应用

阅读 / 问答 / 标签

马克思政治经济学在中国现实发展中的应用分析

这个在我们高中的课本里有相关论述吧

激光产生原理及应用

物质是由粒子(分子,原子,离子)组成,粒子处于不断的运动状态之中,并处于不同的能级上。粒子从不稳定的高能级想低能级跃迁,向外发射出光子。 基态是粒子能量级最稳定的状态,粒子总是试图使自己的能量状态处于低能级上,被激发的高能级上的粒子,力图回到基态上去,与此同时释放出激发时所吸收的能量。从高能级回到低能级去的过程称为跃迁,跃迁时释放的能量即为辐射。 受激吸收:当处于低能级上的粒子吸收一定频率的外链光子能量时,粒子的能量增加,粒子从低能级跳跃到高能级,叫受激吸收。而外来光子能量被吸收后,光子能量减弱。粒子由低能量级向高能量级的迁移不是自发的,而是靠外来光子刺激或激发而进行的。激发的方法很多,主要是给基态低能量激级粒子施加一定能量,例如光照、电子碰撞、分解或化合以及加热等,基态粒子吸收能量后即被激发,如红宝石激光器用脉冲氙灯照射方法施加光能红宝石中铬离子从低能级的基态激发到高能级级激发态上;氦-氖激光器通过电子与氦原子碰撞,是氦原子获得能量通过获得能量的氦原子碰撞氖原子,获得能量的氖原子从基态激发到高能级上。化学激光则是用分解和化合的方法做为激光能源。由于原子内部结构不同,在相同条件下,原子从基态被激光发到各个高能级去的可能性是不同的。粒子能吸收外来光子,与两个能级的性质和趋近与粒子的光子数的多少有关,而与方向、相位等因素无关。 自发辐射:处于高能级的粒子很不稳定,不能长时间停留。如氢原子,粒子在高能级停留时间只有10-8s,高能级粒子自发跃迁至低能级上,同时以光子形式放出能量。 自发辐射过程不受外界因素影响,是原子内部运动规律导致的跃迁,完全自发进行。这样产生的光没有一定规律,相位和方向都不一致,不是单色光。日出生活中所看到的自然光、白炽灯、高压汞灯和一些充有气体的灯,它们发光都是自发辐射的过程,这些光是想各个方向传播的。这种以光的形式将能量辐射出来,并自发从高能级向低能级的跃迁就是自发辐射。这种通过自发辐射跃迁产生的光,是非相干光。在跃迁过程中也会有一些不产生光辐射的跃迁,其主要以热的运动形式释放能量,即无辐射跃迁,自发辐射的特点是每一个粒子的跃迁都是自发地、相互独立的进行,彼此无联系,产生的光子杂乱无章,无规律性。 受激辐射:特点是本身不是自发跃迁,而是受外来光子的刺激所产生,因而粒子释放出的光子和原来光子的频率、方向、相位及偏振等完全一样,无法区分出哪一个是原来的光子,哪一个是受激后产生的光子。受激辐射中由于光辐射的能量与光子数成正比例,因而在受辐射以后,光辐射能量增大了一倍。以波动观点看,设外来光子为一种波,受激辐射产生的光子为另一种波,由于两个波的相位、振动方向、传播的方向及频率一致,两个波合在一起能量就增大一倍,即通过受激辐射光波被放大。外来光子量越多,受激发的粒子数越多,产生的光子越多,能量就越高。 由上可知,受激辐射与受激吸收同时存在于光辐射与粒子体系上,是在同一整体中相互对立的两个方面,它们发生的可能性是等同的,这两个方面即受激辐射月吸收哪一个站主导地位,取决于粒子在两个能级上的分布。激光器发出的激光就是受激辐射而实现的,激发态粒子数越多,越容易实现受激辐射。

激光产生的原理及应用是什么

激光产生的过程如下:1、介质分子在外来能量的激发下跃迁到可以产生受激辐射的能级。2、一些在高能级的介质分子随机跃迁到低能级,并发射出一个光子。3、由于该能级可以产生受激辐射,所以在该光子击中另一个处于该能级的介质分子时,该介质分子产生受激辐射现象。即受入射光子的激发而从该能级跃迁至低能级,同时发射出一个和入射光子一模一样的光子。4、以上过程在谐振腔内进行,谐振腔两端是两块平行放置的反射镜,反射镜间距是受激辐射波长的整数倍。以使得只有完全垂直于两块反射镜的辐射被选择留下。5、被选择方向上的辐射不断增殖形成相干性非常好的激光光束。跃迁到低能级的介质分子在外来能量的激发下重新回到高能级,保证持续提供可激发的介质分子。6、谐振腔的一端放置的反射镜有一定的透射率,通过此端反射镜透射出来的光束就是我们可以使用的激光束。以上是激光发生原理的简述,请参考。至于应用,由于激光是方向性和相干性非常好的光,所以有很多适合激光的应用。如激光切割、激光美容、激光存储等等。

激光产生原理及应用

激光产生的原理如下:原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候,所释放的能量以光子的形式放出。激光技术的应用如下:1、工业应用:激光技术在工业生产中被广泛应用,如激光切割、激光打标、激光焊接等。激光切割可以精确地切割各种材料,如金属、木材、塑料等;激光打标可以在各种材料上进行高精度的标记;激光焊接可以实现高速、高效的焊接。2、医疗应用:激光技术在医疗领域中被广泛应用,如激光手术、激光治疗等。激光手术可以精确地进行手术操作,减少手术风险和创伤;激光治疗可以治疗各种疾病,如皮肤病、癌症等。3、通信应用:激光技术在通信领域中也有着广泛的应用,如激光通信、激光雷达等。激光通信可以实现高速、高效的数据传输;激光雷达可以进行高精度的测距和探测。4、军事应用:激光技术在军事领域中也是一种重要的应用,如激光制导、激光测距、激光武器等。激光制导可以精确地制导导弹和炮弹等武器;激光测距可以进行高精度的距离测量;激光武器可以实现高效、精确的打击目标。激光介绍:激光是20世纪以来继核能、电脑、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。英文名Light Amplification by Stimulated Emission of Radiation,意思是“通过受激辐射光扩大”。激光的英文全名已经完全表达了制造激光的主要过程。激光的原理早在1916年已被著名的犹太裔物理学家爱因斯坦发现。原子受激辐射的光,故名“激光”。激光:原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候;所释放的能量以光子的形式放出。被引诱(激发)出来的光子束(激光),其中的光子光学特性高度一致。因此激光相比普通光源单色性、方向性好,亮度更高。激光应用很广泛,有激光打标、激光焊接、激光切割、光纤通信、激光测距、激光雷达、激光武器、激光唱片、激光矫视、激光美容、激光扫描、激光灭蚊器、LIF无损检测技术等等。激光系统可分为连续波激光器和脉冲激光器。

如何复习应用化学专业考研的各科?

