barriers / 阅读 / 详情

带根式不定积分求法

2023-05-20 02:16:10

这个积分怎么求?

共2条回复
阿啵呲嘚

ÿÿÿÿdx

原式=∫------------------              .........①         

             ³/--------------

      (x-1)²√[(x+1)/(x-1)]²               

           

    

                      

                     ³/--------------

令[(x+1)/(x-1)]=t³,则√[(x+1)/(x-1)]²=t²,x=[2/(t³-1)]+1 ,

dx=-6t²dt/(t³-1)²

              1          -6t²dt

从而①式=∫-------------*--------=(-3/2)∫dt=(-3t/2)+C 

           t²[2/(t³-1)]² (t³-1)²          

                                                 ³ ----------

                                          =(-3/2)√(x+1)/(x-1) +C

幂函数的不定积分

黑桃云

先对分母化简:分母变成(x^2-1)[(x-1)/(x+1)]^1/3

(手机打不了根号,只能凑合一下了)

下面对其有理化,取那个带三次根号的无理式[(x-1)/(x+1)]^1/3为t,然后x=(t^3+1)/(1-t^3)

带入原式,结果比预期的还简洁阿,是个光秃秃的幂函数,自己去算算吧,呵呵,最后别忘了把结果中的t换回成x

相关推荐

求各种函数五次方的不定积分,需要过程?

一般都是不断运用分部积分来降低幂的次数,使之变成简单的积分,比如三角函数,还有幂函数都是这样的,如果是指数函数的话,可以直接换元的,比如e^(5x)dx=1/5·e^(5x)d(5x)超简单啊。
2023-01-13 22:51:481

老师,Ln(-3+4i)=?,不会做呀

请采纳
2023-01-13 22:51:553

lna*lnb=ln对吗

错误。正确的公式:lna+lnb=ln(ab)证明:设:m=lna,n=lnb则:a=e^m,b=e^na×b=(e^m)×(e^n)=e^(m+n)则:ln(a×b)=m+n=lna+lnb即:lna+lnb=ln(ab)扩展资料:自然对数以常数e为底数的对数。记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。对数的运算法则:1、log(a) (M·N)=log(a) M+log(a) N2、log(a) (M÷N)=log(a) M-log(a) N3、log(a) M^n=nlog(a) M4、log(a)b*log(b)a=15、log(a) b=log (c) b÷log (c) a
2023-01-13 22:52:136

sin^2/(1+cos^4)的不定积分

分出一个cosx凑到dx,得dsinx,剩下的被积函数是(sinx)^2×[1-(sinx)^2],实际上就是幂函数的不定积分了
2023-01-13 22:52:551

不定积分分部积分法技巧

不定积分分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型。不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C求不定积分的方法:第一类换元其实就是一种拼凑,利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
2023-01-13 22:53:091

根号2x的不定积分怎么求

幂函数的不定积分的求法:∫x^adx=x^(a+1)/(a+1)+C所以,∫2xdx=2∫xdx=2(x²/2)+C=x²+C其中,C为任意实数
2023-01-13 22:53:182

不定积分公式怎么记

1,记忆几个常用初等函数的积分;比如幂函数,指数函数,对数函数,三角函数,反三角函数等.2,学会一些常用积分方法;比如变量替换,分布积分法等.3,多做练习.
2023-01-13 22:53:202

高数求不定积分

I = ∫sin2xdx/√[1+(cosx)^4] = ∫2sinxcosxdx/√[1+(cosx)^4]= -∫2cosxdcosx/√[1+(cosx)^4] = -∫d(cosx)^2/√[1+(cosx)^4]令 (cosx)^2 = tanu, 则 d(cosx)^2 = (secu)^2du, I = -∫(secu)^2du/secu = -∫secudu = - ln|secu+tanu| + C= - ln[√[1+(cosx)^4]+(cosx)^2] + C
2023-01-13 22:53:242

1/x√x的不定积分?

