barriers / 阅读 / 详情

什么是MRI技师

2023-08-06 16:55:53
TAG: mr mri 技师
共5条回复
贝贝

就是操作核磁共振机器的专业技术人员。

MRI在医学上的应用

检查目的

1、侦测及诊断心脏疾病、脑血管意外及血管疾病

2、胸腔及腹腔的器官疾病的侦测与诊断

3、诊断及评价、追踪肿瘤的情况及功能上的障碍

MRI被广泛运用在运动相关伤害的诊断上,对近骨骼和骨骼周围的软组织,包括韧带与肌肉,可呈现清晰影像,因此在脊椎及关节问题上,是极具敏感的检查。

因MRI没有辐射暴露的危险,因此经常被使用在生殖系统、乳房、骨盆及膀胱病的侦测及诊断上。

原理概述

氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。

NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。

人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。

当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。

原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。

人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来。

MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了剖胸或剖腹探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此对人体没有损害。

MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。对全身各系统疾病的诊断,尤其是早期肿瘤的诊断有很大的价值。

扩展资料

成像原理

核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。

这样一来,自旋的核同时也以自旋轴和外加磁场的向量方向的夹角绕外加磁场向量旋进,这种旋进叫做拉莫尔旋进,就像旋转的陀螺在地球的重力下的转动。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。

如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。这样,自旋核还要在射频方向上旋进,这种叠加的旋进状态叫做章动。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨室,就得到运动中原子核分布图像。

在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨室,就得到运动中原子核分布图像。

原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间,T2为自旋-自旋或横向弛豫时间。

参考资料来源:百度百科-MRI

参考资料来源:百度百科-核磁共振成像

皮皮

就是操作MRI机器的技术人员。MRI也就是磁共振成像,核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为磁共振成像术(MRI)。

扩展资料:

1、技术特点

核磁共振成像原理

磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。

1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

2、工作原理

MRI通过对静磁场中的人体施加某种特定频率的射频脉冲,使人体中的氢质子受到激励而发生磁共振现象。停止脉冲后,质子在弛豫过程中产生MR信号。通过对MR信号的接收、空间编码和图像重建等处理过程,即产生MR信号。

3、成像原理

核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。这样一来,自旋的核同时也以自旋轴和外加磁场的向量方向的夹角绕外加磁场向量旋进,这种旋进叫做拉莫尔旋进,就像旋转的陀螺在地球的重力下的转动。

4、医疗用途

磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。

参考资料来源:百度百科-MRI

真可

就是操作MRI机器,就像CT技师,CR技师一样的,同性质的。

磁共振成像(MRI)没有电离辐射,是一种较为安全、高效的临床诊断方法。然而磁共振成像环境中也存在着一些潜在风险。

不能带进磁体间的物品:

磁共振机器一旦安装完毕,强大的磁场就产生了。临床所用的磁共振设备场强一般是1.5T或者3.0T,是地球磁场的数万倍。

因此,任何含有磁性或铁磁性金属(铁、钴、镍等)的物品均不得带入磁体间。

1、磁卡等磁性物品会在强磁场中被消磁,功能报废;

2、而硬币、眼镜等在强磁场中可能飞射起来,变成伤人的凶器;

3、另外,轮椅,拐杖,病床等大型铁磁性物体更是极其危险,决不能带入磁体间。

扩展资料:

做MRI检查时,应当穿着无任何金属配件的衣服,因为任何一个小小的铁磁性物品都有可能引起飞射及热灼伤等安全事故。即便是非铁磁性金属,也可能引入金属伪影。

影响磁共振图像质量从而延误诊断,MRI检查过程中身体要保持静止不动,否则会导致图像模糊并影响诊断,检查过程中患者要避免交叉手臂或双腿,否则会形成导电回路,增加组织灼伤的风险。

康康map

核磁技师。

MRI技师考试需要单位上报的,只要能通过考试就能拿到上岗证,但不是技师证。

上岗证只是说明有操作MRI大型仪器的资格,技师证和上岗证不是一个概念。

扩展资料

MRI是核磁共振成像的英文缩写,是继CT检查之后的医学影像检查工具的又一重大突破。自80年代以来,发展特别迅速,已成为当代医学影像检查的重要检查手段之一。

由于它彻底摆脱了X线对人体辐射的伤害,又具有软组织分辨率高,能多参数、多方位成像以及功能成像等突出优势,目前已广泛应用于临床各种疾病的诊断。

瑞瑞爱吃桃

就是操作MRI机器啊,就像CT技师,CR技师一样的,同性质的。

相关推荐

核磁共振的原理是什么?

科技名词定义中文名称:核磁共振英文名称:nuclear magnetic resonance;NMR定义1:具有磁距的原子核在高强度磁场作用下,可吸收适宜频率的电磁辐射,由低能态跃迁到高能态的现象。如1H、3H、13C、15N、19F、31P等原子核,都具有非零自旋而有磁距,能显示此现象。由核磁共振提供的信息,可以分析各种有机和无机物的分子结构。所属学科:生物化学与分子生物学(一级学科);方法与技术(二级学科)定义2:由于具有磁距的原子核在高强度磁场作用下,可吸收适宜频率的电磁辐射,而不同分子中原子核的化学环境不同, 将会有不同的共振频率,产生不同的共振谱。记录这种波谱即可判断该原子在分子中所处的位置及相对数目,用于进行定量分析及分子量的测定,并对有机化合物进行结构分析。可以直接研究溶液和活细胞中分子量较小(20 kDa以下)的蛋白质、核酸以及其他分子的结构,而不损伤细胞。核磁共振全名是核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI)又称自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。编辑本段科学原理 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。核磁共振根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 质量数和质子数均为偶数的原子核,自旋量子数为0 ,即I=0,如12C,16O,32S等,这类原子核没有自旋现象,称为非磁性核。质量数为奇数的原子核,自旋量子数为半整数 ,如1H,19F,13C等,其自旋量子数不为0,称为磁性核。质量数为偶数,质子数为奇数的原子核,自旋量子数为整数,这样的核也是磁性核。但迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P ,由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。 原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的 核磁共振氢谱能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.编辑本段技术应用 NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。 对于孤立原子核而言,同一种原子核在同样强度的外磁场中, 核磁共振碳谱只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。 耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。例如在氢谱中,d 表示二重峰 dd 表示双二重峰 t 表示三重峰 m 表示多重峰,都是由于耦合作用产生的。 最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。 早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振 核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。 近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。编辑本段医学运用 核磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。 与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改变的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 核磁共振核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。 核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。编辑本段地质勘探 核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某一地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。 目前核磁共振探测技术已经成为传统的钻探探测技术的补充手段,并且 核磁共振应用于滑坡等地质灾害的预防工作中,但是相对于传统的钻探探测,核磁共振探测设备购买、运行和维护费用非常高昂,这严重地限制了MRS技术在地质科学中的应用。编辑本段基本特点 ①共振频率决定于核外电子结构和核近邻组态;②共振峰的强弱决定于该组态在合金中所占的比例;③谱线的分辨率极高。编辑本段临床诊断 与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有 核磁共振成像6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点: 对人体没有游离辐射损伤; 各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤; 通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位; 能诊断心脏病变,CT因扫描速度慢而难以胜任; 对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT; 原则上所有自旋不为零的核元素都可以用以成像,例如氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。编辑本段临床意义适应症 神经系统的病变包括肿瘤、梗塞、出血、变性、先天畸形、感染等几乎成为确诊的手段。特别是脊髓脊椎的病变如脊椎的肿瘤、萎缩、变性、外伤椎间盘病变,成为首选的检查方法。 心脏大血管的病变;肺内纵膈的病变。 腹部盆腔脏器的检查;胆道系统、泌尿系统等明显优于CT。 对关节软组织病变;对骨髓、骨的无菌性坏死十分敏感,病变的 核磁共振成像发现早于X线和CT。 磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。 颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。优点 1.MRI对人体没有损伤; 2.MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位; 3.能诊断心脏病变,CT因扫描速度慢而难以胜任; 4.对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT。缺点 1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断; 2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多; 3.对胃肠道的病变不如内窥镜检查; 4.体内留有金属物品者不宜接受MRI。 核磁共振探测技术5. 危重病人不能做 6.妊娠3个月内的 7.带有心脏起搏器的编辑本段注意事项 由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。 身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。 有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。 在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。 近年来,随着科技的进步与发展,有许多骨科内固定物,特别是脊柱的内固定物,开始用钛合金或钛金属制成。由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内 核磁共振固定物的病人,进行核磁共振检查时是安全的;而且钛金属也不会对核磁共振的图像产生干扰。这对于患有脊柱疾病并且需要接受脊柱内固定手术的病人是非常有价值的。但是钛合金和钛金属制成的内固定物价格昂贵,在一定程度上影响了它的推广应用。编辑本段MRI检查适应症神经系统病变 脑梗塞、脑肿瘤、炎症、变性病、先天畸形、外伤等,为应用最早的人体系统,目前积累了丰富的经验,对病变的定位、定性诊断较为准确、及时,可发现早期病变。心血管系统 可用于心脏病、心肌病、心包肿瘤、心包积液以及附壁血栓、内膜片的剥离等的诊断。胸部病变 纵隔内的肿物、淋巴结以及胸膜病变等,可以显示肺内团块与较大气管和血管的关系等。腹部器官 肝癌、肝血管瘤及肝囊肿的诊断与鉴别诊断,腹内肿块的诊断与鉴别诊断,尤其是腹膜后的病变。盆腔脏器 子宫肌瘤、子宫其它肿瘤、卵巢肿瘤,盆腔内包块的定性定位,直肠、前列腺和膀胱的肿物等。骨与关节 骨内感染、肿瘤、外伤的诊断与病变范围,尤其对一些细微的改变如骨挫伤等有较大价值,关节内软骨、韧带、半月板、滑膜、滑液囊等病变及骨髓病变有较高诊断价值。全身软组织病变 无论来源于神经、血管、淋巴管、肌肉、结缔组织的肿瘤、感染、变性病变等,皆可做出较为准确的定位、定性的诊断。编辑本段特性区别 计算机断层扫描(CT)能在一个横断解剖平面上,准确地探测各种不同组织间密度的微小差别,是观察骨关节及软组织病变的一种较理想的检查方式。在关节炎的诊断上,主要用于检查脊柱,特别是骶髂关节。CT优于传统X线检查之处在于其分辨率高,而且还能做轴位成像。由于CT的密度分辨率高,所以软组织、骨与关节都能显得很清楚。加上CT可以做轴位扫描,一些传统X线影像上分辨较困难的关节都能在叮图像上“原形毕露”。如由于骶髂关节的关节面生来就倾斜和弯曲,同时还有其他组织之重叠,尽管大多数病例的骶髂关节用x线片已可能达到要求,但有时X线检查发现骶髂关节炎比较困难,则对有问题的病人就可做CT检查。 磁共振成像(MRI)是根据在强磁场中放射波和氢核的相互作用而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做磁共振成像,因为它的组织密度对比范围大。在骨、关节与软组织病变的诊断方面,磁共振成像由于具有多于CT数倍的成像参数和高度的软组织分辨率,使其对软组织的对比度明显高于CT。磁共振成像通过它多向平面成像的功能,应用高分辨的毒面线圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、血管、软骨等其他影像检查所不能分辨的细微结果得以显示。磁共振成像在骨关节系统的不足之处是,对于骨与软组织病变定性诊断无特异性,成像速度慢,在检查过程中。病人自主或不自主的活动可引起运动伪影,影响诊断。 X线摄片、CT、磁共振成像可称为三驾马车,三者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。编辑本段发展研究 1991年,58岁的瑞士化学家Richard R. Ernst已是功成名就,正马不停蹄地绕着地球领奖颁奖。在从莫斯科飞往纽约的泛美航空公司的班机上,他被机长告知了得诺贝尔化学奖的消息。在大西洋上空海拔一万多米的驾驶舱中,Ernst听取了来自瑞典皇家科学院,瑞士总统和他在苏黎士理工的同仁们的祝贺。据说,Ernst在说了不胜荣幸之类的客套话后,接着就问到:“谁是另外两个获奖者?”他急于想知道谁将和他瓜分那一百万美元的奖金。那年得诺贝尔化学奖的,只有Ernst一人。 核磁共振能得到化学家的青睐,源于一种叫“化学位移”(chemical shift)的现象。产生这种现象的原因,是因为围绕原子核旋转的电子改变了原子核周围的磁场强度,因而使原子核的共振频率发生了位移。于是,通过检测原子核的共振频率,就可以推算出其所处的电子也就是化学环境,核磁共振波谱学便应运而生了。 然而Ernst以前的核磁共振实验,用来激发原子核能级跃迁的电磁波都是单一频率的。要想捕捉到不同共振频率的原子,科学家们必须不厌其烦地改变磁场的强度,以使原子核的能级和电磁波的频率吻合,这样的实验是极其繁琐和费时的。Ernst率先发明了用脉冲信号取代单一频率电磁波的方法,脉冲信号包含的丰富的频率成分能一次性的把不同共振频率的原子核激发,这样只要对采集到的信号做一个简单的傅立叶变换,就可以得到样品的完整的核磁共振谱。Ernst的工作大大地改变了核磁共振波谱学的面貌,他创立的脉冲核磁共振和傅立叶分析理论对日后的成像研究也有巨大的影响,因为现代的成像技术多是在傅立叶空间采集数据,然后通过二维傅立叶变换进行图像重建。 如今核磁共振波谱学已经被广泛地应用于分析化学与结构化学的研究中,在关于蛋白质结构的研究上,开始和传统的X光晶体衍射的方法平分秋色。虽然核磁共振的方法在分辨率上尚不及X光晶体衍射,但因为核磁共振能直接对溶液中的蛋白质进行分析而不需要生成晶体,所以它在研究蛋白质三维结构的形成以及蛋白质之间的相互作用上,有其独到之处。2002年,诺贝尔化学奖的一半颁给了另一个在用核磁共振波谱学研究生物大分子结构方面有杰出工作的瑞士化学家Kurt Wüthrich,也许是因为这次是和另外两个做质谱仪的科学家平分,或者是得奖多次产生了审美疲劳,这一次在医学界并没有掀起太大的波澜。
2023-08-05 10:39:062