随着科学技术的不断进步,工程化学不断地应用到工程施工中,但是我们对于工程化学了解多少?如何应用工程化学指导我们的房建施工呢?砼,我们不会陌生。砼是水泥、砂石及水、外加剂的反应结合物,可能有些人就停留在这个概念。如果我们更深入的去分析,我们会发现很多意想不到的知识。水泥水泥的主要成分是硅酸盐类:硅酸三钙(3CaO·SiO2)、硅酸二钙(2CaO·SiO2)、铝酸三钙(3CaO·Al2O3),这意味着什么呢?以硅酸三钙水化为例:硅酸三钙在常温下的水化反应生成水化硅酸钙(在砼中起到凝胶作用)和氢氧化钙3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2。水泥硬化后生成了硅酸钙及氢氧化钙,这化学产物属于碱性物质,意味着我们可以用酸性物质去中和,这就是为什么瓷砖面附着有水泥或水泥砂浆,可以用酸性物质如草酸、稀盐酸、稀硫酸去清理的缘故。我们在进行家装过程,也会发现瓷砖会泛碱,特别是墙面比较明显,墙砖贴好后没几天就泛白,为什么呢?一般而言,采用水泥油湿贴瓷砖,水泥硬化后产生的Ca(OH)2,氢氧化钙析出表面后会与空气中的二氧化碳发生反应,生产碳酸钙,如果未及时清理,后期硬化后难清理,所以瓷砖表面会泛白。根据化学产物,我们可以用酸性物质去溶解反应清理。反应机理:CaCO3+2HCl=CaCl2+CO2↑+H2O。类似地,我们为了避免石材湿贴泛碱,一般石材都是干挂,而不是湿贴,且必须做好背涂防水。混凝土楼板开裂是工程常见的质量通病,特别屋顶开裂渗漏成为我们必须认真对待的话题。我们在浇筑完成楼面后,如果不及时浇筑湿润,楼板表面就开始泛白,接着就可能会出现裂缝,为什么呢?其实,在混凝土硬化过程,水泥发生的化学反应属于放热反应,造成混凝土内部积聚大量的热量,内外部存在温度差,如果不及时平衡温差,混凝土热胀冷缩会造成面层开裂,所以,我们必须重视水泥发生的放热反应,及时浇水养护宜。混凝土水化热曲线实际施工中,我们可以通过手感触摸混凝土面层是否发烫,混凝土面层是否泛白。如果泛白,我们必须立即浇水湿润,主要是降低温差,同时,防止混凝土水分增发过快造成楼板开裂。在大体积混凝土施工中,内外温度差可以达到50度以上,可见水泥水化热非常之大,我们必须选用水化热低的硅酸盐水泥,同时采取措施降温,如埋设冷却管。大体积混凝土冷却管钢筋钢筋主要化学成分就是铁(Fe),铁不会与碱性的水泥发生反应,两者之间可以共存,但是,钢筋放久了为什么会生锈?主要是钢筋(铁)被氧化生成氧化铁(FeO),如果还进一步氧化,则会形成疏松易剥落的褐色的铁锈氢氧化铁Fe(OH)3。所以,钢筋生锈主要是氧化,我们必须尽可能隔绝钢筋与水和空气(两者都能提供氧离子)接触,钢筋放久了或在潮湿的环境里会生锈就是这个缘故。对于地下室而已,底板都是比较潮湿,底板除了承受地面上的荷载外,更重要的是要承受地表水或地下水压力作用,如果底板出现渗漏,我们必须及时堵漏,否则后果很严重,为什么这么说?由于水分渗漏到底板钢筋里面,久而久之,钢筋就会锈蚀被氧化,我们会看见有锈迹从缝隙溢出,底板会因地下水压力作用进而开裂、拱起,这样我们配置的钢筋就没作用了。所以,我们必须及时处理底板渗漏,不能放任自由,钢筋锈蚀对混凝土造成极大破坏,这个是特别注意的。回过头来讲,圆形钢筋适当生锈是好事,可以增加钢筋与混凝土的摩擦力,比如螺纹钢主要就靠螺纹与混凝土共同作用,所以筏板基础里螺纹钢不需要弯勾,而圆形钢筋必须弯90度的缘故。而钢筋生锈后,根据化学成份(Fe(OH)3),我们可以用酸性物质除锈。钢筋腐蚀对混凝土的破坏水泥砂浆除了混凝土外,砌筑水泥砂浆、混合砂浆等都是水泥制品,为什么地下必须使用水泥砂浆?而地上可以使用混合砂浆?其实是有原因的。因为水泥混合砂浆中的无机掺合料石灰膏,在潮湿的环境中不易硬化,必须吸收空气中的氧气还原成碳酸钙而硬化,Ca(OH)2+ O2=Caco3+ H2O,所以,潮湿或反复受潮的环境中(地下室)必须使用水泥砂浆。其他在工程施工中,还有很多都是应用化学反应原理,比如屋面防水卷材,以前都是用火烤APP防水卷材,主要是通过热熔方式粘贴防水卷材,属于物理反应过程,达不到根治防水的目的。目前比较流行的一种SPA反应性高分子防水卷材,该防水卷材通过与混凝土之间发生化学反应形成一体,非常有效的防止渗漏现象。可以预断,通过化学反应机理达到防水作用的防水卷材将是未来防水卷材的发展趋势。SPA反应型防水卷材施工再着,工程渗漏处理过程中,虽然可以高压注浆发泡剂,但是,这个不是最终的解决办法,我们必须用化学注浆,确保注浆材料能与混凝土发生化学反应,最后封闭裂缝。总之,我们必须掌握工程化学在房建施工中的应用用,应用化学原理去解析及处理工程问题,避免不应有的重复返工。

Quartus II 软件的基本应用

大哥,这个问题很广了。可以在具体点吗?