化成幂函数的不定积分求解。
2023-01-13 22:53:272

高中数学

分数指数幂: 分数,只有不等于整数的有理数才是分数 分数中间的一条横线叫做 分数线 ,分数线上面的数叫做 分子 ,分数线下面的数叫做 分母 。读作几分之几。 分数可以表述成一个 除法 算式:如二分之一等于1除以2。其中,1 分子等于 被除数 ,- 分数线等于 除号 ,2 分母等于 除数 ,而0.5 分数值 则等于商。 分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于 比值 。分数的基本性质:分数的分子和分母都乘以或都除以同一个不为零的数,所得到的分数与原分数的大小相等。 (b、c不等于零) 分数还有一个有趣的性质:一个分数不是 有限小数 ,就是无限循环小数,像π等这样的 无限不循环小数 ,是不可能用分数代替的。 分数的另一个性质是:当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行 约分 与 通分 。 对分数进行次方运算结果不可能为整数,且如果运算前是最简的分数,则结果也会是最简,如 有理数,是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 无理数,也称为 无限不循环小数 ,不能写作两 整数 之比。若将它写成 小数 形式,小数点之后的数字有无限多个,并且不会 循环 。 常见的无理数有非 完全平方数 的 平方根 、 π 和 e (其中后两者均为 超越数 )等。无理数的另一特征是无限的 连分数 表达式。无理数最早由 毕达哥拉斯学派 弟子 希伯索斯 发现 实数,是有理数和无理数的总称,数学上,实数定义为与数轴上的实数,点相对应的 数 。实数可以 直观 地看作 有限小数 与 无限小数 ,实数和数轴上的点一一对应。但仅仅以 列举 的方式不能描述实数的 整体 。实数和 虚数 共同构成 复数 我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为 虚数 单位。当z的虚部等于零时,常称z为实数;当z的 虚部 不等于零时,实部等于零时,常称z为 纯虚数 。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。 复数是由 意大利 米兰学者卡当在十六世纪首次引入,经过达朗贝尔、 棣莫弗 、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。 比如:4^3=4×4×4=64,可以理解为4的3次方。 一般地,y=x α (α为有理数)的函数,即以 底数 为 自变量 ,幂为 因变量 , 指数 为常数的函数称为 幂函数 。例如函数y=x 0 、y=x 1 、y=x 2 、y=x -1 (注:y=x -1 =1/x、y=x 0 时x≠0)等都是 幂函数 。 1. 一般地,y=a x 函数(a为常数且以a>0,a≠1)叫做指数函数,函数的 定义域 是 R 。 [1] 注意,在指数函数的定义表达式中,在a x 前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数 [2] 。 一般地,函数 (a为常数且以a>0,a≠1)叫做指数函数,函数的 定义域 是R。 [3] 对于一切指数函数来讲,值域为(0, +∞)。指数函数中 1/x=x^(-1) 所以指数是-1 1/根号x=1/x (1/2)=x (-1/2) 所以指数是-1/2 除法求导公式 (u/v)"=(u"v-uv")/v² 在函数中可以看到 函数图像: 与 的图像关于y 轴对称 [1] 。 如果 ,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 事实上,当 ① ② ③ (M,N∈R) 如果 ,则m为数a的 自然对数 ,即 ,e=2.718281828…为自然对数 的底,其为 无限不循环小数 。定义: 若 则 基本性质: 1、 2、 3、 4、 设ƒ(x)是区间E上的函数。若对于任意属于E的x,存在常数M>0,使得|ƒ(x)|≤M,则称ƒ(X)是区间E上的有界函数。 正弦函数sin x 和余弦函数cos x为R上的有界函数,因为对于每个x∈R都有|sin x|≤1和|cos x|≤1。 函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。 f(x)=tanx在(-π/2,π/2)。 n ∑ k i 其中∑下面的数 i 表示下界,∑上面的数 n 表示上界, k 从 i 开始取数,一直取到 n ,全部加起来。 积分 是 微积分 学与 数学分析 里的一个核心概念。通常分为 定积分 和 不定积分 两种。直观地说,对于一个给定的正实值函数,在一个实数 区间 上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的 曲边梯形 的面积值(一种确定的 实数 值) 分为 定积分 和 不定积分
2023-01-13 22:53:381

微积分问题 求不定积分

2023-01-13 22:53:412

谁知道不定积分∫xln(x+1)dx是多少啊?