求有关核磁共振成像的资料

资料:核磁共振成像  磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。  核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973 年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成象。参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。  一、 MRI的成像基本原理与设备  (一)磁共振现象与MRI  含单数质子的原子,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体(图1-5-1)。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列(图1-5-2)。在这种状态下,用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationproces),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称 T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。  图1-5-2 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列  人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此(表1-5-1a、b)。这种组织间弛豫时间上的差别,是MRI的成像基础。有如CT时,组织间吸收系数(CT值)差别是CT成像基础的道理。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。  MRI的成像方法也与CT相似。有如把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),进行空间编码。用转换器将每个T值转为模拟灰度,而重建图像。  表1-5-1a 人体正常与病变组织的T1值(ms)  肝  140~170  脑 膜 瘤  200~300  胰  180~200  肝癌  300~450  肾  300~340  肝血管瘤  340~370  胆汁  250~300  胰 腺 癌  275~400  血液  340~370  肾癌  400~450  脂肪  60~80  肺 脓 肿  400~500  肌肉  120~140  膀 胱 癌  200~240  表1-5-1b 正常颅脑的T1与T2值(ms)  组 织  T1  T2  胼胝体  380  80  桥 脑  445  75  延 髓  475  100  小 脑  585  90  大 脑  600  100  脑脊液  1155  145  头 皮  235  60  骨 髓  320  80  (二)MRI设备  MRI的成像系统包括MR信号产生和数据采集与处理及图像显示两部分。MR信号的产生是来自大孔径,具有三维空间编码的MR波谱仪,而数据处理及图像显示部分,则与CT扫描装置相似。  MRI设备包括磁体、梯度线圈、供电部分、射频发射器及MR信号接收器,这些部分负责MR信号产生、探测与编码;模拟转换器、计算机、磁盘与磁带机等,则负责数据处理、图像重建、显示与存储(图1-5-3)。  磁体有常导型、超导型和永磁型三种,直接关系到磁场强度、均匀度和稳定性,并影响MRI的图像质量。因此,非常重要。通常用磁体类型来说明MRI设备的类型。常导型的线圈用铜、铝线绕成,磁场强度最高可达0.15~0.3T*,超导型的线圈用铌-钛合金线绕成,磁场强度一般为0.35~2.0T,用液氦及液氮冷却;永磁型的磁体由用磁性物质制成的磁砖所组成,较重,磁场强度偏低,最高达0.3T。  梯度线圈,修改主磁场,产生梯度磁场。其磁场强度虽只有主磁场的几百分之一。但梯度磁场为人体MR信号提供了空间定位的三维编码的可能,梯度场由X、Y、Z三个梯度磁场线圈组成,并有驱动器以便在扫描过程中快速改变磁场的方向与强度,迅速完成三维编码。  射频发射器与MR信号接收器为射频系统,射频发射器是为了产生临床检查目的不同的脉冲序列,以激发人体内氢原子核产生MR信号。射频发射器及射频线圈很象一个短波发射台及发射天线,向人体发射脉冲,人体内氢原子核相当一台收音机接收脉冲。脉冲停止发射后,人体氢原子核变成一个短波发射台,而MR信号接受器则成为一台收音机接收MR信号。脉冲序列发射完全在计算机控制之下。  MRI设备中的数据采集、处理和图像显示,除图像重建由Fourier变换代替了反投影以外,与CT设备非常相似二、MRI检查技术  MRI的扫描技术有别于CT扫描。不仅要横断面图像,还常要矢状面或(和)冠状面图像,还需获得T1WI和T2WI。因此,需选择适当的脉冲序列和扫描参数。常用多层面、多回波的自旋回波(spin echo,SE)技术。扫描时间参数有回波时间(echo time,TE)和脉冲重复间隔时间(repetition time,TR)。使用短TR和短TE可得T1WI,而用长TR和长TE可得T2WI。时间以毫秒计。依TE的长短,T2WI又可分为重、中、轻三种。病变在不同T2WI中信号强度的变化,可以帮助判断病变的性质。例如,肝血管瘤T1WI呈低信号,在轻、中、重度T2WI上则呈高信号,且随着加重程度,信号强度有递增表现,即在重T2WI上其信号特强。肝细胞癌则不同,T1WI呈稍低信号,在轻、中度T2WI呈稍高信号,而重度T2WI上又略低于中度 T2WI的信号强度。再结合其他临床影像学表现,不难将二者区分。  MRI常用的SE脉冲序列,扫描时间和成像时间均较长,因此对患者的制动非常重要。采用呼吸门控和(或)呼吸补偿、心电门控和周围门控以及预饱和技术等,可以减少由于呼吸运动及血液流动所导致的呼吸伪影、血流伪影以及脑脊液波动伪影等的干扰,可以改善MRI的图像质量。  为了克服MRI中SE脉冲序列成像速度慢、检查时间长这一主要缺点,近年来先后开发了梯度回波脉冲序列、快速自旋回波脉冲序列等成像技术,已取得重大成果并广泛应用于临床。此外,还开发了指肪抑制和水抑制技术,进一步增加MRI信息。  MRI另一新技术是磁共振血管造影(magnetic resonance angiography,MRA)。血管中流动的血液出现流空现象。它的MR信号强度取决于流速,流动快的血液常呈低信号。因此,在流动的血液及相邻组织之间有显著的对比,从而提供了MRA的可能性。目前已应用于大、中血管病变的诊断,并在不断改善。MRA不需穿剌血管和注入造影剂,有很好的应用前景。 MRA还可用于测量血流速度和观察其特征。  MRI也可行造影增强,即从静脉注入能使质子弛豫时间缩短的顺磁性物质作为造影剂,以行 MRI造影增强。常用的造影剂为钆——二乙三胺五醋酸(Gadolinium-DTPA, Gd-DTRA)。这种造影剂不能通过完整的血脑屏障,不被胃粘膜吸收,完全处于细胞外间隙内以及无特殊靶器官分布,有利于鉴别肿瘤和非肿瘤的病变。中枢神经系统MRI作造影增强时,症灶增强与否及增强程度与病灶血供的多少和血脑屏障破坏的程度密切相关,因此有利于中枢神经系统疾病的诊断。  MRI还可用于拍摄电视、电影,主要用于心血管疾病的动态观察和诊断。  基于MRI对血流扩散和灌注的研究,可以早期发现脑缺血性改变。它预示着很好的应用前景。  带有心脏起搏器的人需远离MRI设备。体内有金属植入物,如金属夹,不仅影响MRI的图像,还可对患者造成严重后果,也不能进行MRI检查,应当注意。  三、MRI的临床应用  MRI诊断广泛应用于临床,时间虽短,但已显出它的优越性。  在神经系统应用较为成熟。三维成像和流空效应使病变定位诊断更为准确,并可观察病变与血管的关系。对脑干、幕下区、枕大孔区、脊髓与椎间盘的显示明显优于CT。对脑脱髓鞘疾病、多发性硬化、脑梗塞、脑与脊髓肿瘤、血肿、脊髓先天异常与脊髓空洞症的诊断有较高价值。  纵隔在MRI上,脂肪与血管形成良好对比,易于观察纵隔肿瘤及其与血管间的解剖关系。对肺门淋巴结与中心型肺癌的诊断,帮助也较大。  心脏大血管在MRI上因可显示其内腔,所以,心脏大血管的形态学与动力学的研究可在无创伤的检查中完成。  对腹部与盆部器官,如肝、肾、膀胱,前列腺和子宫,颈部和乳腺,MRI检查也有相当价值。在恶性肿瘤的早期显示,对血管的侵犯以及肿瘤的分期方面优于CT。  骨髓在MRI上表现为高信号区,侵及骨髓的病变,如肿瘤、感染及代谢疾病,MRI上可清楚显示。在显示关节内病变及软组织方面也有其优势。  MRI在显示骨骼和胃肠方面受到限制。  MRI还有望于对血流量、生物化学和代谢功能方面进行研究,对恶性肿瘤的早期诊断也带来希望。  在完成MR成像的磁场强度范围内,对人体健康不致带来不良影响,所以是一种非损伤性检查。  但是,MRI设备昂贵,检查费用高,检查所需时间长,对某些器官和疾病的检查还有限度,因之,需要严格掌握适应证。
2023-08-05 10:39:231

X光、CT、核磁共振三者各自的功能是什么?各自侧重点和优点分别是什么?