激光产生的原理及应用是什么

激光产生的过程如下:1、介质分子在外来能量的激发下跃迁到可以产生受激辐射的能级。2、一些在高能级的介质分子随机跃迁到低能级,并发射出一个光子。3、由于该能级可以产生受激辐射,所以在该光子击中另一个处于该能级的介质分子时,该介质分子产生受激辐射现象。即受入射光子的激发而从该能级跃迁至低能级,同时发射出一个和入射光子一模一样的光子。4、以上过程在谐振腔内进行,谐振腔两端是两块平行放置的反射镜,反射镜间距是受激辐射波长的整数倍。以使得只有完全垂直于两块反射镜的辐射被选择留下。5、被选择方向上的辐射不断增殖形成相干性非常好的激光光束。跃迁到低能级的介质分子在外来能量的激发下重新回到高能级,保证持续提供可激发的介质分子。6、谐振腔的一端放置的反射镜有一定的透射率,通过此端反射镜透射出来的光束就是我们可以使用的激光束。以上是激光发生原理的简述,请参考。至于应用,由于激光是方向性和相干性非常好的光,所以有很多适合激光的应用。如激光切割、激光美容、激光存储等等。

加速原理的应用

加速原理适用于任何投资品。如果对某种商品的需求的增长率下降了,该原理表明对于生产这种商品的投资品的需求也将会下降。其中,最有趣的应用之一便是建筑业。如果某个社区人口迅速增长,那么多于建筑业提供的服务的需求将会迅速上升,由此建筑业便火爆起来。如果让人口继续增长但放缓了速度,那么所需新房屋的数量将下降,没有意识到人口增长率降低了的房屋建造者很可能超额建设,由此至德折本卖出新房屋。另一个有趣的应用便是存货投资,也叫存货变化。存货投资指的是某种存货数量的增加,而不是存货品种的增多。假设一个零售店为了更好地 为其顾客服务,总是希望在每个时期内存货与销量大致相当。加速原理的一个最突出的应用便是它与凯恩斯乘数的交互作用。乘数表明投资支出的增加会导致收入增加,由此引起消费支出的增加;因此,它对GNP有一种乘数效应。加速原理则表明消费的增加会引起投资的上升。因此,初始的投资增加由于乘数效应将导致更多的消费,消费的增加又会引起更多的投资,尔投资的增加又会导致更多的消费,如此等等。

指纹识别的应用领域

指纹识别技术是目前最成熟且价格便宜的生物特征识别技术。目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如笔记本电脑、手机、汽车、银行支付都可应用指纹识别的技术。计算机应用中,包括许多非常机密的文件保护,大都使用“用户ID+密码”的方法来进行用户的身份认证和访问控制。但是,如果一旦密码忘记,或被别人窃取,计算机系统以及文件的安全问题就受到了威胁。随着科技的进步,指纹识别技术已经开始慢慢进入计算机世界中。许多公司和研究机构都在指纹识别技术领域取得了很大突破性进展,推出许多指纹识别与传统IT技术完美结合的应用产品,这些产品已经被越来越多的用户所认可。指纹识别技术多用于对安全性要求比较高的商务领域,而在商务移动办公领域颇具建树的富士通、三星及IBM等国际知名品牌都拥有技术与应用较为成熟的指纹识别系统。第一代指纹识别系统众所周知,在两年前就有部分品牌的笔记本采用指纹识别技术用于用户登录时的身份鉴定,但是,当时推出的指纹系统属于光学识别系统,按照说法,应该属于第一代指纹识别技术。光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做一个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。第二代电容式传感器后来出现了第二代电容式传感器,电容传感器技术是采用了交替命令的并排列和传感器电板,交替板的形式是两个电容板,以及指纹的山谷和山脊成为板之间的电介质。两者之间的恒量电介质的传感器检测变化来生成指纹图像。但是由于传感器表面是使用硅材料 容易损坏 导致使用寿命降低,还有它是通过指纹的山谷和山脊之间的凹凸来形成指纹图像的 所以对脏手指 湿手指等困难手指识别率低。当今市场己有专门针对人机接口应用领域而设计的电容感测用途芯片产品问世。它提供了电容传感器的触发,能检测到因使用者的接近所造成的电容变化,并提供数字输出。电子器件与触控板技术的完美结合,是触摸屏技术发展的基础所在。通过以电力线为基础的分析方法,找出电容式触摸屏的不同类型电容的分布和数学表达,以及由于人体触摸产生的新生电容,是电容式触摸屏技术的物理基础。相比其他压力传感器厂商传统的压阻式(PRT)绝对压力传感器,电容式压力传感器可以提供更高的精度、更低的功耗、更好的稳定性和一致性、以及工作在极端温度、湿度环境下的超强能力。Synaptics的电容式触摸板传感器解决方案,可以提供精确的手指侦测和小型物品侦测,更快的报点率和抗噪性能。随着传感器技术的发展,电容式传感器的形式将会多种多样,其形式应以非接触式为研制重点。其发展方向是通过广泛应用微机等高新电子技术来获得全面性能的进一步提高,同时还要向着小型化、智能化、多功能化的方向发展。射频指纹识别技术发展到今天,出现第三代生物射频指纹识别技术(射频原理真皮指纹核心技术(线型采集器)),射频传感器技术是通过传感器本身发射出微量射频信号,穿透手指的表皮层去控测里层的纹路,来获得最佳的指纹图像。因此对干手指,汗手指,脏手指等困难手指通过可高达99%,防伪指纹能力强,指纹敏感器的识别原理只对人的真皮皮肤有反应,从根本上杜绝了人造指纹的问题,宽温区:适合特别寒冷或特别酷热的地区。因为射频传感器产生高质量的图像,因此射频技术是最可靠,最有力的解决方案。除此之外,高质量图像还允许减小传感器,无需牺牲认证的可靠性,从而降低成本并使得射频传感器思想的应用到可移动和大小不受拘束的任何领域中。 指纹应用系统可以分为两类:验证和辨识。验证就是把一个现场采集到的指纹与一个己经登记的指纹进行一对一的比对,来确认身份的过程;辨识则是把现场采集到的指纹同指纹数据库中的指纹逐一对比,从中找出与现场指纹相匹配的指纹。验证和辨识在比对算法和系统设计上各有特点,例如验证系统一般只考虑对完整的指纹进行比对,而辨识系统要考虑残纹的比对;验证系统对比对算法的速度要求不如辨识系统高,但更强调易用性;另外在辨识系统中,一般要使用分类技术来加快查询的速。指纹门禁系统是指纹应用系统中验证的一种。指纹门禁系统以手指取代传统的钥匙,使用时只需将手指平放在指纹采集仪的采集窗口上,即可完成开锁任务,操作十分简便,避免了其它门禁系统(传统机械锁、密码锁、识别卡等)有可能被伪造、盗用、遗忘、破译等弊端。指纹门禁系统的硬件主要由微处理器、指纹识别模块、液晶显示模块、键盘、实时时钟/日历芯片、电控锁和电源等组成。微处理器作为系统的上位机,控制整个系统。指纹识别模块主要完成指纹特征的采集、比对、存储、删除等功能。液晶显示模块用于显示开门记录、实时时钟和操作提示等信息,和键盘一起组成人机界面。按系统功能,软件主要由指纹处理模块、液晶显示模块、实时时钟模块和键盘扫描模块等组成。指纹处理模块主要负责微处理器与指纹识别模块之间命令和返回代码的信息处理;液晶显示模块根据液晶显示模块的时序,编写驱动程序,以实现显示汉字、字符的目的;实时时钟模块根据时钟芯片的时序,编写通讯程序.实现对时钟芯片的读写操作;键盘扫描模块就是根据键盘的设计原理编写键盘程序来识别有无按键动作和按下键的键号。按操作流程,软件主要由指纹开门程序、指纹管理程序、密码管理程序和系统设置程序四部分组成。其中指纹管理、密码管理和系统设置三部分只有管理员才有此权限。指纹管理程序由登记指纹模板程序、删除指纹模板程序、清空指纹模板程序和浏览开门记录程序四部分组成;密码管理程序由密码修改程序和密码开门程序两部分组成;系统设置程序由时间设置程序和日期设置程序两部分组成。