2023-01-13 22:54:175

老师,Ln(-3+4i)=?,不会做呀

计算过程如下:ln(-3+4i)=ln|-3+4i|+iarg(-3+4i)=ln5+i(pi-arcsin(4/5))自然对数的底e是由一个重要极限给出的。e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。扩展资料:对于n=-1的情况,因n=-1代入幂函数的不定积分表达式中将使分母为0。lnx在(0,+∞)上处处连续、可导。其导数为1/x>0,所以在(0,+∞)单调增加。由反函数的性质可知y=exp(x)是定义在R上的单调递增并且处处连续、可微的函数,其值域为(0,+∞)。由于exp(x)求导后得到它自身并且exp(0)=1。
2023-01-13 22:54:441

ln2整体的平方

您好:(ln2)²=[ln(1+1)]²=0.6931²=0.48 因为ln(1+1)=1-½+¹/₃-…+(-1)ⁿ-¹ 1/n=0.6931(麦克劳林展开), 所以,0.6931²=0.4803876。祝学习愉快
2023-01-13 22:54:512

ln的公式都有哪些

性质①loga(1)=0;  ②loga(a)=1;  ③负数与零无对数.运算法则①loga(MN)=logaM+logaN;②loga(M/N)=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。定义:若a^n=b(a>0且a≠1)则n=log(a)(b) 基本性质:1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N);3、log(a)(M÷N)=log(a)(M)-log(a)(N);  4、log(a)(M^n)=nlog(a)(M)5、log(a^n)M=1/nlog(a)(M)  推导:  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。2、MN=M×N  由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)],由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]},又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N) 3、与(2)类似处理M/N=M÷N  由基本性质1(换掉M和N)a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)], 由指数的性质a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]},又因为指数函数是单调函数,所以log(a)(M÷N)=log(a)(M)-log(a)(N)
2023-01-13 22:54:542

高数不定积分

希望有所帮助
2023-01-13 22:55:024

x^x的不定积分(非初等函数)

非初等还要什么过程啊。。你不会是要求定积分吧。。
2023-01-13 22:55:262

开根号的不定积分怎么算啊

把根号看做是幂函数来做。比如说根号X可以看作是X的1/2次方。如果是复合函数,就把根号里面的看作一个整体将其在dx里凑出来再做。接着根据这个公式来做就行了。
2023-01-13 22:55:351

(3-x平方)的平方*dx.求不定积分

展开,分成幂函数求定积分,再求和
2023-01-13 22:55:572

请问各位前辈高人们,在求不定积分的分布积分法时,所选取的u与v"dx的顺序是反对幂三指,还是反对幂指三

指数函数和三角函数的位置可以对调因为它们都会出现循环形式哪个当u哪个当v"也没所谓,只是次序不同∫ e^x*sinx dx= ∫ e^x d(- cosx)= - e^x*cosx + ∫ e^x*cosx dx= - e^x*cosx + ∫ e^x d(sinx)= - e^x*cosx + e^x*sinx - ∫ e^x*sinx dx==> ∫ e^x*sinx dx = (1/2)(sinx - cosx)*e^x + C∫ e^x*sinx dx= ∫ sinx d(e^x)= e^x*sinx - ∫ e^x*cosx dx= e^x*sinx - ∫ cosx d(e^x)= e^x*sinx - e^x*cosx + ∫ e^x*(- sinx) dx==> ∫ e^x*sinx dx = (1/2)(sinx - cosx)*e^x + C
2023-01-13 22:56:021

两个数的乘积的不定积分怎么求

优先选用分部积分法,看下面例子这里假设u是比v复杂的函数,透过对u求导化简
2023-01-13 22:56:062

∫x√(x^4+2x^2-3)dx不定积分?