X光一般用作骨骼检查,穿透性强,适合高密度组织的影像学检查。CT是分辨率更高、穿透能力可调控的X光,除了骨骼检查之外,还可以用作中等密度组织的检查,比如内脏、脑组织。核磁共振的成像原理和上面两者不同,比较复杂,分辨率更高,优点是对然组织成像和清晰,可用于脑、内脏、脊髓等组织的检查
2023-08-05 10:39:302

核磁共振是什么意思?

核磁共振 (NMR) 仪器可以直接控制并探测原子核的运动。核磁共振——一种众所周知的响亮名字!但这是科学,名称不是为了听起来悦耳。请看以下词汇:原子核 - 指由质子和中子组成的原子核,或仅有一个质子的氢核。 磁性 - 受磁场控制的核子运动。共振 - 我们利用共振来有效地操纵磁场内的原子核。地球和其它旋转磁体许多原子核(并非全部)可被视为很小的条形磁铁,都有磁北极和磁南极。原子核以南北磁极连线为轴,以恒定速率旋转。旋转条形磁铁在自然界中相当普遍。单个的铁原子、地球、太阳、多个行星和中子星等都属于旋转条形磁铁。与原子核相比,地球的地理北极(旋转轴)与北磁极并不完全重合,所以它是比较复杂的旋转条形磁铁。原子核的运转情况要好得多:它们的磁极与地理磁极恰好重合。由单个质子组成的氢核具有磁性,而且它还是水、天然气和石油的重要组成成分。由于人类正在寻找碳氢化合物,所以对这些原子核尤为关注。 排列原子核磁体通常,原子核的北极可以指向任意方向,如无外界干涉,它们的指向则没有限制。核磁共振测量法的第一步是通过放置一块大型磁铁来形成一个强磁场,然后将原子核磁体置于其中,使其按一定方式排列。这将使原子核排列成行,北极指向外部磁体的南极。磁性原子核很乐于被磁场重新排列。这会使它们处于一种舒适的状态,物理学家称之为平衡或低能。这就象是一个小孩懒洋洋地坐在操场的秋千上,哪儿也不想去。这儿就是他最开心的地方。 家庭实验:排列手掌上的原子核。所需材料:(1) 一个吸在冰箱上的磁性物件;(2)您的手掌。操作步骤:将磁铁置于手上。大功告成!操作实在是太简单不过了。干扰磁体 核磁共振测量法的第二步是让物体移动。这是通过另一磁场来完成的,而不是与原子核运动产生共振的那个磁场。名为 B1 的振荡磁场垂直于永磁体 B0 的磁场。 片刻以后,原子核开始倾斜并在垂直于 B0 磁场的平面内旋转。 这就象是前面说的那个荡秋千的懒小孩一样,推动着他,但不必太用力。每次他接近弧顶并向前荡时,轻轻地推一下。这种被称为共振的轻轻推动可以增强规律性的往复运动。原子核的运动亦是如此。为使它们不指向大磁体,必须对其施加外力。由于原子核是旋转的,所以其运动方式很象陀螺仪或玩具陀螺。当陀螺仪或玩具陀螺笔直指向地球的重力场时,它只是旋转。如果它与重力场呈某一角度,就会做一种称为“旋进”的轨道运动。旋进速度(远低于旋转速度)取决于陀螺仪的大小和形状,它的旋转速度及重力。当原子核偏离强磁场的方向时,它也做“旋进”运动。旋进速度取决于原子核的属性(旋转速率等)以及磁场强度 — 这与陀螺仪很类似。这些属性是保持不变的,所以只需知道磁场强度就可以准确得出旋进频率。也就是必须施加给原子核的推动频率,以使其偏离主磁场,产生旋进运动。推力来自第二个磁场,该磁场的时间变化率与旋进速率相等 – 即可以与原子核运动产生共振。(核 . . . 磁 . . . 共振 — 是不是初具雏形了?) 在前面那个荡秋千示例中,停止施加外力后,秋千在一段时间内仍将继续摆动。原子核也一样。它们所需要的只是一次持续 10 微秒(没错,是微秒)的快速无线电脉冲,即可使其维持长达数秒(没错,是秒)的运动。您是否知道...哪种周期性变化的磁场可以在相等的时间间隔内对原子核施加外力?无线电传输。因为核磁共振设备具有与无线电台同样的电路板。某些核磁共振设备甚至使用与 FM 无线广播相同的频率,在 88 至 108 兆赫之间(每秒循环 88 至 108 兆次)。监视原子核运动即使您闭上眼睛,也能知道秋千还在摆荡。为什么?原来秋千上的小孩在大声喊叫个不停。 这一次,磁性原子核的情形仍与此非常类似。只要它们脱离大磁场中的队列,或者说,不再保持平衡状态,它们会辐射出无线电波。每个原子核都象一个很小的无线电台。并且毫无疑问,核磁共振设备的一部分是一个无线电接收器,在原子核移动时,可以捕捉到它们发出的信号。最早的核磁共振设备是二战时与雷达站一同建造的,在一套设备里,既有无线电发射机,又有接收机。驰豫 在前面那个荡秋千示例中,停止施加外力后,秋千在一段时间内仍将继续摆动。但秋千上的小孩很不舒服。他不再保持平衡,而处于一种高能状态。这不是他的本性。由于各方面原因(与空气的摩擦,秋千与支撑结构连接处的摩擦),一段时间后秋千会逐渐慢下来。但秋千上的小孩想尽快进入驰豫状态,于是他稍微收腿,让自己减速,直至他再次可以舒舒服服地坐在那里。原子核非常象这个小孩。通过无线电波可以让它运动,在无线电发射机停止发射后的一段时间内,它仍可继续运动,但不是最佳状态。在核磁共振设备中,它会在永久磁场的导向下,找到一种方法逐渐回到平衡状态。但还有一个问题。原子核并没有脚。它们如何减速?有多种方法可使原子核失去能量返回平衡状态。对于原子核处于液体分子(如水)的情况,一种途径就是撞击固体表面。每次分子撞击固体表面时,原子核都有机会返回到沿强磁场方向的平衡排列状态。这就是…驰豫。您看,即便是原子核也喜欢驰豫。在较大的孔隙里,液体分子有更多的空间移动而不会撞上孔壁,所以碰撞频率非常小。在岩石里,核磁共振驰豫取决于孔隙的尺寸:孔隙越大,核磁共振驰豫的时间越长。 核磁共振对孔隙尺寸的灵敏度有两项简单但功能强大的应用。第一就是由孔隙尺寸决定的渗透性。更确切地说,渗透性与孔隙直径的平方成正比,所以人们希望它与核磁共振驰豫的平方也成正比。通过对数百种不同的岩石进行实验室测试,证明确实存在这种关系。 核磁共振数据的第二项应用是确定孔隙尺寸的分布。由于在单个岩石内孔隙的尺寸变化很大,因此分布范围很广。通过孔隙尺寸分布,地质学者可以得出大量有关岩石的信息——远胜于在显微镜下进行观察。参考资料 http://www.seed.slb.com/zh/scictr/watch/nmr/how.htm
2023-08-05 10:39:411