两个计数原理的综合应用

两个计数原理的综合应用:分类加法计数原理、分步乘法计数原理。一、分类加法计数原理如下:1.基本形式:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。2.推广形式:完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。特别提示:分类加法计数原理在使用时注意每类做法中每一种方法都能完成这件事情,类与类之间是独立的。二、分步乘法计数原理如下:1.基本形式:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m*n种不同的方法。2.推广形式:完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1*m2*…*mn种不同的方法。特别提示:分步乘法计数原理在使用时注意每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的。

DNA指纹技术应用了什么原理?

简单的说,就是利用了在人的基因组中大量重复出现,而且在人与人之间有明显差别的片段来辨别不同的人,方法就是电泳啦。现在主要被用在犯罪嫌疑人的认证中,灵敏度很高。

双面沉头铆钉的结构原理是怎么的?主要用在哪些方面?目前市场上应用广吗?

双面沉头拉钉主要是装配两块两面有沙拉孔(沉孔)的钢板,两面铆接后都非常平整!

杠杆应用的杠杆应用历史由来

阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作不证自明的公理,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在重心理论的基础上,阿基米德又发现了杠杆原理,即二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水。在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的,而且墨子的发现比阿基米德早了约二百年。阿基米德将自己锁在一间小屋里, 正夜以继日地埋头写作《浮体论》.这天突然闯进一个人来, 一进门就连忙喊道: `哎呀! 你老先生原来躲在这里.国王正调动大批人马, 在全城四处找你呢."阿基米德认出他是朝廷大臣, 心想, 外面一定出了大事.他立即收拾起羊皮书稿, 伸手抓过一顶圆壳小帽, 随大臣一同出去, 直奔王宫.当他们来到宫殿前阶下时, 就看见各种马车停了一片, 卫兵们银枪铁盔, 站立两行, 殿内文武满座, 鸦雀无声.国王正焦急地在地毯上来回踱步.由于殿内阴暗, 天还没黑就燃起了高高的烛台.灯下长条案上摆着海防图、陆防图.阿基米德看着这一切, 就知道他最担心的战争终于爆发了.原来地中海沿岸在古希腊衰落之后, 先是马其顿王朝的兴起, 马其顿王朝衰落后, 接着是罗马王朝兴起.罗马人统一了意大利本土后向西扩张, 遇到另一强国迦太基.公元前264 年到公元前221 年两国打了23 年仗, 这是历史上有名的`第一次布匿战争", 罗马人取得胜利.公元前218 年开始又打了4 年, 这是`第二次布匿战争", 这次迦太基起用一个奴隶出身的军事家汉尼拔, 一举擒获罗马人5 万余众.地中海沿岸的两个强国就这样连年争战, 双方均有胜负.叙拉古, 则是个夹在迦、罗两个强国中的城邦小国, 在这种长期的战争风云中, 常常随着两个强国的胜负而弃弱附强, 飘忽不定.阿基米德对这种外交策略很不放心, 曾多次告诫国王, 不要惹祸上身.可是现在的国王已不是那个阿基米德的好友亥尼洛.他年少无知, 却又刚愎自用.当`第二次布匿战争"爆发后, 公元前216 年, 眼看迦太基人将要打败罗马人, 国王很快就和罗马人决裂了, 与迦太基人结成了同盟, 罗马人对此举很恼火.现在罗马人又打了胜仗, 于是采取了报复的行动, 从海陆两路向这个城邦小国攻过来, 国王吓得没了主意.当他看到阿基米德从外面进来, 连忙迎上前去, 恨不得立即向他下跪, 说道: `啊, 亲爱的阿基米德, 你是一个最聪明的人, 先王在世时说过你都能推动地球."关于阿基米德推动地球的说法, 却还是他在亚历山大里亚留学时候的事.当时他从埃及农民提水用的吊杆和奴隶们撬石头用的撬棍受到启发, 发现可以借助一种杠杆来达到省力的目的, 而且发现, 手握的地方到支点的这一段距离越长, 就越省力气.由此他提出了这样一个定理: 力臂和力 (重量) 的关系成反比例.这就是杠杆原理.用我们现在的表达方式表述就是: 重量×重臂=力×力臂.为此, 他曾给当时的国王亥尼洛写信说: `我不费吹灰之力, 就可以随便移动任何重量的东西;只要给我一个支点, 给我一根足够长的杠杆, 我连地球都可以推动."可现在这个小国王并不懂得什么叫科学, 他只知道在大难临头的时候, 借助阿基米德的神力来救他的驾.可是罗马军队实在太厉害了.他们作战时列成方队, 前面和两侧的士兵将盾牌护着身子, 中间的士兵将盾牌举在头上, 战鼓一响这一个个方队就如同现代的坦克一样, 向敌方阵营步步推进, 任你乱箭射来也丝毫无损.罗马军队还有特别严明的军纪, 发现临阵脱逃的立即处死, 士兵立功晋级, 统帅获胜返回罗马时要举行隆重的凯旋仪式.这支军队称霸地中海, 所向无敌, 一个小小的叙拉古哪里放在眼里.况且旧恨新仇, 早想进行一次彻底清算.这时由罗马执政官马赛拉斯统帅的四个陆军军团已经挺进到了叙拉古城的西北.现在城外已是鼓声齐鸣, 杀声震天了.在这危急的关头, 阿基米德虽然对因国王目光短浅造成的这场祸灾非常不满, 但木已成舟, 国家为重, 他扫了一眼沉闷的大殿, 捻着银白的胡须说: `如果单靠军事实力, 我们决不是罗马人的对手.现在若能造出一种新式武器来, 或许还可守住城池, 以待援兵." 关于阿基米德推动地球的说法, 却还是他在亚历山大里亚留学时候的事.当时他从埃及农民提水用的吊杆和奴隶们撬石头用的撬棍受到启发, 发现可以借助一种杠杆来达到省力的目的, 而且发现, 手握的地方到支点的这一段距离越长, 就越省力气.由此他提出了这样一个定理: 力臂和力 (重量) 的关系成反比例.这就是杠杆原理.用我们现在的表达方式表述就是: 重量×重臂=力×力臂.为此, 他曾给当时的国王亥尼洛写信说: `我不费吹灰之力, 就可以随便移动任何重量的东西;只要给我一个支点, 给我一根足够长的杠杆, 我连地球都可以推动."可现在这个小国王并不懂得什么叫科学, 他只知道在大难临头的时候, 借助阿基米德的神力来救他的驾.