1、常函数积分(1)∫0dx=C。(2)∫1dx=∫dx=x+C。【注】C为常数,下同。几个常见的不定积分基本公式2、幂函数积分(1)∫(x^α)dx=[x^(α+1)]/(α+1)+C。(2)∫(1/x)dx=ln|x|+C。(x≠0)(3)∫(e^x)dx=e^x+C。(4)∫(a^x)dx=(a^x)/lna+C。(a>0,a≠1)3、三角函数(1)∫(cosax)dx=(1/a)sinax+C。(a≠0)(2)∫(sinax)dx=-(1/a)cosax+C。(a≠0)(3)∫(secx)^2dx=tanx+C。(4)∫(cscx)^2dx=-cotx+C。(5)∫(secxtanx)dx=secx+C。(6)∫(cscxcotx)dx=-cscx+C。4、其它(1)∫[1/(1-x^2)]^(1/2)dx=arcsinx+C=-arccosx+C"。(2)∫[1/(1+x^2)]dx=arctanx+C=-arccotx+C"。一线教育名师,其它相关“不定积分基本公式”的数学问题,可以点击下方卡片提问以便及时获得一对一的针对性帮助。
2023-01-13 22:56:546

分部积分问题?

分部积分问题?分部积分法是由微分的乘法定则和微积分基本定理推导而来的。其基本思路是将不易求得结果的积分形式转化为等价的但易于求出结果的积分形式。对于那些由两个不同函数组成的被积函数不便于进行换元的组合分成两部分进行积分,其原理是函数四则运算的求导法则逆用。  定积分内  与不定积分的分部积分法一样,可得∫b/a u(x)v"(x)dx=[∫u(x)v"(x)dx]b/a  =[u(x)v(x) - ∫v(x)u"(x)dx]b/a  =[u(x)v(x)]b/a- ∫b/a v(x)u"(x)dx  简记作 ∫b/a uv"dx=[uv]b/a-∫b/a u"vdx 或∫b/a udv=[uv]b/a-∫b/a vdu  例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0 xdarcsinx  从这个例子中就可以看到在定积分上是如何应用的。  不定积分内  具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。原公式: (uv)"=u"v+uv"求导公式 : d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为 :d(uv) = vdu + udv  移项后,成为:udv = d(uv) -vdu  两边积分得到:∫udv = uv - ∫vdu  在传统的微积分教材里分部积分法通常写成不定积分形式:  ∫v(x)u"(x)dx=v(x)u(x)- ∫v"(x)u(x)dx  例:∫xcosxdx = xsinx - ∫sinxdx  从这个例子中,就可以体会出分部积分法的应用。匿名网友:1.不定积分中,分部积分法问题。答:分部积分法是由微分的乘法定则和微积分基本定理推导而来的。其基本思路是将不易求得结果的积分形式转化为等价的但易于求出结果的积分形式。对于那些由两个不同函数组成的被积函数不便于进行换元的组合分成两部分进行积分,其原理是函数四则运算...2.用分部积分法求:∫xarcsinxdx答:看图详解: ~如果您认可我的回答,请及时点击【采纳为满意回答】按钮~ ~手机提问者在客户端上评价点【满意】即可~~ ~您的采纳是我前进的动力~~ ~如还有问题,可以【追问】~~ ~祝学习进步,更上一层楼!O(∩_∩)O~3.定积分的分部积分法(求详细过程)答:∫(0->√3/2) arccosx dx =[xarccosx]|(0->√3/2) + ∫(0->√3/2) x/√(1-x^2) dx =(√3/2)(π/6) - [√1-x^2]|(0->√3/2) =(√3/12)π - (1/2 -1) =(√3/12)π + 1/24.分部积分法是一种怎样的方法?怎样的不定积分可以...答:分部积分,integral by parts,是适用于三种情况的积分方法: 1、可以逐步降低幂次的积分 例如: ∫x⁴sinxdx = -∫x⁴dcosx = -x⁴cosx + 4∫x³cosxdx + c 这样一来,x 的幂次就降低了,以此类推,就积出来了。 2、可以将对数...5.分部积分法怎么做??答:字写得不错6.高数一用分部积分法过程是什么答:解:原式=-∫xd(cosx) =-xcosx+∫cosxdx (应用分部积分法) =-xcosx+sinx+C (C是积分常数)。 再把上下限代入 =0+1-0=17.用分部积分法求∫arctan√xdx答:原式= x arctan√x - ∫x d (arctan√x) 令t=√x,则 ∫x d (arctan√x) = ∫ t^2 d (arctant) = ∫ t^2 / (1+ t^2) dt = ∫ (t^2+1-1) / (1+ t^2) dt = ∫ 1 dt - ∫ 1 / (1+ t^2) dt = t - arctan t + C 将t=√x带入 = √x - arctan√x +C 所以原式= x arcta...8.用分部积分法怎么做这种循环的?求大神讲解
2023-01-13 22:57:402

不定积分d后面的x的指数可以前提嘛?