什么是核磁共振

  核磁共振 核磁共振  核磁共振(Nuclear Magnetic Resonance即NMR)  核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI),又称磁共振成像(Magnetic Resonance Imaging,MRI),  核磁共振全名是核磁共振成像(MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。  核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。  并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。  核磁共振(MRI)又叫核磁共振成像技术。是后继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。  MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。  MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。  MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。  核磁共振技术的历史  1930年代,物理学家伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。  1946年两位美国科学家布洛赫和珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。  人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。  1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫宣布,他们发现了核磁共振NMR。两人因此获得了1952年诺贝尔奖。核磁共振是原子核的磁矩在恒定磁场和高频磁场(处在无线电波波段)同时作用下,当满足一定条件时,会产生共振吸收现象。核磁共振很快成为一种探索、研究物质微观结构和性质的高新技术。目前,核磁共振已在物理、化学、材料科学、生命科学和医学等领域中得到了广泛应用。  原子核由质子和中子组成,它们均存在固有磁矩。可通俗的理解为它们在磁场中的行为就像一根根小磁针。原子核在外加磁场作用下,核磁矩与磁场相互作用导致能级分裂,能级差与外加磁场强度成正比。如果再同时加一个与能级间隔相应的交变电磁场,就可以引起原子核的能级跃迁,产生核磁共振。可见,它的基本原理与原子的共振吸收现象类似。  早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,后来广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。对于孤立的氢原子核(也就是质子),当磁场为1.4T时,共振频率为59.6MHz,相应的电磁波为波长5米的无线电波。但在化合物分子中,这个共振频率还与氢核所处的化学环境有关,处在不同化学环境中的氢核有不同的共振频率,称为化学位移。这是由核外电子云对磁场的屏蔽作用、诱导效应、共厄效应等原因引起的。同时由于分子间各原子的相互作用,还会产生自旋-耦合裂分。利用化学位移与裂分数目,就可以推测化合物尤其是有机物的分子结构。这就是核磁共振的波谱分析。20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使C13谱的应用也日益增多。用核磁共振法进行材料成分和结构分析有精度高、对样品限制少、不破坏样品等优点。  最早的核磁共振成像实验是由1973年劳特伯发表的,并立刻引起了广泛重视,短短10年间就进入了临床应用阶段。作用在样品上有一稳定磁场和一个交变电磁场,去掉电磁场后,处在激发态的核可以跃迁到低能级,辐射出电磁波,同时可以在线圈中感应出电压信号,称为核磁共振信号。人体组织中由于存在大量水和碳氢化合物而含有大量的氢核,一般用氢核得到的信号比其他核大1000倍以上。正常组织与病变组织的电压信号不同,结合CT技术,即电子计算机断层扫描技术,可以得到人体组织的任意断面图像,尤其对软组织的病变诊断,更显示了它的优点,而且对病变部位非常敏感,图像也很清晰。  核磁共振成像研究中,一个前沿课题是对人脑的功能和高级思维活动进行研究的功能性核磁共振成像。人们对大脑组织已经很了解,但对大脑如何工作以及为何有如此高级的功能却知之甚少。美国贝尔实验室于1988年开始了这方面的研究,美国政府还将20世纪90年代确定为“脑的十年”。用核磁共振技术可以直接对生物活体进行观测,而且被测对象意识清醒,还具有无辐射损伤、成像速度快、时空分辨率高(可分别达到100μm和几十ms)、可检测多种核素、化学位移有选择性等优点。美国威斯康星医院已拍摄了数千张人脑工作时的实况图像,有望在不久的将来揭开人脑工作的奥秘。  若将核磁共振的频率变数增加到两个或多个,可以实现二维或多维核磁共振,从而获得比一维核磁共振更多的信息。目前核磁共振成像应用仅限于氢核,但从实际应用的需要,还要求可以对其他一些核如:C13、N14、P31、S33、Na23、I127等进行核磁共振成像。C13已经进入实用阶段,但仍需要进一步扩大和深入。核磁共振与其他物理效应如穆斯堡尔效应(γ射线的无反冲共振吸收效应)、电子自旋共振等的结合可以获得更多有价值的信息,无论在理论上还是在实际应用中都有重要意义。核磁共振拥有广泛的应用前景,伴随着脉冲傅里叶技术已经取得了一次突破,使C13谱进入应用阶段,有理由相信,其它核的谱图进入应用阶段应为期不远。  另一方面,医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,在这一理论基础上1969年,纽约州立大学南部医学中心的医学博士达马迪安通过测核磁共振的弛豫时间成功的将小鼠的癌细胞与正常组织细胞区分开来,在达马迪安新技术的启发下纽约州立大学石溪分校的物理学家保罗·劳特伯尔于1973年开发出了基于核磁共振现象的成像技术(MRI),并且应用他的设备成功地绘制出了一个活体蛤蜊地内部结构图像。劳特伯尔之后,MRI技术日趋成熟,应用范围日益广泛,成为一项常规的医学检测手段,广泛应用于帕金森氏症、多发性硬化症等脑部与脊椎病变以及癌症的治疗和诊断。2003年,保罗·劳特伯尔和英国诺丁汉大学教授彼得·曼斯菲尔因为他们在核磁共振成像技术方面的贡献获得了当年度的诺贝尔生理学或医学奖。 其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。  核磁共振的原理  核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。  根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:  质量数和质子数均为偶数的原子核,自旋量子数为0  质量数为奇数的原子核,自旋量子数为半整数  质量数为偶数,质子数为奇数的原子核,自旋量子数为整数  迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P  由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。  原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。  原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。  为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.  核磁共振的应用  NMR技术  核磁共振频谱学  NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。  对于孤立原子核而言,同一种原子核在同样强度的外磁场中,只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。  耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。  最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。  早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。  近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。  MRI技术  核磁共振成像  核磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。  与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改编的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。  核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。  核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。  MRS技术  核磁共振测深  核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某一地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。  目前核磁共振探测技术已经成为传统的钻探探测技术的补充手段,并且应用于滑坡等地质灾害的预防工作中,但是相对于传统的钻探探测,核磁共振探测设备购买、运行和维护费用非常高昂,这严重地限制了MRS技术在地质科学中的应用。  核磁共振的特点  ①共振频率决定于核外电子结构和核近邻组态;②共振峰的强弱决定于该组态在合金中所占的比例;③谱线的分辨率极高。  磁共振成像的优点  与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点:  对人体没有游离辐射损伤;  各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;  通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位;  能诊断心脏病变,CT因扫描速度慢而难以胜任;  对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;  原则上所有自旋不为零的核元素都可以用以成像,例如氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。  临床意义:适应症:  神经系统的病变包括肿瘤、梗塞、出血、变性、先天畸形、感染等几乎成为确诊的手段。特别是脊髓脊椎的病变如脊椎的肿瘤、萎缩、变性、外伤椎间盘病变,成为首选的检查方法。  心脏大血管的病变;肺内纵膈的病变。  腹部盆腔脏器的检查;胆道系统、泌尿系统等明显优于CT。  对关节软组织病变;对骨髓、骨的无菌性坏死十分敏感,病变的发现早于X线和CT。  [编辑本段]核磁共振和CT的区别  计算机断层扫描(CT)能在一个横断解剖平面上,准确地探测各种不同组织间密度的微小差别,是观察骨关节及软组织病变的一种较理想的检查方式。在关节炎的诊断上,主要用于检查脊柱,特别是骶髂关节。CT优于传统X线检查之处在于其分辨率高,而且还能做轴位成像。由于CT的密度分辨率高,所以软组织、骨与关节都能显得很清楚。加上CT可以做轴位扫描,一些传统X线影像上分辨较困难的关节都能在叮图像上“原形毕露”。如由于骶髂关节的关节面生来就倾斜和弯曲,同时还有其他组织之重叠,尽管大多数病例的骶髂关节用x线片已可能达到要求,但有时X线检查发现骶髂关节炎比较困难,则对有问题的病人就可做CT检查。  磁共振成像(MRI)是根据在强磁场中放射波和氢核的相互作用而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做磁共振成像,因为它的组织密度对比范围大。在骨、关节与软组织病变的诊断方面,磁共振成像由于具有多于CT数倍的成像参数和高度的软组织分辨率,使其对软组织的对比度明显高于CT。磁共振成像通过它多向平面成像的功能,应用高分辨的毒面线圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、血管、软骨等其他影像检查所不能分辨的细微结果得以显示。磁共振成像在骨关节系统的不足之处是,对于骨与软组织病变定性诊断无特异性,成像速度慢,在检查过程中。病人自主或不自主的活动可引起运动伪影,影响诊断。  X线摄片、CT、磁共振成像可称为三驾马车,三者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。  参考资料:http://baike.baidu.com/view/9319.html?wtp=tt
2023-08-05 10:40:111

核磁共振可以使金属成像吗?

实际上是可以的。只要找到质子数与中子数至少一个为奇数的原子核,放到磁场中,找到它的拉莫频率,biubiubiu给他想要的射频,停下来坐等回波就可以了核磁共振成像:原子核在磁场中受特定射频频率产生共振现象,经过傅立叶变换形成有效对比图像的技术核磁共振成像也称磁共振成像,是利用核磁共振原理,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P,在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。磁共振成像是一种较新的医学成像技术,国际上从一九八二年才正式用于临床。它采用静磁场和射频磁场使人体组织成像,在成像过程中,既不用电子离辐射、也不用造影剂就可获得高对比度的清晰图像。它能够从人体分子内部反映出人体器官失常和早期病变。它在很多地方优于X线CT。虽然X-CT解决了人体影响重叠问题,但由于提供的图像仍是组织对X射线吸收的空间分布图像,不能够提供人体器官的生理状态信息。当病变组织与周围正常组织的吸收系数相同时,就无法提供有价值的信息。只有当病变发展到改变了器官形态、位置和自身增大到给人以异常感觉时才能被发现。磁共振成像装置除了具备X线CT的解剖类型特点即获得无重叠的质子密度体层图像之外,还可借助核磁共振原理精确地测出原子核弛豫时间T1和T2,能将人体组织中有关化学结构的信息反映出来。这些信息通过计算机重建的图像是成分图像(化学结构像),它有能力将同样密度的不同组织和同一组织的不同化学结构通过影像显示表征出来。这就便于区分脑中的灰质与白质,对组织坏死、恶性疾患和退化性疾病的早期诊断效果有极大的优越性,其软组织的对比度也更为精确。
2023-08-05 10:41:352

什么叫核磁共振

我只知道可以检验有机物上有多少种氢,多少种碳
2023-08-05 10:42:017

什么是磁共振

磁共振检查技术〔MEGNETIC RRESONANCE,MR〕是医学影像学的一场革命,生物体组织能被电磁波谱中的短波成分如X线等穿透,但能阻挡中波成分如紫外线、红外线及短波。人体组织允许磁共振产生的长波成分如无线电波穿过,这是磁共振应用于临床的基本条件之一。核子自旋运动是磁共振成像的基础,而氢原子是人体内数量最多的物质;正常情况下人体内的氢原子核处于无规律的进动状态,当人体进入强大均匀的磁体空间内,在外加静磁场作用下原来杂乱无章的氢原子核一齐按外磁场方向排列并继续进动,当立即停止外加磁场磁力后,人体内的氢原子将在相同组织相同时间下回到原状态;这称为驰豫〔RELAXATION〕而病理状态下的人体组织驰豫时间不同,通过计算机系统采集这些信号经数字重建技术转换成图像来给临床和研究提供科学的诊断结果。
2023-08-05 10:42:282

核磁共振成像术有哪些方面的应用?

1946年,美国哈佛大学的伯塞尔和斯坦福大学的布洛克两名教授分别发现了“核磁共振”的现象,并为此在1952年获得了诺贝尔物理学奖。这个物理现象一经发现,立即受到高度重视,在一些领域里马上得到应用。1972年,就有一些医生提出了利用核磁共振的原理做医疗诊断的设想。经过大约10年的研究和实验,此项技术日臻成熟,终于,在80年代,科学家将核磁共振原理同空间编码技术、数学变换和电影电视影像技术结合,发明了一种崭新的扫描技术——核磁共振成像术(简称MRI)。MRI是一种比X射线成像更为优越的技术。它不需要通过放射线照射和扫描来形成影像,对人体更安全,可以说是彻底的无损伤检查。它的工作原理颇复杂,让我们简略介绍一下吧。我们知道,世上万物均由原子组成,原子又是由原子核和围着原子核旋转的电子组成,原子核则是由带正电荷的质子和不带电荷的中子组成。许多原子核的运动类似“自旋体”,不停地以一定的频率自旋,如能设法让它进入一个恒定的磁场的话,它就会沿着这磁场方向回旋。这时如用特定的射频电磁波去照射这些含有原子核的物体,物体就会吸收电磁波的能量,发生“共振”;当射频电磁波撤掉后,吸收了能量的原子核又会把这部分能量以电磁波的形式释放出来,即发射所谓“核磁共振”信号。这种核磁共振信号携带着物质内部结构的大量信息。对这些信号进行测量和分析,可以进一步获得此物质的物理和化学信息,比如密度、分布特点及组织的成分等。也就是说,可以通过核磁共振现象来了解物体内部的情况。在人体中有着大量的水,有着许许多多氢原子,MRI就是利用人体中的氢原子,在强磁场内受到脉冲的激发后,所产生的核磁共振现象。在共振过程中,不同的组织器官的共振信号强度不同,恢复到激发前的平衡状态所需的时间也不同,这些信息经过电子计算机的处理后形成不同的图像。这种图像很清楚,不仅可以提供人体清晰的解剖细节,而且还能提供组织器官和病灶细胞内外的物理、化学、生物和生物化学等方面的诊断信息,便于医生据此作出诊断。在做MRI检查时,病人要拿掉身上各种带金属的物件,平躺在检查床上,然后被徐徐送入诊室,程序十分简便。它不必使用任何造影剂,即可显示出血管等微细结构。它还可以从任何方向做切层检查,且成像有高度灵活性,分辨率高,仅在短短的一二秒钟内即可成像。MRI不但能够像CT一样提供受检部位解剖信息的图像,还可以为我们提供有关组织生理生化信息的专门图像,比CT更灵敏地分辨出正常或异常的组织,为我们清楚地显示出病变的部位、范围,常可在病变处器官的形状、功能还未出现明显改变之前,就向人们发出警告。所以它在对肿瘤的早期检测及鉴别肿瘤的性质上有特别大的帮助。MRI除了可以显示任何方向截面解剖部位的病变外,还可以透过骨骼的屏障,获得令人满意的断层图像,所以在临床应用中,MRI某些方面的功效明显优于CT。可以说,MRI是一种比CT用途更广泛的新型检查仪器。1995年2月,一个即将被执行死刑的美国犯人,为表示他对自己罪行的追悔和对世人的歉意,表示愿将遗体献给科学机构作研究之用。科学家在犯人被处决之前先用MRI对他的身体进行成像扫描,获得许多图像资料。在处决后又将他的遗体冷冻后从头到脚切成2700片不及1毫米厚的薄片,再一一照相。科学家对这些相片与MRI获得的断层图像作比较,从中获取所需要的信息。这2700张断面照片现已由德国慕尼黑的一家电子企业加工成光盘,它是世界上第一张详细记录人体内部结构图像的光盘。它的问世,不仅可为医学院提供史无前例的详尽的人体解剖资料,对人们如何进一步用好、改进包括MRI在内的新型医疗检查仪器,也会有很大的作用。
2023-08-05 10:42:451

核磁共振是什么东西

核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。核磁共振百科
2023-08-05 10:42:544

什么是核磁共振?