PS 形状工具里的“形状图层”“ 路径”“ 填充像素”三个选项有什么区别?原理和应用上两方面的区别?

你可以看看相关教程:

光学原理的应用

光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显微镜的组成结构光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以显微镜的光学原理显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大率。显微镜观察物体时通常视角甚小,因此视角之比可用其正切之比代替。显微镜放大原理光路图显微镜由两个会聚透镜组成,光路图如图所示。wu物体ABjin经物镜成放大倒立的实像A1B1,A1B1we位于目镜的wu物方ji焦距的内侧,经目镜后成放大的虚像A2B2yu于明视距离处。应用

光学显微镜的原理及其应用

其实普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像。第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像。而后以第一次成的物像作为“物体”,经过目镜的第二次成像。由于我们观察的时候是在目镜的另外一侧,根据光学原理,第二次成的像应该是一个虚像,这样像和物才在同一侧。因此第一次成的像应该在目镜(凸透镜2)的一倍焦距以内,这样经过第二次成像,第二次成的像是一个放大的正立的虚像。如果相对实物说的话,应该是倒立的放大的虚像。

光学原理的应用

光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显微镜的组成结构光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以显微镜的光学原理显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大率。显微镜观察物体时通常视角甚小,因此视角之比可用其正切之比代替。显微镜放大原理光路图显微镜由两个会聚透镜组成,光路图如图所示。wu物体ABjin经物镜成放大倒立的实像A1B1,A1B1we位于目镜的wu物方ji焦距的内侧,经目镜后成放大的虚像A2B2yu于明视距离处。应用

最小二乘法基本原理在定积分中的应用

问题问的好像不是很清楚可以参考数值分析教程

最小二乘法原理及应用

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。

杠杆公式使用方法及应用示例?介绍杠杆公式的原理及其作用

杠杆公式是一种金融工具,它可以帮助投资者在投资中获得更多的收益。杠杆公式的原理是,投资者可以利用较少的资金获得更多的收益,从而获得更高的投资回报。杠杆公式的作用是,它可以帮助投资者在投资中获得更多的收益,而不必投入大量的资金。杠杆公式的使用方法是,首先,投资者需要确定自己的投资目标,然后根据自己的投资目标,确定所需的资金量,并计算出所需的杠杆比例。接下来,投资者可以根据自己的投资目标,选择合适的金融工具,并利用杠杆公式计算出所需的资金量。最后,投资者可以根据自己的投资目标,选择合适的金融工具,并利用杠杆公式获得更多的收益。杠杆公式的应用示例是,投资者可以利用杠杆公式来投资股票市场,以获得更多的收益。例如,投资者可以利用杠杆公式,以较少的资金投资股票市场,从而获得更多的收益。此外,投资者还可以利用杠杆公式,以较少的资金投资外汇市场,从而获得更多的收益。总之,杠杆公式是一种金融工具,它可以帮助投资者在投资中获得更多的收益。杠杆公式的原理是,投资者可以利用较少的资金获得更多的收益,从而获得更高的投资回报。杠杆公式的使用方法是,投资者需要确定自己的投资目标,然后根据自己的投资目标,确定所需的资金量,并计算出所需的杠杆比例。杠杆公式的应用示例是,投资者可以利用杠杆公式来投资股票市场,以获得更多的收益,也可以利用杠杆公式投资外汇市场,以获得更多的收益。