除非幂函数比较特殊,不然不要指望不定积分的结果能用初等函数来表示,不过可以表示成不完全Gamma函数
2023-01-13 22:58:531

两个函数相乘的定积分是多少?

首先要明白定积分跟不定积分是不相同的不定积分是函数族,定积分是一个值但之间有联系你这道题目是求定积分还是不定积分呀?对于两个函数相乘的不定积分一般可以用分部积分法:形式是这样的:积分:u(x)v"(x)dx=u(x)v(x)-积分:u"(x)v(x)dx被积函数的选择按:反对幂指三前者为u,后者为v反三角,对数,幂函数,指数,三角对于该题目;应该是:积分:xe^xdx你自己试一下解不出来再给我信息!答案是:(x-1)e^x+C
2023-01-13 22:59:081

计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2

用截面法(先二后一)当 0<z<1, x^2+y^2 < z ; 当 1<z<√2, x^2+y^2 < 2 - z^2I = ∫[0,1] z dz ∫∫dxdy + ∫[1,√2] z dz ∫∫dxdy = ∫[0,1] z * πz dz + ∫[1,√2] z * π(2 - z^2) dz 幂函数的积分,易求。
2023-01-13 22:59:122

怎样理解定积分的分部积分?

定积分的分部积分法意思如下:所谓的分部积分法,主要是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的方法,就是常说的“反对幂三指”。“反对幂三指”分部积分顺序从后往前考虑。这只是使用分部积分法时的简便用法的缩写。分布积分法的特点:在积分法的反对幂指三中,一般是指代入分部积分中公式中的,用于计算U与V" ,是相对来说的,例如,反三角函数和对数求积分,一般要设反三角为U ,对数为V" ,这样在积分才容易求导。先看v:g积分得到v。g的选取顺序相应为 指三幂对反,积分难度递增。再看du:反、对、幂、三、指,微分后依次是:多项式(开根)分之一、多项式(开根)分之一、幂函数、三角函数、指数函数。本身相对都较容易解决。
2023-01-13 22:59:151

定积分的分部积分法

2023-01-13 22:59:222

定积分的分布积分法是什么意思?

定积分的分部积分法意思如下:所谓的分部积分法,主要是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的方法,就是常说的“反对幂三指”。“反对幂三指”分部积分顺序从后往前考虑。这只是使用分部积分法时的简便用法的缩写。分布积分法的特点:在积分法的反对幂指三中,一般是指代入分部积分中公式中的,用于计算U与V" ,是相对来说的,例如,反三角函数和对数求积分,一般要设反三角为U ,对数为V" ,这样在积分才容易求导。先看v:g积分得到v。g的选取顺序相应为 指三幂对反,积分难度递增。再看du:反、对、幂、三、指,微分后依次是:多项式(开根)分之一、多项式(开根)分之一、幂函数、三角函数、指数函数。本身相对都较容易解决。
2023-01-13 22:59:261

一道关于分式的数学计算题。。

=x2+(1/(x+y))2+2x(1/(x+y))-x2-(1/(x+y))2+2x(1/(x+y))化简得;=4x/(x+y)
2023-01-13 22:56:246

贷开头的成语有哪些?