核磁共振  nuclear magnetic resonance, MRI  核磁共振全名是核磁共振成像(MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。   核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。   并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。   核磁共振(MRI)又叫核磁共振成像技术。是后继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。   核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。   MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。   MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。   MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。
2023-08-05 10:43:241

电磁成像原理

轴对称的非均匀电场和磁场则可以让电子束折射,从而产生电子束的会聚与发散,达到成像的目的。电磁波,是由相同且互相垂直的电场与磁场在空间中衍生发射的震荡粒子波,是以波动的形式传播的电磁场,具有波粒二象性。电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场中电磁波在真空中速率固定,速度为光速。见麦克斯韦方程组。电磁波伴随的电场方向,磁场方向,传播方向三者互相垂直,因此电磁波是横波。当其能阶跃迁过辐射临界点,便以光的形式向外辐射,此阶段波体为光子,太阳光是电磁波的一种可见的辐射形态,电磁波不依靠介质传播,在真空中的传播速度等同于光速。电磁辐射由低频率到高频率,主要分为:无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。人眼可接收到的电磁波,称为可见光(波长380~780nm)。电磁辐射量与温度有关,通常高于绝对零度的物质或粒子都有电磁辐射,温度越高辐射量越大,但大多不能被肉眼观察到。频率是电磁波的重要特性。按照频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是无线电波、微波、红外线、可见光、紫外线、X射线及γ射线。通常意义上所指有电磁辐射特性的电磁波是指无线电波、微波、红外线、可见光、紫外线。而X射线及γ射线通常被认为是放射性辐射特性的。
2023-08-05 10:43:444

磁共振是怎么发明的(谁发明的)??

是由尼古拉特斯拉发现的 你可以去了解下 上面说法是错误的!根本不对!就在胡说!当时尼古拉特斯拉用共振震倒了一栋楼!在20年之后的人们才发现共振 而当时特斯拉已经开始利用共振了
2023-08-05 10:44:052

核磁共振是什么?

核磁共振(Nuclear Magnetic Resonance即NMR)是处于静磁场中的原子核在另一交变电磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。 核磁共振波谱仪并不是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。   共振成像(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。   核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。   MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。   MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。   MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。
2023-08-05 10:44:372

核磁t1和t2的口诀是什么?

磁共振t1、t2长短的意思如下:T1加权成像(T1WI)是指突出组织T纵向弛豫差别。t1越短,指信号越强,t1越长,指信号越弱,t1一般用于观察解剖。由于核磁共振是磁场成像,没有放射性,所以对人体无害,是非常安全的。据了解,世界上既没有任何关于使用核磁共振检查引起危害的报道,也没有发现患者因进行核磁共振检查引起基因突变或染色体畸变发生率增高的现象。扩展资料:核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期病变,已经成为肿瘤、心脏病及脑血管疾病早期筛查的利器。参考资料来源:百度百科-核磁共振
2023-08-05 10:44:541

什么叫“核磁共振”??

路过 回答的好强
2023-08-05 10:45:116

核磁共振主要检查什么?辐射大吗?

核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。该技术无辐射。
2023-08-05 10:45:273

核磁共振?

核磁共振(Nuclear Magnetic Resonance即NMR)是处于静磁场中的原子核在另一交变电磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。 并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。 核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。
2023-08-05 10:46:211

什么是核磁共振

核磁共振:对脑瘤的诊断较CT更为准确,影像更为清楚,可发现CT所不能显示的微小肿瘤。正电子发射断层扫描可得到与CT相似的图像,并能观察肿瘤的生长代谢情况,鉴别良性恶性肿瘤。
2023-08-05 10:46:334

磁共振成像是什么东西?

举个例子,比如拍大脑核磁共振,排出的照片,和正常大脑排出照片相比,不应该有图像的地方出现图形了,别讲什么医学道理,老百姓不愿意听西医乱七八糟东西!赶快滚,还从人体表面如找病根,一点一点扣,小病根就说没病,小毛病,张成型,治不了了,再给你治病!伟大中医千年前就从内脏,不用眼睛就能看到病根了,伟大中医只要你身体和正常人不同,有差异,就直接从根源治病!伟大中医快复兴把,赶走西医,同意点赞!
2023-08-05 10:46:522

什么是核磁共振?怎么应用?

核磁共振是原子核的磁矩在恒定磁场和高频磁场同时作用,且满足一定条件时所发生的共振吸收现象,是一种利用原子核在磁场中的能量变化来获得关于核信息的技术。50多年来,由核磁共振转化为探索物质微观结构和性质的高新技术已取得了惊人的进展。目前,核磁共振已在物理学、化学、材料科学、生命科学等领域得到广泛应用。
2023-08-05 10:47:033

MRI核磁共振对人身体有何影响,谢谢

  MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。  MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。  MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。  MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。  磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。  磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。  像PET和SPET一样,用于成像的磁共振信号直接来自于物体本身,也可以说,磁共振成像也是一种发射断层成像。但与PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。这一点也使磁共振成像技术更加安全。  从磁共振图像中我们可以得到物质的多种物理特性参数,如质子密度,自旋-晶格驰豫时间T1,自旋-自旋驰豫时间T2,扩散系数,磁化系数,化学位移等等。对比其它成像技术(如CT 超声 PET等)磁共振成像方式更加多样,成像原理更加复杂,所得到信息也更加丰富。因此磁共振成像成为医学影像中一个热门的研究方向。  核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间T2,T2为自旋-自旋或横向弛豫时间。  磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。  核磁共振的另一特点是流动液体不产生信号称为流动效应或流动空白效应。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。  检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。  优点:1.MRI对人体没有损伤;  2.MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位;  3.能诊断心脏病变,CT因扫描速度慢而难以胜任;  4.对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT。  缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;  2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;  3.对胃肠道的病变不如内窥镜检查;  4.体内留有金属物品者不宜接受MRI。  5. 危重病人不能做  6.妊娠3个月内的  7.带有心脏起搏器的  核磁共振检查的注意事项  由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。  身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。  有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。  在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。  近年来,随着科技的进步与发展,有许多骨科内固定物,特别是脊柱的内固定物,开始用钛合金或钛金属制成。由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内固定物的病人,进行核磁共振检查时是安全的;而且钛金属也不会对核磁共振的图像产生干扰。这对于患有脊柱疾病并且需要接受脊柱内固定手术的病人是非常有价值的。但是钛合金和钛金属制成的内固定物价格昂贵,在一定程度上影响了它的推广应用。  MRI检查适应症  1、神经系统病变:脑梗塞、脑肿瘤、炎症、变性病、先天畸形、外伤等,为应用最早的人体系统,目前积累了丰富的经验,对病变的定位、定性诊断较为准确、及时,可发现早期病变。  2、心血管系统:可用于心脏病、心肌病、心包肿瘤、心包积液以及附壁血栓、内膜片的剥离等的诊断。  3、胸部病变:纵隔内的肿物、淋巴结以及胸膜病变等,可以显示肺内团块与较大气管和血管的关系等。  4、腹部器官:肝癌、肝血管瘤及肝囊肿的诊断与鉴别诊断,腹内肿块的诊断与鉴别诊断,尤其是腹膜后的病变。  5、盆腔脏器;子宫肌瘤、子宫其它肿瘤、卵巢肿瘤,盆腔内包块的定性定位,直肠、前列腺和膀胱的肿物等。  6、骨与关节:骨内感染、肿瘤、外伤的诊断与病变范围,尤其对一些细微的改变如骨挫伤等有较大价值,关节内软骨、韧带、半月板、滑膜、滑液囊等病变及骨髓病变有较高诊断价值。  7、全身软组织病变:无论来源于神经、血管、淋巴管、肌肉、结缔组织的肿瘤、感染、变性病变等,皆可做出较为准确的定位、定性的诊断。  MRI(Matz"s Ruby Interpreter)  标准的Ruby实现,标准的Ruby解释器
2023-08-05 10:47:132

CT层厚、层间距、曾间隔的概念是什么,MRI的层厚、层间距、曾间隔是什么

CT、MRI扫描参数只有层厚、层间距,你的曾间隔不知指的什么。层厚是指被激发层的厚度。CT、MRI的层间距概念不一样,CT的层间距是指两个扫描层面中心的距离;MRI的层间距是指相邻两个层面间的距离。例层厚、层间距均为1cm,CT就是逐层扫描,两层间没有扫描间隔;而MRI两层间就有1cm厚度组织没被成像。
2023-08-05 10:47:202

什么是核磁共振现象?

核磁共振是一种偏于三维的影像检查技术,只要是身体组织或是器官的器质性病变,都可以利用核磁共振检查,通俗的说,比如哪里长东西了,或是血管出血了,或是被刺入异物了,或者是骨质增生了,都可以利用核磁共振来检查。
2023-08-05 10:47:382

磁共振成像中DWI,ADC重建的原理是什么

TSE-T2WI,TSE-T1WI,TSE-fs-T2WI是扫描序列。sag,Tra是扫描方位。你好:这种情况最好住院,具体结合医生对症治疗,祝早日康复。以下资料可以参考下希望给你帮助!脑梗塞是脑血管严重狭窄或闭塞,导致脑血流阻断而使脑组织发生缺血坏死和软化。约占全部急性脑血管病的50%-60%。引起脑梗塞的原因较多,主要的是脑血管阻塞及脑部血液循环障碍2种。 脑血管急性闭塞后,最初4h-6h缺血区逐渐出现脑水肿,12h后脑细胞开始坏死,但梗塞区与正常脑组织尚难区别。24h后至第5天,脑水肿达到高峰,侧支循环开始建立。从第2周开始,脑水肿逐渐减轻,但梗塞区组织坏死及液化更明显。虽已建立较充分的侧支循环,但可有部分病人在血栓溶解、血管再通的同时,梗塞区的血管壁因缺血性损伤通透性增高,可形成出血性梗塞。 [临床表现] 主要取决于梗塞大小、部位。临床上表现为头晕、头痛,部分病人可出现呕吐及精神症状,同时出现不同程度的脑部损害的症状,如偏瘫、偏身感觉障碍。病情较重时可出现意识丧失。大小便失禁以及瞳孔散大等脑疝症状。 [影像学表现] 1.CT表现: (1)急性期:一般把发病后头5天作为急性期。病变区水份增加在CT图像上造成两种效应,一是病变区密度减低,皮质和髓质缺乏密度差异,早期这种密度减低一般不显著,多呈楔形,与受累动脉的供血范围一致,边界模糊;另一是由于水份增加使病变区体积变大而造成的占位效应或肿块效应,轻的表现为病变区脑组织肿胀,脑沟、脑油消失,重的表现为中线结构向对侧移位,即所谓脑内疝,占位效应的程度与脑梗塞面积有关,面积越大,占位效应越显著。上述两种效应一般在发病后第3一5天达到极点。 需要指出的是,早期的脑梗塞出现CT上的变化最早需要3~6小时,晚的要等到24小时或者更长时间之后才出现典型表现。如果临床上有典型的脑梗塞症状而CT表现阴性时,应该在短期内复查CT,以免漏诊。
2023-08-05 10:47:483

什么叫核磁共振?物理学是怎么理解的?医学上是怎样应用的?

