^2/c^2)Lo5、相对质量公式M=Mo/√(1-v^2/c^2)Mo6、相对时间公式t=to* √(1-v^2/c^2)to7、质能方程E=mc^2相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。扩展资料:狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
2023-02-14 13:35:291

相对论公式是什么?

狭义相对论的公式:S(R⁴,η_αβ)。狭义相对论是阿尔伯特·爱因斯坦在1905年发表的题为 《论动体的电动力学》一文中提出的区别于牛顿时空观的新的平直时空理论。狭义相对论是对艾萨克·牛顿时空理论的拓展,要理解狭义相对论就必须理解四维时空,其数学形式为闵可夫斯基几何空间。广义相对论包括如下几条基本假设:1、广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。2、爱因斯坦场方程(详见广义相对论条目):它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。
2023-02-14 13:36:311

相对论公式是什么呢?

相对论公式:1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv。2、狭义相对论:S(R4,η_αβ)。3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)。4、相对长度公式L=Lo*√(1-v^2/c^2)Lo。5、相对质量公式M=Mo/√(1-v^2/c^2)Mo。6、相对时间公式t=to*√(1-v^2/c^2)to。相对解释:相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。
2023-02-14 13:37:131

相对论的三个基本公式是什么?

1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv2、狭义相对论:S(R4,η_αβ)3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)4、相对长度公式L=Lo* √(1-v^2/c^2)Lo5、相对质量公式M=Mo/√(1-v^2/c^2)Mo6、相对时间公式t=to* √(1-v^2/c^2)to7、质能方程E=mc^2相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。广义相对论包括如下几条基本假设:1、广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。2、爱因斯坦场方程(详见广义相对论条目):它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。在本质上,所有的物理学问题都涉及采用哪个时空观的问题。在二十世纪以前的经典物理学里,人们采用的是牛顿的绝对时空观。而相对论的提出改变了这种时空观,这就导致人们必须依相对论的要求对经典物理学的公式进行改写,以使其具有相对论所要求的洛伦兹协变性而不是以往的伽利略协变性。
2023-02-14 13:41:421

狭义相对论和广义相对论的公式是什么?

1、广义相对论:R_uv-1/2×R×g_uv=κ×T_uv2、狭义相对论:S(R4,η_αβ)3、相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)4、相对长度公式L=Lo* √(1-v^2/c^2)Lo5、相对质量公式M=Mo/√(1-v^2/c^2)Mo6、相对时间公式t=to* √(1-v^2/c^2)to7、质能方程E=mc^2相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。扩展资料:狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
2023-02-14 13:42:241

相对论公式e等于mc

相对论公式E=mc2,相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。
2023-02-14 13:43:471

爱因斯坦相对论公式是什么?

E=MC^2
2023-02-14 13:44:496

爱因斯坦的相对论公式是什么?

基本的几个:1.相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速。2.相对长度公式L=Lo*√(1-v^2/c^2)Lo是物体静止是的长度,L是物体的运动时的长度,v是物体速度,c是光速。由此可知速度越大,物体长度越压缩,当物体以光速运动,物体的运动方向长度为0.3.相对质量公式M=Mo/√(1-v^2/c^2)Mo是物体静止时的质量,M是物体的运动时的质量,v是物体速度,c是光速。由此可知速度越大,物体质量越大,当物体以光速运动,物体的质量为正无穷4.相对时间公式t=to*√(1-v^2/c^2)to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。由此可知速度越大,物体时间走得越慢,当物体以光速运动,物体的时间就不再流逝,从而时间停止。5。质能方程E=mc^2质量和能量本质相同
2023-02-14 13:45:361

相对论的所有公式

E=mc²
2023-02-14 13:45:572

爱因斯坦相对论公式?

相对论:相对论公式及证明单位符号单位符号坐标:m(x,y,z)力:NF(f)时间:st(T)质量:kgm(M)位移:mr动量:kg*m/sp(P)速度:m/sv(u)能量:JE加速度:m/s^2a冲量:N*sI长度:ml(L)动能:JEk路程:ms(S)势能:JEp角速度:rad/sω力矩:N*mM角加速度:rad/s^2α功率:WP
2023-02-14 13:46:181

狭义相对论的公式严密推导?