求一篇关于传感器应用的物理文章

《传感器原理及应用》实验一 金属箔式应变片----单臂、半臂、全桥性能实验实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工作原理和性能。基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为:ΔR/R电阻丝电阻相对变化, K为应变灵敏系数, ε=ΔL/L为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uο1=Ek02/4。在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ek02/2。在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ek02。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V、±4V直流电源、万用表。实验方法和要求:根据电子电路知识,实验前设计出实验电路连线图。独力完成实验电路连线。找出这三种电桥输出电压与加负载重量之间的关系,并作出Vo=F(m)的关系曲线。分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差:δf1=Δm/yF·s×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yF·s满量程输出平均值,此处为200g。实验二 压阻式压力传感器的压力测量实验实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下,根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。实验设备:压力源、压力表、压阻式压力传感器、压力传感器实验模板、流量计、三通连接导管、数显单元、直流稳压源±4V、±15V。实验方法和要求:根据电子电路知识完成电路连接,主控箱内的气源部分、压缩泵、储气箱、流量计在主控箱内部已接好。将标准压力表放置传感器支架上,三通连接管中硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用双指按住气源插座边缘往内压,则硬管可轻松拉出)。其余两根软导管分别与标准表和压力传感器接通。将传感器引线插头插入实验模板的插座中。先松开流量计下端进气口调气阀的旋钮,开通流量计。合上主控箱上的气源开关,启动压缩泵,此时可看到流量计中的滚珠浮子在向上浮起悬于玻璃管中。逐步关小流量计旋钮,使标准压力表指示某一刻度,观察数显表显示电压的正、负,若为负值则对调传感器气咀接法。仔细地逐步由小到大调节流量计旋钮,使压力显示在4—14KP之间,每上升1KP分别读取压力表读数,记下相应的数显表值。计算本系统的灵敏度和非线性误差。思考题:如果本实验装置要成为一个压力计,则必须对其进行标定,如何标定?实验三 压电式传感器测震动实验实验目的:了解压电式传感器的测量震动的原理和方法。基本原理:压电式传感器由惯性量块和受压的压电片等组成。(仔细观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的震动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板、双线示波器。实验方法和要求:压电传感器已装在震动台面上。将低频震荡器信号接入到台面三源板震动源的激励插孔。将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感情实验模板电路输出端Vo1接R6。将压电传感器实验模板电路输出端V02接入低通滤波器输入端Vi,低通滤波器输出Vo与示波器相连。合上主控箱电源开关,调节低频震荡器的频率和幅度旋钮使震动台震动,记录示波器波形。改变低频震荡器的频率,记录输出波形变化。用示波器的两个通道同时记录低通滤波器输入端和输出端波形。求出压电传感器的振动方程。实验四 差动变压器的性能实验实验目的:差动变压器的工作原理和特性。基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。实验设备:差动变压器实验模板、测微头、双线示波器、差动变压器、音频信号源(音频震荡器)、直流电源、万用表。实验方法和要求:将差动变压器装在差动变压器实验模板上。将传感器引线插头插入实验模板的插座中,接好外围电路,音频震荡器信号必须从主控箱中的Lv端子输出,调节音频震荡器的频率,输出频率为4—5KHZ(可用主控箱的频率表输入Fin来检测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器检测)旋转测微头,使示波器第二通道显示的波形峰-峰值Vp-p最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,至少记录一个周期的数据。在实验过程中,注意左、右位移时,初、次级波形的相位关系。在实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。画出输出电压峰值Vop-p—位移X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。实验五 位移传感器特性实验-霍尔式、电涡流式、电容式(一)霍尔式传感器位移特性实验实验目的:了解霍尔式传感器原理与应用。基本原理:根据霍尔效应,霍尔电势Uн=KнIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。实验设备:霍尔传感器实验模板、霍尔传感器、直流电源、测微头、数显单元。实验方法和要求:将霍尔传感器安装于实验模板的支架上。再将传感器引线插头接入实验模板的插座中,完成实验电路的连线。开启电源,调节测微头使霍尔片在磁钢中间位置并使数显表指示为零。测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数,直到读数近似不变。作出V—X曲线,计算不同线性范围时的灵敏度和非线性误差。思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?(二) 电涡流传感器位移实验实验目的:了解电涡流传感器测量位移的工作原理和特性。基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。实验设备:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。实验方法和要求:将电涡流传感器安装在实验模板的支架上。观察传感器结构,这是一个平绕扁线圈。将电涡流传感器输出线接入实验模板标有L的两端插孔中,作为震荡器的一个元件。在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。用连接导线从主控台接入±15V直流电源接到模板上标有+15V的插孔中。使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出电压几乎不变为止。画出V—X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3mm及5mm时的灵敏度和线性度(可以用端基法或拟合直线法)。思考题:1、电涡流传感器的量程与哪些因素有关?2、电涡流传感器进行非接触位移测量时,如何根据量程选用传感器。(三) 电容式传感器的位移实验实验目的:了解电容式传感器结构及其特点。基本原理:利用平板电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择 ε、 A、d三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变),测微小位移(d变)和测量液位(A变)等多种电容传感器。实验设备:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压电源。实验方法和要求:将电容传感器装于电容传感器实验模板上,将传感器引线插头插入实验模板的插座中。将电容传感器实验模板的输出端Vo1与数显表单元Vi相接,Rw调节到中间位置。接入±15V电源,旋转测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值。计算电容传感器的系统灵敏度S和非线性误差δf