核磁共振全名是核磁共振成像(MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。 核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。 并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。 核磁共振(MRI)又叫核磁共振成像技术。是后继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MRI也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。核磁共振的原理核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。 根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 质量数和质子数均为偶数的原子核,自旋量子数为0 质量数为奇数的原子核,自旋量子数为半整数 质量数为偶数,质子数为奇数的原子核,自旋量子数为整数 迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P 由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。 原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.核磁共振的应用NMR技术核磁共振频谱学 NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。 对于孤立原子核而言,同一种原子核在同样强度的外磁场中,只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。 耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。 最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。 早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。 近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。 MRI技术核磁共振成像 核磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。 与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改编的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。 核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。 MRS技术核磁共振测深 核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某一地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。 目前核磁共振探测技术已经成为传统的钻探探测技术的补充手段,并且应用于滑坡等地质灾害的预防工作中,但是相对于传统的钻探探测,核磁共振探测设备购买、运行和维护费用非常高昂,这严重地限制了MRS技术在地质科学中的应用。
2023-08-05 10:48:111

什么是磁共振成像条件

核磁共振成像也称磁共振成像,是利用核磁共振原理,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P,在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来。
2023-08-05 10:48:211

磁共振成像术是什么?

除了X射线、CT之外,医生们还有一种“神秘武器”,这就是磁共振成像术,简称为MRI。这是在磁共振频谱学及CT技术基础上发展起来的一项崭新的成像技术。我们知道,构成我们机体的70%是水分,其分子式的H2O。在这个分子结构中,“H”原子具有一个不对称的质子,而质子具有自身旋转的特性,同时也就产生电磁效应。但在通常的情况下,许多质子皆是无规律地排列,因此各个质子所产生的磁效应相互抵消,表现不出具体的磁性来。然而当外加一个磁场时,各个质子所产生的有如一个个小磁体的磁矩便会排列成为一个方向,此时若再加一个脉冲磁场,就会使这些方向一致的磁矩产生一定角度的回旋运动,而且随着这个脉冲磁场的变化还可产生一系列的电磁波,这就是人们熟知的“磁共振现象”。另外,科学家们将一个回旋运动时20世纪80年代,一个崭新的扫描技术——核磁共振成像术(简称MRI)出现了间称为质子的“驰豫时间”。人体由各种器官及组织构成。因此,在磁共振的过程中,不同组织有不同强度的磁共振信号,以及不同的“驰豫时间”;另外,即使同一组织,在病理及生理状态下,磁共振信号强度及驰豫时间亦不相同。这些差异可由磁共振信号反映出来,这样便构成了磁共振成像而成为应用于临床诊断的基础。再者,由于不同组织及同一组织不同状态下质子密度不同,因而通过MRI还能提供组织器官及病灶细胞内外的物理、化学、生物及生化等方面的信息。还有一点要提及的是,在操作过程中,MRI不造成放射性损伤,还可以从任何方面作断层分析,因此MRI技术“异军突起”,在当代医学诊断中愈来愈显出它的特殊地位。MRI几乎可用于全身各处疾病的检查与诊断,如脑内、胸腔内、腹部、盆腔等。20世纪是科学技术迅猛发展的时期,医学影像学的巨大成就除了上面提到的CT及MRI以外,还有一种最新技术叫放射性核素发射计算机断层,简称为ECT。它包括正电子发射断层(简称PET)和单光子发射断层(简称SPECT)。ECT综合利用了核医学的示踪技术和CT的图像重建原理,兼有二者之长,既具备形象化显示活体生理和代谢功能的能力,又有分辨率高、能进行立体探测和断层显示的优势,是目前医学影像诊断技术中的后起之秀。近几年科学家们还研制出一种比CT清晰1000倍的成像新技术,叫做离子微层析扫描,简称IMI。它是利用有丝加速器发射出细微的离子来,让这种离子束通过组织,再用特制的硅探测定出它通过该组织时损失了多少能量,而后再由计算机进行综合分析,从而从不同角度显示该组织的结构或病变。科学家们相信,IMI甚至可以识别出早期癌细胞的变化,如果真是这样,将大大提高癌症早期的诊断率,挽救更多的生命。
2023-08-05 10:48:301

核磁共振

共振只决定于频率。当该环境下氢基的固有频率与外加磁场的频率相同时,发生共振,即振幅最大。通过外加不同频率的磁场测出有几种环境下的氢基和强度
2023-08-05 10:48:414

什么是核磁共振检查

磁共振一个部位一般要500-700,增强另计,CT才会200-300元/部位
2023-08-05 10:49:012

什么是核磁共振

百度一下你就知道
2023-08-05 10:49:123

什么是核磁共振?

核磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。  与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改变的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 核磁共振核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。  核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。
2023-08-05 10:49:311

核磁共振成像术在人类生活中有哪些应用?

1946年,美国哈佛大学的伯塞尔和斯坦福大学的布洛克两名教授分别发现了“核磁共振”的现象,并为此在1952年获得了诺贝尔物理学奖。这个物理现象一经发现,立即受到高度重视,在一些领域里马上得到应用。1972年,就有一些医生提出了利用核磁共振的原理做医疗诊断的设想。经过大约10年的研究和实验,此项技术日臻成熟,终于,在80年代,科学家将核磁共振原理同空间编码技术、数学变换和电影电视影像技术结合,发明了一种崭新的扫描技术——核磁共振成像术(简称MRI)。MRI是一种比X射线成像更为优越的技术。它不需要通过放射线照射和扫描来形成影像,对人体更安全,可以说是彻底的无损伤检查。它的工作原理颇复杂,让我们简略介绍一下吧。我们知道,世上万物均由原子组成,原子又是由原子核和围着原子核旋转的电子组成,原子核则是由带正电荷的质子和不带电荷的中子组成。许多原子核的运动类似“自旋体”,不停地以一定的频率自旋,如能设法让它进入一个恒定的磁场的话,它就会沿着这磁场方向回旋。这时如用特定的射频电磁波去照射这些含有原子核的物体,物体就会吸收电磁波的能量,发生“共振”;当射频电磁波撤掉后,吸收了能量的原子核又会把这部分能量以电磁波的形式释放出来,即发射所谓“核磁共振”信号。这种核磁共振信号携带着物质内部结构的大量信息。对这些信号进行测量和分析,可以进一步获得此物质的物理和化学信息,比如密度、分布特点及组织的成分等。也就是说,可以通过核磁共振现象来了解物体内部的情况。在人体中有着大量的水,有着许许多多氢原子,MRI就是利用人体中的氢原子,在强磁场内受到脉冲的激发后,所产生的核磁共振现象。在共振过程中,不同的组织器官的共振信号强度不同,恢复到激发前的平衡状态所需的时间也不同,这些信息经过电子计算机的处理后形成不同的图像。这种图像很清楚,不仅可以提供人体清晰的解剖细节,而且还能提供组织器官和病灶细胞内外的物理、化学、生物和生物化学等方面的诊断信息,便于医生据此作出诊断。在做MRI检查时,病人要拿掉身上各种带金属的物件,平躺在检查床上,然后被徐徐送入诊室,程序十分简便。它不必使用任何造影剂,即可显示出血管等微细结构。它还可以从任何方向做切层检查,且成像有高度灵活性,分辨率高,仅在短短的一二秒钟内即可成像。MRI不但能够像CT一样提供受检部位解剖信息的图像,还可以为我们提供有关组织生理生化信息的专门图像,比CT更灵敏地分辨出正常或异常的组织,为我们清楚地显示出病变的部位、范围,常可在病变处器官的形状、功能还未出现明显改变之前,就向人们发出警告。所以它在对肿瘤的早期检测及鉴别肿瘤的性质上有特别大的帮助。MRI除了可以显示任何方向截面解剖部位的病变外,还可以透过骨骼的屏障,获得令人满意的断层图像,所以在临床应用中,MRI某些方面的功效明显优于CT。可以说,MRI是一种比CT用途更广泛的新型检查仪器。1995年2月,一个即将被执行死刑的美国犯人,为表示他对自己罪行的追悔和对世人的歉意,表示愿将遗体献给科学机构作研究之用。科学家在犯人被处决之前先用MRI对他的身体进行成像扫描,获得许多图像资料。在处决后又将他的遗体冷冻后从头到脚切成2700片不及1毫米厚的薄片,再一一照相。科学家对这些相片与MRI获得的断层图像作比较,从中获取所需要的信息。这2700张断面照片现已由德国慕尼黑的一家电子企业加工成光盘,它是世界上第一张详细记录人体内部结构图像的光盘。它的问世,不仅可为医学院提供史无前例的详尽的人体解剖资料,对人们如何进一步用好、改进包括MRI在内的新型医疗检查仪器,也会有很大的作用。
2023-08-05 10:49:411

核磁共振成像特点是什么?考试。。。急等答案

一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。 二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过对不同类型的图像进行对比,可以更准确地发现病变、确定病变性质。 三、图像对比度高。磁共振图像的软组织对比度要明显高于CT。磁共振的信号来源于氢原子核,人体各处都主要由水、脂肪、蛋白质三种成分的MRI信号强度明显不同,使得MRI图像的对比度非常高,正常组织与异常组织之间对比更显而易见。CT的信号对比来源于X线吸收率,而软组织的X线吸收率都非常接近,所以MRI的软组织对比度要明显高于CT。 四、任意方位断层。由于MRI是逐点、逐行获得数据,所以可以在任意设定的成像断面上获得图像。而CT是通过管球、探测器的旋转扫描获得数据,断层方位是固定的,想获得其它方位的图像只能通过后处理,但后处理图像的质量要明显低于直接扫描获得的原始图像。 五、心血管成像无须造影剂增强。基于MRI特有的时间飞逝去(TOF)和相位对比法(PC)血流成像技术,开发出了磁共振血管造影(MRA)。MRA与传统的血管造影(DSA)相比,有无创伤性(不需要注射造影剂)、费用低、检查方便等优点。且随着MRI技术的不断进步,高场磁共振MRA的图像技师与诊断能力已与DSA非常接近。但对于细小血管分支、微小血管病变的显示,目前只能在1.5T以上的高场磁共振上实现,中低场强的磁共振MRA图像只有一定的参考价值。 六、MRI介入治疗是介入治疗发展的热门方向。传统介入治疗过程中,医生与病人均会受到大剂量的X线照射,对身体造成一定的损害。而MRI检查无电离辐射,且最新的C型超级开放式MRI的开放度要高于CT、与DSA接近,加上MRI成像的高对比度、断层方位随意设定等优点,MRI介入治疗显示出非常光明的前景。 七、代谢、功能成像。MRI的成像原理决定了MRI信号对于组织的化学成分变化极为敏感。目前已要在高场MRI(1.5T以上)系统上开发出了磁共振功能成像(FMRI)、磁共振波谱分析(MRS),划时代地实现了对于功能性疾病、代谢性疾病的影像诊断,同时也大大提高了对一些疾病的早期诊断能力。
2023-08-05 10:49:511

CT和磁共振有什么区别

层面没关系的 CT和MR都可以做各个三维位置 主要是原理不同,CT根据密度成像,MR根据质子运动成像分辨率一般CT不如MR
2023-08-05 10:50:175

做核磁共振有什么作用

核磁共振全名是核磁共振成像,简称NMRI),又称自旋成像(spinimaging),也称磁共振成像(MagneticResonanceImaging,简称MRI),是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构,人体内部结构信息的技术。CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。磁共振成像的优点对人体没有游离辐射损伤;各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便,有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面,冠状面,横断面成像,可以看到神经根,脊髓和神经节等。能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位;能诊断心脏病变,CT因扫描速度慢而难以胜任;对软组织有极好的分辨力。对膀胱,直肠,子宫,阴道,骨,关节,肌肉等部位的检查优于CTCT诊断的特点及优势CT检查对中枢神经系统疾病的诊断价值较高。
2023-08-05 10:50:361

核磁共振成像特点是什么?