分类: 资源共享 解析: 单 位 符 号 坐标:m(x,y,z)力:NF(f) 时间:st(T)质量:kgm(M) 位移:mr动量:kg*m/sp(P)速度:m/sv(u)能量:JE 加速度:m/s^2a冲量:N*sI 长度:ml(L)动能:JEk 路程:ms(S)势能:JEp 角速度:rad/sω力矩:N*mM 角加速度:rad/s^2α功率:WP 一: 牛顿力学(预备知识) (一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt (2)a=dv/dt,v=v0+∫adt (注:两式中左式为微分形式,右式为积分形式) 当v不变时,(1)表示匀速直线运动。 当a不变时,(2)表示匀变速直线运动。 只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。 (二):质点动力学: (1)牛一:不受力的物体做匀速直线运动。 (2)牛二:物体加速度与合外力成正比与质量成反比。 F=ma=mdv/dt=dp/dt (3)牛三:作用力与反作与力等大反向作用在同一直线上。 (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。 F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2) 动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化) 动量守恒:合外力为零时,系统动量保持不变。 动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化) 机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2 (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。) 二: 狭义相对论力学:(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。) (一)基本原理:(1)相对性原理:所有惯性系都是等价的。 (2)光速不变原理:真空中的光速是与惯性系无关的常数。 (此处先给出公式再给出证明) (二)洛仑兹坐标变换: X=γ(x-ut) Y=y Z=z T=γ(t-ux/c^2) (三)速度变换: V(x)=(v(x)-u)/(1-v(x)u/c^2) V(y)=v(y)/(γ(1-v(x)u/c^2)) V(z)=v(z)/(γ(1-v(x)u/c^2)) (四)尺缩效应:△L=△l/γ或dL=dl/γ (五)钟慢效应:△t=γ△τ或dt=dτ/γ (六)光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b) (光源与探测器在一条直线上运动。) (七)动量表达式:P=Mv=γmv,即M=γm. (八)相对论力学基本方程:F=dP/dt (九)质能方程:E=Mc^2 (十)能量动量关系:E^2=(E0)^2+P^2c^2 (注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。) 三: 三维证明: (一)由实验总结出的公理,无法证明。 (二)洛仑兹变换: 设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。可令x=k(X+uT),(1).又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.故有X=k(x-ut),(2).对于y,z,Y,Z皆与速度无关,可得Y=y,(3).Z=z(4).将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x,(5).(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换: X=γ(x-ut) Y=y Z=z T=γ(t-ux/c^2) (三)速度变换: V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2)) =(dx/dt-u)/(1-(dx/dt)u/c^2) =(v(x)-u)/(1-v(x)u/c^2) 同理可得V(y),V(z)的表达式。 (四)尺缩效应: B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ (五)钟慢效应: 由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T. (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。) (六)光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).) B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b),(1).探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a),(2).相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N),(3).由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b). (七)动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c) 牛二在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛二都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。 牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算) (八)相对论力学基本方程: 由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛二的形式完全一样,但内涵不一样。(相对论中质量是变量) (九)质能方程: Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2 =Mv^2+Mc^2(1-v^2/c^2)-mc^2 =Mc^2-mc^2 即E=Mc^2=Ek+mc^2 (十)能量动量关系: E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2 四: 四维证明: (一)公理,无法证明。 (二)坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,dS^2=dx^2+dy^2+dz^2+(icdt)^2,(1).则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2〉0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。 由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴) X=xcosφ+(ict)sinφ icT=-xsinφ+(ict)cosφ Y=y Z=z 当X=0时,x=ut,则0=utcosφ+ictsinφ 得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得: X=γ(x-ut) Y=y Z=z T=γ(t-ux/c^2) (三)(四)(五)(六)(八)(十)略。 (七)动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ) 令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。 则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理) 四维动量:P=mV=(γmv,icγm)=(Mv,icM) 四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力) 四维加速度:ω=/dτ=(γ^4a,γ^4iva/c) 则f=mdV/dτ=mω (九)质能方程: fV=mωV=m(γ^5va+i^2γ^5va)=0 故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力) 由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式)) 故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2 故E=Mc^2=Ek+mc^2
2023-02-14 13:48:041