贷字出处清·文康《儿女英雄传》诗集,最常用的就是贷款方面的,那么贷开头的成语有哪些呢? 1、 没有开头是贷的成语:包含贷的成语有:责无旁贷、严惩不贷、告贷无门、法无可贷、百不 2、 责无旁贷[ zé wú páng dài]:解释:自己应尽的责任,不能推卸给别人。贷:推卸。 3、 出处:清·文康《儿女英雄传》:“讲到护送;除了自己一身之外;责无旁贷者再无一人。” 4、 翻译:说到护送这件事,除了自己之外应尽的责任之外,再没有别人要承担。 5、 严惩不贷[ yán chéng bù dài]:解释:严厉惩罚,绝不宽恕:对顽抗到底的犯罪分子,一定要~。贷(dài):饶恕。 6、 出处:明·余继登《典故纪闻》:“有或违者;必罚不贷。” 7、 翻译:有违背的人,一定严厉惩罚,绝不宽恕。 8、 告贷无门[ gào dài wú mén]:解释:形容经济十分困难,想借钱都无处去借。告贷:向别人借钱。 9、 出处:李劼人《死水微澜》第一部:“是如何告贷无门,处处受别人的嘴脸。” 10、 翻译:是怎么经历的想借钱都没处去的,到处遭受别人的脸色。 11、 法无可贷[ fǎ wú kě dài]:解释:指按法律不可宽恕。 12、 出处:中国近代史资料丛刊《辛亥革命.徐锡麟安。 以上的就是关于贷开头的成语有哪些的内容介绍了。
2023-01-13 22:56:261

高中数学,因式分解

就这样
2023-01-13 22:56:263

Sin18度等于多少

(√5-1)/4
2023-01-13 22:56:274

贷字组词

贷用 贷死 贷券 贷贳贷帖 贷赀 贷宥 贷方贷放 贷离 贷命 出贷春贷 称贷 差贷 不贷倍贷 赦贷 赊贷 恕贷无贷 洗贷 信贷 优贷原贷 振贷 沾贷 资贷矜贷 借贷 湔贷 含贷告贷 弘贷 丐贷 高利贷僦贷季 法无可贷 告贷无门 百不一贷消费信贷 信贷资金 严惩不贷 银团贷款责无旁贷 借贷无门 赈贫贷乏 放高利贷
2023-01-13 22:56:296

加权平均法计算公式是什么?

加权平均法是指企业以库存材料的数量为权数,平均计算其单位成本,以此作为发出材料存货的计价标准的一种方法。加权平均单位成本,一般于月末计算,因此,又有“月末一次加权平均”之称。其计算公式: ① 加权平均单位成本=(月初结存材料实际成本 本月收入材料实际成本)÷(月初结存材料数量 本月收入材料数量) ②发出材料实际成本=发现材料数量×加权平均单位成本 例:现库存材料明细账所列圆钢为例,计算如下: 加权平均单位成本=(3200 12800)÷(800 3000)=4.21(元/千克) 会.计奥.网 本月发出材料的实际成本=1100×4.21=4631(元) 会,计奥网 采用加权平均法,核算简单,计算的平均单位成本比较合理,存货成本分摊较适中。但由于平均单位成本集中在月本一次计算,发货凭证的计价、汇总与登记等工作,也都必须因此而集中在月末进行,这既加重了月末核算的工作量,又影响核算的及时性。为了克服上述缺点,人们又提出了另一种加权平均法,即移动加权平均法。 会.计
2023-01-13 22:56:301

速动比率计算公式

  速动比率计算公式为:速动比率=(流动资产-库存)/ 流动负债。速动比率是衡量公司资产流动性的指标,可以反映公司现金或可立刻变现资产对流动负债的偿还能力。保守速动比率=(现金+交易性金融资产+应收账款+应收票据)/流动负债。   速动比率怎么看   当速动比率高时,这就说明公司流动资金过剩,公司生产能力可能出现了问题。速动比率过低,这就说明公司本期债务过重,公司可能出现还款风险。   保守速动比率指的是在计算速动比率时,除扣除存货以及其他一些可能与当期现金流量无关的项目。影响速动比率可信度的重要因素是应收账款的变现能力。由于行业之间的差别,在计算速动比率会有区别。保守速动比率(或称“超速动比率”)其计算公式如下:   保守速动比率=(现金+交易性金融资产+应收账款+应收票据)/流动负债
2023-01-13 22:56:311

sing18度等于多少?

sin18度等于多少?解法1.令x = 18°∴cos3x = sin2x∴4(cosx)^3 - 3cosx = 2sinxcosx∵cosx≠ 0∴4(cosx)^2 - 3 = 2sinx∴4sinx2 + 2sinx - 1 = 0,又0 < sinx < 1∴sinx = (√5 - 1)/4即sin18° = (√5 - 1)/4.解法2. 作顶角为36°、腰长为1 的等腰三角形ABC, BD为其底角B的平分线,设AD = x则AD = BD = BC = x, DC = 1 - x.由相似三角形得:x2 = 1 - x∴x = (√ 5 - 1)/2∴sin18° = x/2 = (√5 - 1)/4.
2023-01-13 22:56:321

分式计算题!!!!