电涡流式传感器有何特点,画出应用于测板材厚度的原理框图

德国米铱eddyNCDT系列电涡流位移传感器用于板材厚度检测电涡流测量原理是一种非接触式测量原理。这种类型的传感器特别适合测量快速的位移变化,且无需在被测物体上施加外力。而非接触测量对于被测表面不允许接触的情况,或者需要传感器有超长寿命的应用领用意义重大。严格来讲,电涡流测量原理应该属于一种电感式测量原理。电涡流效应源自振荡电路的能量。而电涡流需要在可导电的材料内才可以形成。给传感器探头内线圈提供一个交变电流,可以在传感器线圈周围形成一个磁场。如果将一个导体放入这个磁场,根据法拉第电磁感应定律,导体内会激发出电涡流。根据楞兹定律,电涡流的磁场方向与线圈磁场正好相反,而这将改变探头内线圈的阻抗值。而这个阻抗值的变化与线圈到被测物体之间的距离直接相关。传感器探头连接到控制器后,控制器可以从传感器探头内获得电压值的变化量,并以此为依据,计算出对应的距离值。电涡流测量原理可以运用于所有导电材料。由于电涡流可以穿透绝缘体,即使表面覆盖有绝缘体的金属材料,也可以作为电涡流传感器的被测物体。独特的圈式绕组设计在实现传感器外形极致紧凑的同时,可以满足其运转于高温测量环境的要求。所有德国米铱的电涡流传感器都可以承受有灰尘,潮湿,油污和压力的测量环境。尽管如此,电涡流传感器的使用也有一些限制。举例来讲,对于不同的应用,都需要做相应的线性度校准。而且,传感器探头的输出信号也会受被测物体的电气和机械性能影响。然而,正是这些使用过程中的限制,使米铱的电涡流传感器拥有达到纳米级别的分辨率。目前,德国米铱电涡流传感器可以满足100µm到100mm的测量量程。根据量程的不同,安装空间也可以达到2mm到140mm的范围。离开位移传感器的机械工程几乎是很难想象的。这些位移传感器被用来控制不同的运动,监控液位,检查产品质量以及其他很多应用。这里我们谈谈传感器都可能面对哪些不同的情况以及恶劣的使用环境,以及如何客服不利因素。传感器经常被应用于非常恶劣的环境,例如油污,热蒸汽或者剧烈波动的温度。一些传感器还要在振动部件上使用,在强电磁场内或者需要离开被测物体一定的距离使用。对一些重要的应用,还需要对精度,温度稳定性,分辨率和截止频率提出要求。针对这些限制,不同的测量原理各有优劣。这也意味着没有统一的优化测量原理的方法。电涡流传感器又可以细分为屏蔽和非屏蔽两种。使用屏蔽传感器,可以产生更窄的电磁场分布,而且传感器不会受放射性金属的靠近影响。对于非屏蔽传感器,电磁线从传感器侧面发射出来。而量程往往会大一些。正确的安装对于信号质量至关重要。附近的其他物体也会影响信号。eddyNCDT产品系列可以在满足纳米级分辨率的同时,实现最大截止频率达到25kHz。 电涡流传感器的一个典型应用是全自动焊接测试机。测试机用于焊缝质量控制。这里选用电涡流传感器的原因是,只有电涡流原理的传感器能够承受由焊接机器人带来的强大电磁场。测量还要满足微米级别的精度以及4mm的量程。

电涡流式传感器常见的应用有哪些?试解释这些应用的原理?

电涡流式测功机,测量扭矩功率,原理是利用电涡流产的阻力确定动力机械的功率,具体可参照相关资料。

气相色谱分析的特点及其应用范围

气相色谱分析的特点及其应用范围如下1、特点(1)分离效率高,分析速度快(2)选择性能好(3)样品用量少和检测灵敏度高(4)操作简单,费用低少,应用广泛2、应用范围:气相色谱分析操作简单,分析快速,选择性好,柱效能高,可以应用于分析气体试样,也可以分析易挥发或可转化为易挥发的液体和固体,不仅可分析有机物,也可分析部分无机物。一般,只要沸点在500oC 以下,热稳定性良好,相对分子质量在 400以下的物质,原则上都可采用气相色谱法。拓展内容:1、气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱和气-液色谱。2、气相色谱原理气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。