一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。x0dx0ax0dx0a 二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过对不同类型的图像进行对比,可以更准确地发现病变、确定病变性质。x0dx0ax0dx0a 三、图像对比度高。磁共振图像的软组织对比度要明显高于CT。磁共振的信号来源于氢原子核,人体各处都主要由水、脂肪、蛋白质三种成分的MRI信号强度明显不同,使得MRI图像的对比度非常高,正常组织与异常组织之间对比更显而易见。CT的信号对比来源于X线吸收率,而软组织的X线吸收率都非常接近,所以MRI的软组织对比度要明显高于CT。x0dx0ax0dx0a 四、任意方位断层。由于MRI是逐点、逐行获得数据,所以可以在任意设定的成像断面上获得图像。而CT是通过管球、探测器的旋转扫描获得数据,断层方位是固定的,想获得其它方位的图像只能通过后处理,但后处理图像的质量要明显低于直接扫描获得的原始图像。x0dx0ax0dx0a 五、心血管成像无须造影剂增强。基于MRI特有的时间飞逝去(TOF)和相位对比法(PC)血流成像技术,开发出了磁共振血管造影(MRA)。MRA与传统的血管造影(DSA)相比,有无创伤性(不需要注射造影剂)、费用低、检查方便等优点。且随着MRI技术的不断进步,高场磁共振MRA的图像技师与诊断能力已与DSA非常接近。但对于细小血管分支、微小血管病变的显示,目前只能在1.5T以上的高场磁共振上实现,中低场强的磁共振MRA图像只有一定的参考价值。x0dx0ax0dx0a 六、MRI介入治疗是介入治疗发展的热门方向。传统介入治疗过程中,医生与病人均会受到大剂量的X线照射,对身体造成一定的损害。而MRI检查无电离辐射,且最新的C型超级开放式MRI的开放度要高于CT、与DSA接近,加上MRI成像的高对比度、断层方位随意设定等优点,MRI介入治疗显示出非常光明的前景。x0dx0ax0dx0a 七、代谢、功能成像。MRI的成像原理决定了MRI信号对于组织的化学成分变化极为敏感。目前已要在高场MRI(1.5T以上)系统上开发出了磁共振功能成像(FMRI)、磁共振波谱分析(MRS),划时代地实现了对于功能性疾病、代谢性疾病的影像诊断,同时也大大提高了对一些疾病的早期诊断能力。
2023-08-05 10:50:441

什么是核磁共振?为什么“磁共振”尽量不要做?有哪些原因?

核磁共振就是一种检测身体的方式。因为核磁共振会造成一些辐射,会对身体造成一些伤害。这些原因就是,会造成一些伤害,会造成辐射,会导致身体过敏,可能会导致身体受到辐射。
2023-08-05 10:50:535

什么是核磁共振成像?

磁共振成像是用来诊断健康状况的医学成像系统。通过Shutterstock进行的MRI扫描) 磁共振成像(MRI),也称为核磁共振成像,是一种扫描技术,用于生成人体的详细图像。 扫描使用强磁场和无线电波生成身体某些部位的图像,这些部位在X射线下看不见,CT扫描或超声波检查。例如,它可以帮助医生看到关节、软骨、韧带、肌肉和肌腱的内部,这有助于发现各种运动损伤。 MRI还可用于检查身体内部结构和诊断各种疾病,如中风、肿瘤、动脉瘤、脊髓损伤、多发性硬化和眼睛或者内耳问题,根据梅奥诊所的说法。它也被广泛应用于测量大脑结构和功能等方面的研究。纽约曼哈塞特北岸大学医院的诊断放射科医生克里斯托弗·菲利皮博士说: “使核磁共振成像如此强大的原因是,你有非常精致的软组织,解剖结构和细节。”。与其他成像技术(如CT扫描和x射线)相比,MRI最大的好处是,不存在暴露在辐射下的风险,Filippi告诉Live Science, 在MRI中 的期望值,一个人将被要求躺在一张可移动的桌子上,桌子将滑入机器的一个环形开口中,扫描你身体的特定部位。根据梅奥诊所的说法,机器本身会在人的周围产生一个强大的磁场,无线电波会直射人体, 一个人不会感觉到磁场或无线电波,所以手术本身是无痛的。不过,扫描过程中可能会有很大的敲击声或敲击声(听起来像大锤!)因此,人们通常会戴上耳机听音乐,或者戴上耳塞来帮助屏蔽声音。技术人员也可以在测试过程中给你指导。 有些人可以通过静脉注射给你对比剂,一种液体染料,可突出扫描时可能不会出现的特定问题。 儿童以及在封闭场所感到幽闭恐惧的人,可给予镇静药物,帮助他们在扫描过程中放松或入睡,因为尽可能保持静止以获得清晰图像是很重要的。移动会模糊图像。 一些医院可能有一个开放的磁共振成像机,它的两侧是开放的,而不是在传统机器中发现的隧道状管。对于那些害怕密闭空间的人来说,这可能是一个有用的选择。 根据美国家庭医生学会的说法,扫描本身可能平均需要30到60分钟。 放射科医生将查看图像并将检测结果报告给医生。 的工作原理 人体主要是水。水分子(H2O)含有氢原子核(质子),氢原子核在磁场中排列成一列。核磁共振扫描仪施加一个非常强的磁场(大约0.2到3特斯拉,或者大约是普通冰箱磁铁强度的1000倍),使质子“旋转”。 扫描仪还产生一个射频电流,产生一个变化的磁场。质子从磁场中吸收能量并翻转其自旋。当磁场关闭时,质子逐渐回到正常的自旋,这一过程称为进动。Filippi解释说,返回过程产生的无线电信号可以被扫描仪中的接收器测量并制成图像。 核磁共振扫描揭示了人脑的大体解剖结构。(Courtesy FONAR公司)不同人体组织中的 质子以不同的速率恢复到正常的自旋,因此扫描仪可以区分不同类型的组织。扫描仪的设置可以调整,以产生不同身体组织之间的对比。附加磁振子
2023-08-05 10:52:371

核磁共振的核磁共振

核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期病变,目前已经成为肿瘤、心脏病及脑血管疾病早期筛查的利器。据了解,由于金属会对外加磁场产生干扰,患者进行核磁共振检查前,必须把身体上的金属物全部拿掉。不能佩戴如手表、金属项链、假牙、金属纽扣、金属避孕环等磁性物品进行核磁共振检查。此外,戴心脏起搏器,体内有顺磁性金属植入物,如金属夹、支架、钢板和螺钉等,都不能进行磁共振成像检查。进行上腹部(如肝、胰、肾、肾上腺等)磁共振检查时必须空腹,但检查前可饮足量水,有利于胃与肝、脾的界限更清晰。 核磁共振对颅脑、脊髓等疾病是目前最有效的影像诊断方法,不仅可以早期发现肿瘤、脑梗塞、脑出血、脑脓肿、脑囊虫症及先天性脑血管畸形,还能确定脑积水的种类及原因等。而针对危害中国女性生命健康的第一大妇科疾患—乳腺癌,通过核磁共振精准筛查,可以帮助发现乳腺癌早期病灶;而针对“高血压、高血脂、高血糖”等三高人群,可以通过对头部及心脏等部位的核磁检查,在身体健康尚未发出红灯警讯前,早期发现心脏病、脑梗等高风险疾病隐患。此外,核磁共振还可进行腹部及盆腔的检查,如肝脏、胆囊、胰腺、子宫等均可进行检查,腹部大血管及四肢血管成像可以明确诊断真性、假性动脉瘤,夹层动脉瘤及四肢血管的各种病变。核磁共振对各类关节组织病变诊断非常精细,对骨髓、骨的无菌性坏死十分敏感。据了解,北京大学深圳医院医学影像科是深圳市医学重点专科,广东省临床医学影像学重点专科。该院医学影像科目前拥有世界上先进的3台磁共振(MR)扫描仪,分别是1台3.0T磁共振扫描仪、2台1.5T磁共振扫描仪。针对超声定位不准的局限,该科目前采用前列腺虚拟活检术,对前列腺癌早期诊断和鉴别。 由于核磁共振是磁场成像,没有放射性,所以对人体无害,是非常安全的。据了解,目前世界上既没有任何关于使用核磁共振检查引起危害的报道,也没有发现患者因进行核磁共振检查引起基因突变或染色体畸变发生率增高的现象。虽然核磁共振在筛查早期病变有着独到之处,但任何检查都是有限度的,比如有些病人不适合核磁共振,就不要过度检查。他呼吁,任何患者都应遵医嘱进行检查,不要以为影像检查越贵越好,只有适合自己的检查才是最好的。 连续波核磁共振波谱仪 CW-NMR如今使用的核磁共振仪有连续波(continal wave,CW)及脉冲傅里叶(PFT)变换两种形式。连续波核磁共 振仪主要由磁铁、射频发射器、检测器、放大器及记录仪等组成(见下图)。磁铁用来产生磁 场,主要有三种:永久磁铁,电磁铁[磁感应强度可高达24000 Gs(2.4 T)],超导磁铁[磁感应强度可高达190000 Gs(19 T)]。核磁共振波谱仪的分辨率多用频率表示(也称“兆数”)其定义是在仪器磁场下激发氢原子所需的电磁波频率。如一台磁场强度为9.4T的超导核磁中,氢原子的激发频率为400MHz,则该仪器为“400兆”的仪器。频率高的仪器,分辨率好,灵敏度高,图谱简单易于分析。磁铁上 备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频 发射器用来产生固定频率的电磁辐射波检测器和放大器用来检测和放大共振信号。记录仪将 共振信号绘制成共振图谱。CW-NMR价格低廉,温度,易操作,但是灵敏度差。因此需要样品量大,且只能测定如1H/19F/31P之类天然丰度很高的核,对诸如13C之类低丰度的核则无法测定。PFT-NMR20世纪70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究得以迅速开展。 脉冲变换傅里叶核磁共振波谱仪(pulse Fourier transform-NMR)与连续波仪器不同,它增设了脉冲程序控制器和数据采集处理系统,利用一个强而短(1~50μs)的脉冲将所有待测核同时激发,在脉冲终止时及时打开接收系统,采集自由感应衰减信号(FID),待被激发的核通过弛豫过程返回平衡态时再进行下一个脉冲的激发。得到的FID信号是时域函数,是若干频率的信号的叠加,在计算机中经过傅里叶变换转变为频域函数才能被人们识别。PFT-NMR在测试时常进行多次采样,而后将所得的总FID信号进行傅里叶变换,以提高灵敏度和信噪比(进行n次累加,信噪比提高n^0.5倍)。PFT-NMR灵敏度很高,可以用于低丰度核,测试时间短(扫一次一到几秒),还可以测定核的弛豫时间,使得利用核磁共振测定反应动态成为现实 。
2023-08-05 10:52:521

核磁共振(NMR)是怎么一回事??