求狭义相对论的公式含义

e能量 m质量 c光速
2023-02-14 13:49:072

关于狭义相对论中的公式推导

狭义相对论中的公式推导:一、洛仑兹坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。1、设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。2、可令x=k(X+uT) (1)。又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K。3、故有X=k(x-ut) (2)。对于y,z,Y,Z皆与速度无关,可得Y=y (3)。4、Z=z (4)。将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x (5)。5、(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时由重合点发出一光信号,则对两系分别有x=ct,X=cT。6、代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ。将γ反代入(2)(5)式得坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。二、速度变换:V(x)=(v(x)-u)/(1-v(x)u/c^2);V(y)=v(y)/(γ(1-v(x)u/c^2));V(z)=v(z)/(γ(1-v(x)u/c^2))。1、V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))=(dx/dt-u)/(1-(dx/dt)u/c^2)=(v(x)-u)/(1-v(x)u/c^2)。2、同理可得V(y),V(z)的表达式。三、尺缩效应:△L=△l/γ或dL=dl/γ。B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ。四、钟慢效应:△t=γ△τ或dt=dτ/γ。由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T。五、光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)。光源与探测器在一条直线上运动。1、B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b) (1)。2、探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a) (2)。3、相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N) (3)。4、由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b)。六、动量表达式:P=Mv=γmv,即M=γm。1、dt=γdτ,此时γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c。2、牛顿第二定律在伽利略变换下保持形势不变,即无论在哪个惯性系内牛顿第二定律都成立。3、牛顿力学中,v=dr/dt,r在坐标变换下形式不变,只要将分母替换为一个不变量就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。4、牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv。七、相对论力学基本方程:F=dP/dt。由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。八、质能方程:E=Mc^2。1、Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2=Mv^2+Mc^2(1-v^2/c^2)-mc^2=Mc^2-mc^2。2、即E=Mc^2=Ek+mc^2九、能量动量关系:E^2=(E0)^2+P^2c^2。E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2。
2023-02-14 13:49:292

爱因斯坦著名公式

狭义相对论公式: 1:设一个物体质量为M,它所在的参照系相对于另一个参照系的速度为v 则它的质量相对于另一个参照系变为M1, M1和M之间的关系为M1=M/√[1-(v/c)^2] 2:类似的,设一个物体的长度为L,它相对于另一个参照系的长度为L1 则:L1=L×√[1-(v/c)^2] c为光速,在任何一个参照系看来,c都是不变的,这是光速不变原理 3:生命周期变化公式:T1=T/√[1-(v/c)^2] 4:设光子能量为E,动量为p,动质量为m,则:E^2=p^2c^2+m^2c^4 像这样的公式还有很多。 广义相对论公式: 1:设一个物体在一个质量大的星球附近,这个星球质量为M 物体原本的质量为m,在这个星球(有可能为黑洞)所产生的强引力场中它的质量为m1,则m1=m/√[1-2GM/Rc^2] 2:类似的有:L1=L√[1-2GM/Rc^2] 3:生命周期变化公式:T1=T/√[1-2GM/Rc^2] 4:爱因斯坦引力场方程:Gμν=8πGTμν/c^4,(μν是下标) 5:宇宙临界密度公式:ρc=3H^2/8πG,(c为下标,H为哈勃常量) 关于量子力学的公式: 爱因斯坦光电方程:hν=W-Ek,W为溢出功,Ek为初动能) 光子能量方程:E=hν,(ν为光子频率) 关于布朗运动的公式 △^2x=(RT/NA)·(t/3πηγ), (△x表示微粒的运动位移,△^2表示△的平方,NA为阿伏加德罗常数)
2023-02-14 13:50:311

狭义相对论的速度和长度的相关公式

速度变换:  V(x)=(v(x)-u)/(1-v(x)u/c^2)  V(y)=v(y)/(γ(1-v(x)u/c^2))  V(z)=v(z)/(γ(1-v(x)u/c^2))  尺缩效应:△L=△l/γ或dL=dl/γ
2023-02-14 13:50:532

爱因斯坦的狭义相对论长度缩短,质量增加,时间变慢公式是怎样的,写下来要简单些要看得懂

m=m0/(1-v^2/c^2)^1/2)^1/2就是根号下l=l0*(1-v^2/c^2)^1/2t=t0/(1-v^2/c^2)^1/2好像是这个,我从书上查的
2023-02-14 13:51:142

爱因斯坦相对论公式是什么?

基本的几个:1.相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速.2.相对长度公式L=Lo* √(1-v^2/c^2)Lo是物体静止...
2023-02-14 13:52:381

相对论的公式有哪些?

质量与那能量公式E=MC^2 距离公式L=L0*SQRT[1-(V/C)^2] 根据前面两个可以推出时间公式 祝好! 有问题可以追问或者直接联系我.
2023-02-14 13:52:591

相对论的公式是怎样的??

E=MC^2
2023-02-14 13:53:213

爱因斯坦的狭义相对论公式是什么?