前面两项提出来一个二分之一,然后再通分一下应该就行了。
2023-01-13 22:56:323

加权平均法计算公式是什么?

当月月末库存存货成本=月末库存存货的数量×存货单位成本。月末一次加权平均法是指以全部进货数量加上月初存货数量作为权数,去除本月全部进货成本加上月初存货成本,计算出存货的加权平均单位成本,以此为基础,计算出本月发出存货的成本和期末存货成本的一种方法。考虑到计算出的加权平均单价不一定是整数,往往要小数点后四舍五入。为了保持账面数字之间的平衡关系,一般采用倒挤成本法计算发出存货的成本。采用加权平均法只在月末一次计算加权平均单价,比较简单,有利于简化成本计算工作,但由于平时无法从账上提供发出和结存存货的单价及金额,因此不利于存货成本的日常管理与控制。
2023-01-13 22:56:332

速动比率计算公式是什么?

速动比计算公式:(流动资产-库存)/ 流动负债,正常情况下公司速动比率为1,低于1的速动比率被认为是短期偿债能力偏低。但这也仅是一般的看法,因为行业不同,速动比率会有很大差别,没有统一标准的速动比率。比例过高,说明公司流动资金过剩,生产能力出现问题;比例过低,说明公司本期债务过重,可能出现还款风险。扩展资料速动比率的高低能直接反映企业的短期偿债能力强弱,它是对流动比率的补充,并且比流动比率反映得更加直观可信。如果流动比率较高,但流动资产的流动性却很低,则企业的短期偿债能力仍然不高。在流动资产中有价证券一般可以立刻在证券市场上出售,转化为现金,应收帐款,应收票据等项目,可以在短时期内变现,而存货、预付帐款、待摊费用等项目变现时间较长,特别是存货很可能发生积压,滞销、残次、冷背等情况,其流动性较差,因此流动比率较高的企业,并不一定偿还短期债务的能力很强,而速动比率就避免了这种情况的发生。
2023-01-13 22:56:341

分式计算题

[(a^2+b^2)(a^2-b^2)-(a-b)(a+b)]*[(a-b)2ab] =[(a^2+b^2)(a+b)(a-b)-(a-b)^2(a+b)(a-b)]*[(a-b)2ab] =[(a^2+b^2-a^2+2ab-b^2)(a+b)(a-b)]*[(a-b)2ab]=[2ab(a+b)(a-b)]*[(a-b)2ab]=1(a+b)
2023-01-13 22:56:212

高中数学因式分解求解。a^2+b^2+c^2-ab-bc-ac

a^2+b^2+c^2-ab-bc-ac=0.5*(2a^2+2b^2+2c^2-2ab-2bc-2ac)=(a²-2ab+b²+b²-2bc+c²+a²-2ac+b²)/2=[(a-b)²+(b-c)²+(a-c)²]/2=(a-b)²/2+(b-c)²/2+(a-c)²/2
2023-01-13 22:56:203

加权平均数的计算公式是什么?

加权平均数的计算公式如下图:加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。加权平均值的大小不仅取决于总体中各单位的数值(变量值)的大小,而且取决于各数值出现的次数(频数),由于各数值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。意义:权重是一个相对的概念,是针对某一指标而言。某一指标的权重是指该指标在整体评价中的相对重要程度。权重表示在评价过程中,是被评价对象的不同侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。事实上,没有重点的评价就不算是客观的评价。
2023-01-13 22:56:201

贷字结构是什么

文字:贷读音是:dài 字结构:上下结构
2023-01-13 22:56:192

分式的计算题,急!!

x/(2x-5)=5/(5-2x) (5-2x)x=5(2x-5)5x-2x^2=10x-252x^2-5x-25=0(x-5)(2x+5)=0x-5=0或2x+5=0x=5或-5/2x/(x-2)+2/(x^2-4)=1x(x+2)+2=x^2-4x^2+2x+2=x^2-42x=-6x=-3
2023-01-13 22:56:182