楼上两位要区分 NMR和MRI ,你可以看百度百科,,NMR是用于化学分析的技术,而MRI是我们常说的医学技术。
2023-08-05 10:53:103

MRI是怎么形成图像的?

20世纪80年代,一个崭新的扫描技术——核磁共振成像术(简称MRI)出现了。这是一种可以使人体避免受到X线损伤的扫描技术;是电子学、电子计算机技术、CT技术以及磁共振频谱学等先进科学的结晶。在人体中蕴藏着大量的水分(H2O),MRI就是利用人体中的氢(H)原子,在强磁场内受到脉冲的激发后,产生的磁共振现象,经过空间编码技术,把在磁共振过程中所散发的电磁波(即磁共振信号)以及与这些电磁波有关的质子密度、弛豫时间、流动效应等参数,接收转换,通过电子计算机的处理,最后形成图像,做出诊断。在MRI的使用中,病人不需要接触电离辐射,从而避免了X线可能对人体造成的损害。MRI不但能够像CT一样提供受检部位解剖信息的图像,还可以为我们提供有关组织生理生化信息的图像,比CT更加灵敏地分辨出正常或异常的组织,为我们提供正确的脏器功能及生理情况,通过图像清楚地显示出病变的部位、范围,常可在病变处的器官的形状、功能还未出现明显改变之前,向人们发出警告,所以对肿瘤的早期检测及鉴别肿瘤的性质有很大帮助。
2023-08-05 10:53:191

磁共振如何能拍出人体内部的清晰图像呢?

并不能拍出清晰的图像,但是可以拍出一个清晰度比较高的模糊影像,供人们来对身体内部器官状态进行判断。
2023-08-05 10:53:284

关于影子的英语诗句

1.My Shadow(我的影子)英文诗翻译 我的小影子跟随我的左右, 它的魔力超乎了我的想象, 从头到脚它与我神似, 我看见,当我跳上床时它却先我而入, 最有趣的是他成长的方式, 丝毫没有小孩子那般慢慢得成长, 有时它猛地入橡皮球般蹿得很高, 有时它却突然缩得无影无踪, 它的贪玩超出了孩子的逻辑, 总是耍尽花招捉弄我, 但它却像个胆小鬼般如影随形, 它如此粘着我让我想起了如粘着护士般难堪, 某一天的清晨,太阳还没有升起, 我起身发现了晶莹的露珠在每一个毛茛上闪烁, 但是我慵懒的小影子,却像足了一个懒虫, 它待在我的身后,很快又进入了梦乡 2.影子的英语作文15句 My shadow IN the moring the sun rises behind the montain . My shadow is long.In the afternoon the sun is high in the sky . My shadow is short. In the evening the sun goes down .My shadow is long. 我的影子在早晨的太阳升起在山.我的影子是长的.在下午,太阳高高挂在天空.我的影子是短的.在傍晚太阳落下我的影子是长的。 3.用学过的英语句子描述一下一天中影子的变化10句 The shadow is always changing. From sunrise to sunset, it follows you with different ways. In the morning, the shadow is very long and it goes towards west. As the sun rises higher into the sky, the shadow becomes shorter and shorter and it is right behind the feet. When the sun goes down slowly, the length of shadow also streches longer . It looks as if there were a stick on the ground. However, it goes east against the way it goes in the morning. If there is no sun, there will be no shadow. Therefore, the shadow will disappear in some days, such as rainy day or cloudy day. And, it will hides itself during the whole night.。 4.用学过的英语句子描述一下一天中影子的变化10句 The shadow is always changing. From sunrise to sunset, it follows you with different ways. In the morning, the shadow is very long and it goes towards west. As the sun rises higher into the sky, the shadow becomes shorter and shorter and it is right behind the feet. When the sun goes down slowly, the length of shadow also streches longer . It looks as if there were a stick on the ground. However, it goes east against the way it goes in the morning. If there is no sun, there will be no shadow. Therefore, the shadow will disappear in some days, such as rainy day or cloudy day. And, it will hides itself during the whole night.。 5.翻译两首英文小诗 题目:1 A Shadow 2 A smile A Shadow 一个影子There is a thing that nothing is 这里有个东西但不是什么东西And yet it has a name 但仍然有个名字It"s sometimes long and sometime"s short 有时候长有时候短And plays at every game 在每个游戏中上演 A smile 一个微笑A smile from end to end 一个微笑从结束到结束Yet as close to you as a friend 仍然作完结也当作朋友A precious commodity,freely given 妙货物,免费赠送Seen on the dead and on the living 在死和生中看见Found on the rich,poor,short and tall 在富人中找到,穷人,高人和矮人But shared among children most of all不过和小孩分享比较多。
2023-08-05 10:40:221

云南工商学院专科专业有哪些

云南工商学院专科专业如下:小学教育、学前教育、体育教育、护理学、助产学、会计学、财务管理、审计学、经济学、工商管理、市场营销、电子商务、物流管理等专业。云南工商学院云南工商学院位于云南省昆明市嵩明职教新城,是经教育部批准设立的全日制普通本科院校,为云南省本科应用型人才培养示范学校建设单位。学校前身是创建于1999年的云南爱因森科技专修学院,2004年,经云南省人民政府批准成立云南爱因森软件职业学院,2011年云南爱因森软件职业学院升格为云南工商学院。学校总占地面积1103亩,总占地面积109.70万平方米,纸质图书200万册,教学、科研仪器设备资产总值约12724.32万元;下设9个二级学院,有本科专业34个,专科专业27个;有专职教职工1336人,全日制在校生31790人。学校获得省级质量工程项目79项,其中云南省级特色专业2个,云南省级一流本科专业建设点2个,云南省级示范专业1个,云南省服务产业能力建设项目1个,云南省级艺术设计创新人才培养模式实验区1个,云南省级精品课程3门,云南省级一流本科课程3门,云南省级就业创业金课1门,云南省级课程思政示范课程1门。云南工商学院图书馆有纸质图书240.00万册,当年新增100542册,生均纸质图书74.75册;拥有电子期刊0.06万册,学位论文1.43万册,音视频5727.5小时。2020年图书流通量达到13.86万本册,电子资源访问量8.86万次,当年电子资源下载量7.81万篇次。
2023-08-05 10:40:241

党的生日是几月几日

7.1
2023-08-05 10:40:253

《生活大爆炸》第六季中Raj为什么突然能和女生说话了,而且还不用喝醉酒??

因为他疯了,你一直看下去吧,最后你会知道答案,说出来你就没心情看了,吸引力就没了
2023-08-05 10:40:275

印度香raj的问题

以上你描述的都是正常现象 应该是正品 据我所知这个牌子的香还没出现仿货 反倒是便宜的darshan假货横飞...
2023-08-05 10:40:183

simon是什么意思

simon意思是:西蒙(男子教名,亦作姓用,源于希伯来语;简称Sim;它的变体是Simond、Simund和Sigmund;英语变体是Symond;爱尔兰语变体是Senán)。双语例句:Simon is fluent in both English and Chinese.Simon流利地掌握英语和中文。Simon enjoys reading bilingual books to improve his language skills.Simon喜欢阅读双语书籍来提高语言能力。Simon"s parents are impressed by his ability to switch effortlessly between English and Chinese.Simon的父母对他在英语和中文之间毫不费力地切换能力印象深刻。Simon is considered a valuable asset in international communication due to his bilingual proficiency.由于他精通双语,Simon在国际交流中被视为一个宝贵的资源。Simon"s bilingual background has helped him develop a global perspective and cultural awareness.Simon的双语背景帮助他培养了全球视野和文化意识。Simon often serves as a translator for his English-speaking friends when they visit China.当他的英语朋友们访问中国时,Simon经常担任翻译的角色。Simon"s bilingual education has opened up more opportunities for him in terms of international studies and career prospects.Simon的双语教育为他在国际学习和职业前景方面打开了更多机会。Simon"s language proficiency in English and Chinese allows him to connect with people from different cultures.Simon在英语和中文方面的语言熟练度使他能够与来自不同文化背景的人建立联系。Simon"s bilingualism has enabled him to appreciate literature and films in both English and Chinese.Simon的双语能力使他能够欣赏英语和中文的文学作品和电影。Simon"s bilingual skills have made him more adaptable and flexible in diverse environments.Simon的双语技能使他在多样化的环境中更加适应和灵活。
2023-08-05 10:40:161

英文 shadowing 影子跟读法!关键方法步骤

学英文没有对象没有环境没有关系,我们可以创造自己的听力口说环境。语言是靠模仿练习来的,现在大家都在学这种方法,叫做 shadowing影子跟读法 ,但是,要怎么跟读呢?下面将告诉你大家都没说的 shadowing跟读法 关键步骤。 步骤1.选择对话:一定要有音档由易到难 建议先不要直接找新闻类、美剧或找影集,因为它的单字比较难语速会太快。第一个选择是以平易近人生活类的对话开始,里面的单字比较适合平常会使用到,比如聊聊待会要去吃什么,或者讨论工作的内容、职场生活或旅游都可以。 一开始不要选那种超长篇幅的,尽量选择两个人简短的对话,当你觉得越来越上手之后再把它加长,字汇量先不要太多的,比如说两个人在探讨宇宙地球的形成,这种专有名词专业字太多了。 重点是一定要有对话音档,这样才有模仿学习的对象。而不是只有一个原文,就开始自己念,你也不太确定自己念的对不对。 步骤2.了解文意,挑出生难字 先裸听就是不要看原文直接先听音档,听力一定要这样练习,不要太依赖看懂原文再去听,反而应该先听了解大概的文意,多听几次也没关系,整个听完以后再去看原文挑出生难字,找出可能不太懂的单词查一下并了解它的意思。 步骤3.标出音变作用 这个步骤非常重要,当整篇的意思都了解之后,开始边听音档标示出各种发音的现象跟变化,边听每一句去分析一下,句子中有连音、有弹舌,还是哪个地方弱化了?从单字、字词到句子重音规则、音调高低皆,发现快速口说中的音变现象。 步骤4.自言自语对话跟读 整篇内容都研究完知道它大概怎么念,就可以跟读了。注意!它的关键是一句一句。你不要听完一大段才开始跟着念,这样一段一段内容太多了,你可能听完几句就忘记了刚才已经研究过的连音和语调高低起伏,除了语调之外不要怕夸张,就是把自己当成配音员,剧情中的所有声音表情全部都要一起模仿。 你说跟读可以看文稿吗?可以哦。初期可以先看着文稿跟读,当你觉得看着文稿已经念得很熟了,可以挑战进阶版不看文稿,用印象、情境、语调去跟着它念出来。 这样的对话自学法只需要一个礼拜2~3天,一次20分钟到半小时,分次的逐步练习,对话自学法可以从单字、发音、重音、语调还有它的流畅度甚至文法,同时学习文化差别,对方说了什么话,该有什么回应,全部都可以一次学习到。 文章内容摘录:《英文正音女王教室:创造自己的发音口说环境》 shadowing, 英文 shadowing, 英文 影子跟读, 英文 影子跟读法, 英文 跟读
2023-08-05 10:40:131