没有这么一说
2023-02-14 13:53:423

爱因斯坦相对论速度公式的问题

基本的几个:1.相对速度公式:△v=|v1-v2|/√(1-v1v2/c^2)两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速。2.相对长度公式l=lo*√(1-v^2/c^2)lo是物体静止是的长度,l是物体的运动时的长度,v是物体速度,c是光速。由此可知速度越大,物体长度越压缩,当物体以光速运动,物体的运动方向长度为0.3.相对质量公式m=mo/√(1-v^2/c^2)mo是物体静止时的质量,m是物体的运动时的质量,v是物体速度,c是光速。由此可知速度越大,物体质量越大,当物体以光速运动,物体的质量为正无穷4.相对时间公式t=to*√(1-v^2/c^2)to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。由此可知速度越大,物体时间走得越慢,当物体以光速运动,物体的时间就不再流逝,从而时间停止。5。质能方程e=mc^2质量和能量本质相同
2023-02-14 13:55:461

狭义相对论的公式严密推导?

单 位 符 号坐标:m(x,y,z)力:NF(f)时间:st(T)质量:kgm(M)位移:mr动量:kg*m/sp(P)速度:m/sv(u)能量:JE加速度:m/s^2a冲量:N*sI长度:ml(L)动能:JEk路程:ms(S)势能:JEp角速度:rad/sω力矩:N*mM角加速度:rad/s^2α功率:WP一:牛顿力学(预备知识)(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt(2)a=dv/dt,v=v0+∫adt(注:两式中左式为微分形式,右式为积分形式)当v不变时,(1)表示匀速直线运动。当a不变时,(2)表示匀变速直线运动。只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。(二):质点动力学:(1)牛一:不受力的物体做匀速直线运动。(2)牛二:物体加速度与合外力成正比与质量成反比。F=ma=mdv/dt=dp/dt(3)牛三:作用力与反作与力等大反向作用在同一直线上。(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)动量守恒:合外力为零时,系统动量保持不变。动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)二:狭义相对论力学:(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)(一)基本原理:(1)相对性原理:所有惯性系都是等价的。(2)光速不变原理:真空中的光速是与惯性系无关的常数。(此处先给出公式再给出证明)(二)洛仑兹坐标变换:X=γ(x-ut)Y=yZ=zT=γ(t-ux/c^2)(三)速度变换:V(x)=(v(x)-u)/(1-v(x)u/c^2)V(y)=v(y)/(γ(1-v(x)u/c^2))V(z)=v(z)/(γ(1-v(x)u/c^2))(四)尺缩效应:△L=△l/γ或dL=dl/γ(五)钟慢效应:△t=γ△τ或dt=dτ/γ(六)光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)(光源与探测器在一条直线上运动。)(七)动量表达式:P=Mv=γmv,即M=γm.(八)相对论力学基本方程:F=dP/dt(九)质能方程:E=Mc^2(十)能量动量关系:E^2=(E0)^2+P^2c^2(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)三:三维证明:(一)由实验总结出的公理,无法证明。(二)洛仑兹变换:设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。可令x=k(X+uT),(1).又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.故有X=k(x-ut),(2).对于y,z,Y,Z皆与速度无关,可得Y=y,(3).Z=z(4).将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x,(5).(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:X=γ(x-ut)Y=yZ=zT=γ(t-ux/c^2)(三)速度变换:V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))=(dx/dt-u)/(1-(dx/dt)u/c^2)=(v(x)-u)/(1-v(x)u/c^2)同理可得V(y),V(z)的表达式。(四)尺缩效应:B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ(五)钟慢效应:由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)(六)光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b),(1).探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a),(2).相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N),(3).由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b).(七)动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)牛二在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛二都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)(八)相对论力学基本方程:由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛二的形式完全一样,但内涵不一样。(相对论中质量是变量)(九)质能方程:Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2=Mv^2+Mc^2(1-v^2/c^2)-mc^2=Mc^2-mc^2即E=Mc^2=Ek+mc^2(十)能量动量关系:E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2四:四维证明:(一)公理,无法证明。(二)坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,dS^2=dx^2+dy^2+dz^2+(icdt)^2,(1).则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2〉0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)X=xcosφ+(ict)sinφicT=-xsinφ+(ict)cosφY=yZ=z当X=0时,x=ut,则0=utcosφ+ictsinφ得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:X=γ(x-ut)Y=yZ=zT=γ(t-ux/c^2)(三)(四)(五)(六)(八)(十)略。(七)动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)四维动量:P=mV=(γmv,icγm)=(Mv,icM)四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)则f=mdV/dτ=mω(九)质能方程:fV=mωV=m(γ^5va+i^2γ^5va)=0故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2故E=Mc^2=Ek+mc^2
2023-02-14 13:56:072