初高中数学 因式分解 1. (a²)²-4a²-4a-1 2. 3x²+5xy-2y²+x9y-4

(a²)²-4a²-4a-1 =a^4-(4a^2-+4a+1)=a^4-(2a+1)^2=(a^2+2a+1)(a^2-2a-1)=(a+1)^2(a^2-2a-1)2.3x^2+5xy-2y^2+x+9y-4=(x+2y)(3x-y)+x+9y-4=(x+2y)(3x-y)+4(x+2y)-(3x-y)-4=(x+2y-1)(3x-y+4)
2023-01-13 22:56:161

分式方程计算题

1.3/2x=-23=-4xx=-3/42.x/(x-1)+2/(x+1)=1x(x+1)+2(x-1)=(x-1)(x+1)x^2+x+2x-2=x^2-13x=1x=1/33.1/(x+1)-x^2/(x^2+3x+2)=-11/(x+1)-x^2/(x+1)(x+2)=-1(x+2)/(x+1)(x+2)-x^2(x+1)(x+2)=-1x+2-x^2=-(x+1)(x+2)x^2-x-2=x^2+3x+24x=-4x=-1x/(2x-1)=(-2x-1)/(1-2x)x=2x+1x=-1(3) (11-2x)/(4-x)=(1-x)/(x-4)11-2x=x-13x=12x=4∵当x=4时,原方程无意义,∴原方程无解7/(x2+x)+3/(x2-x)=6/(x2-1)解方程两边同乘以最简公分母x(x+1)(x-1),得7(x-1)+3(x+1)=6x去括号,得7x-7+3x+3=6x移项,得7x-6x+3x=7-3合并同类项,得4x=4系数化1,得x=13/x-6/(1-x)-(x+5)/x(1-x)=0解方程两边同乘以最简公分母x(1-x),得3(1-x)-6x-(x+5)=0去括号,得3-3x-6x-x-5=0合并同类项,得-10x=2系数化1,得x=-1/5(5x-4)/(2x-4)=(2x+5)/(3x-6)-1/2解方程两边同乘以最简公分母6(x-2),得3(5x-4)=2(2x+5)-3(x-2)去括号,得15x-12=4x+10-3x+6移项,得15x-4x+3x=10+6+12合并同类项,得14x=28系数化1,得x=2经检验,X=2是增根,舍去,所以原方程无解x2-4x/(x2-1)+1=2x/(x+1)解方程两边同乘以最简公分母(x2-1),得x2-4x+x2-1=2x(x-1)即2x2-4x-1=2x2-2x移项,得2x2-4x-2x2+2x=1合并同类项,得-2x=1x=-1/21/(x+3)+1/(6-2x)=(3x-15)/(2x2-18)解方程两边同乘以最简公分母2(x+3)(x-3),得2(x-3)-(x+3)=3x-15去括号,得2x-6-x-3=3x-15移项,得2x-x-3x=-15+6+3合并同类项,得-2x=-6x=3解关于x的方程:x/(x-a)=1-[a/(x+b)](a≠0)解:x/(x-a)+[a/(x+b)]=1通分,(x2+bx+ax-a2)/[(x-a)(x+b)]=1方程两边同乘以最简公分母(x-a)(x+b),得(x2+bx+ax-a2)=(x-a)(x+b)去括号,得x2+bx+ax-a2=x2+bx-ax-ab移项,得x2+bx+ax-x2-bx+ax=-ab+a2合并同类项,得2ax=a2-abx=(a-b)/2希望可以采纳
2023-01-13 22:56:151

贷字是什么意思

应该是银行内部账务的会计分录表示吧 即对客户而言,贷表示取钱 借表示存钱
2023-01-13 22:56:122

高中因式分解题(x^2+3x)^2-2(x^2+3x)+8的答案 要过程

这好像是初中的吧?
2023-01-13 22:56:097

贷先查部首再查几画我还知道它和什么有关?

贷字用部首查字法先查:贝 再查5画拼音:dài它和金钱有关系
2023-01-13 22:56:091