为什么标准蛋白应用微量凯氏定氮法测定浓度

这个问题太复杂,且不是我的专业,我回答不了。

光电开关原理及应用|三线光电开关工作原理

光电开关原理及应用 邓重一 摘 要: 介绍了光电开关的原理、术语、种类和使用注意事项;并通过一些实例说明了光电开关的应用。 关键词: 传感器;光电开关;原理;应用 中图分类号:TP212.14 文献标识码:A 一、前言 光电开关是传感器大家族中的成员,它把发射端和接收端之间光的强弱变化转化为电流的变化以达到探测的目的。由于光电开关输出回路和输入回路是电隔离的(即电缘绝),所以它可以在许多场合得到应用。 二、光电开关介绍 1、工作原理 光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。物体不限于金属,所有能反射光线的物体均可被检测。光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。工作原理如图1所示。多数光电开关选用的是波长接近可见光的红外线光波型。图2是德国SICK公司的部分光电开关外型图。 2、光电开关的分类及术语解释 (1)、分类 ①漫反射式光电开关:它是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,物体将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。当被检测物体的表面光亮或其反光率极高时,漫反射式的光电开关是首选的检测模式。 ②镜反射式光电开关:它亦集发射器与接收器于一体,光电开关发射器发出的光线经过反射镜反射回接收器,当被检测物体经过且完全阻断光线时,光电开关就产生了检测开关信号。 ③对射式光电开关:它包含了在结构上相互分离且光轴相对放置的发射器和接收器,发射器发出的光线直接进入接收器,当被检测物体经过发射器和接收器之间且阻断光线时,光电开关就产生了开关信号。当检测物体为不透明时,对射式光电开关是最可靠的检测装置。 ④槽式光电开关:它通常采用标准的U字型结构,其发射器和接收器分别位于U型槽的两边,并形成一光轴,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了开关量信号。槽式光电开关比较适合检测高速运动的物体,并且它能分辨透明与半透明物体,使用安全可靠。 ⑤光纤式光电开关:它采用塑料或玻璃光纤传感器来引导光线,可以对距离远的被检测物体进行检测。通常光纤传感器分为对射式和漫反射式。 它们的工作光线示意图如图3所示。 (2)术语解释 常见的术语示意图如图4所示。 ①检测距离:是指检测体按一定方式移动,当开关动作时测得的基准位置(光电开关的感应表面)到检测 面的空间距离。额定动作距离指接近开关动作距离的标称值。 ②回差距离:动作距离与复位距离之间的绝对值。 ③响应频率:在规定的1s的时间间隔内,允许光电开关动作循环的次数。 ④输出状态:分常开和常闭。当无检测物体时,常开型的光电开关所接通的负载由于光电开关内部的输出晶体管的截止而不工作,当检测到物体时,晶体管导通,负载得电工作。 ⑤检测方式:根据光电开关在检测物体时发射器所发出的光线被折回到接收器的途径的不同,可分为漫反射式、镜反射式、对射式等。 ⑥输出形式:分NPN二线、NPN三线、NPN四线、PNP二线、PNP三线、PNP四线、AC二线、AC五线(自带继电器),及直流NPN/PNP/常开/常闭多功能等几种常用的输出形式。 ⑦指向角:见光电开关的指向角示意图,即如图4的下部三个小图所示。 ⑧表面反射率:漫反射式光电开关发出的光线需要经检测物表面才能反射回漫反射开关的接受器,所以检测距离和被检测物体的表面反射率将决定接受器接收到光线的强度。粗糙的表面反射回的光线强度必将小于光滑表面反射回的强度,而且,被检测物体的表面必须垂直于光电开关的发射光线。常用材料的反射率如表1所示。 表1 常用材料的反射率 ⑨环境特性:光电开关应用的环境亦会影响其长期工作可靠性。当光电开关工作于最大检测距离状态时,由于光学透镜会被环境中的污物粘住,甚至会被一些强酸性物质腐蚀,以至其使用参数和可靠性降低。较简便的解决方法就是根据光电开关的最大检测距离(Sn)降额使用来确定最佳工作距离。 (3)使用注意事项 ①红外线传感器属漫反射型的产品,所采用的标准检测体为平面的白色画纸。 ②红外线光电开关在环境照度高的情况下都能稳定工作,但原则上应回避将传感器光轴正对太阳光等强光源。 ③对射式光电开关最小可检测宽度为该种光电开关透镜宽度的80%。 ④当使用感性负载(如灯、电动机等)时,其瞬态冲击电流较大,可能劣化或损坏交流二线的光电开关,在这种情况下,请将负载经过交流继电器来转换使用。 ⑤红外线光电开关的透镜可用擦镜纸擦拭,禁用稀释溶剂等化学品,以免永久损坏塑料镜。 ⑥针对用户的现场实际要求,在一些较为恶劣的条件下,如灰尘较多的场合,所生产的光电开关在灵敏度的选择上增加了50%,以适应在长期使用中延长光电开关维护周期的要求。 ⑦产品均为SMD工艺生产制造,并经严格的测试合格后才出厂,在一般情况下使用均不会出现损坏。为了避免意外性发生,请用户在接通电源前检查接线是否正确,核定电压是否为额定值。 以上各注意事项示意图见图5。 三、应用举例 从图6可以看出光电开关的各种应用。其中,图6(a)为光电开关用于对材料的定位剪切控制;图6(b)为用光电开关来控制液面位的上下限值,当液面位高于或低于上下极限液面位时,光电开关控制电路可使阈门打开或关闭,使液面位的高度保持在上下限之间;图6(c)为利用物体对光的遮挡作用,检测物体的通过个数,或物体是否存在;图6(d)为利用光的直线传播性,检验产品是否等高排列;图6(e)为将光电开关用在流水生产线上,来检测产品的个数;图6(f)为用光电开关检测液面位的高低。 四、结束语 除了以上介绍的例子外,光电开关还在许多方面得到了应用,例如在行程控制、直径限制、转速检测、气流量控制等方面。我们相信光电开关会做得越来越先进,它的应用也会越来越广泛。

什么是光电传感器几其应用

自动冲水器有些是的非接触ic卡基本上都是射频的不是光电感应

光电传感器在生活应用实例有什么?

应用案例 光电传感器应用于激光武器 由于光电传感器对红外辐射,或可见光,或对二者都特别灵敏,因而就更加容易成为激光攻击的目标。此外,电子系统及传感器本身还极易受到激光产生的热噪声和电磁噪声的干扰而无法正常工作。战场上的激光武器攻击光电传感器的方式主要有以下几种:用适当能量的激光束将传感器“致盲”,使其无法探测或继续跟踪已经探测到的目标。或者,如果传感器正在导引武器飞向目标,则致盲将使其失去目标。综上所述,由于传感器在战场上发挥的作用越来越重要,同时又很容易遭受激光攻击,它们已成为低能激光武器的首选目标。 光电传感器应用于自动抄表系统 随着微电子技术、传感器技术、计算机技术及现代通讯技术的发展,可以利用光电传感器来研制自动抄表系统。电能表的铝盘受电涡流和磁场的作用下产生的转矩驱动而旋转。采用光电传感器则可将铝盘的转数转换成脉冲数。如:在旋转的光亮的铝盘上局部涂黑,再配以反射式光电发射接收对管,则当铝盘旋转时,在局部涂黑处便产生脉冲,并可将铝盘的转数采样转换为相应的脉冲数,并经光电耦合隔离电路,送至CPU的T0端口进行计数处理。采用光电耦合隔离器可有效地防止干扰信号进入微机。再结合其它传输方式便可以形成自动抄表系统。 光电传感器应用于监控烟尘污染 光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化,通过把光强度的变化转换成电信号的变化实现控制功能。由于光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用,而我们可以利用光电传感器的特性来检测烟尘的情况,因而光电传感器输出信号的强弱便可反映烟道浊度的变化。 卫生级防冲洗型光电传感器 防冲洗型传感器,能够提供极高的可靠性和舒适性,并将运行成本降至最低。配合IO-Link接口以及能够大幅延长使用寿命的proTect+密封理念,这两款新型传感器适用于苛刻的应用环境,堪称食品和饮料行业的理想解决方案。

光电传感器的应用光电传感器的工作原理

光电传感器的应用非常广泛,它们在现代社会的日常生活和生产自动化中随处可见。光电传感器是将光信号转化成电信号的器件,因此它的直接用途是测光,它还有计数,自动控制,摄影,录像,测距离等用途。接下来小编为大家介绍光电传感器的应用及光电传感器的工作原理。光电传感器的应用1、烟尘浊度监测仪防止工业烟尘污染是环保的重要任务之一。为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的。如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化。2、条形码扫描笔当扫描笔头在条形码上移动时,若遇到黑色线条,发光二极管的光线将被黑线吸收,光敏三极管接收不到反射光,呈高阻抗,处于截止状态。当遇到白色间隔时,发光二极管所发出的光线,被反射到光敏三极管的基极,光敏三极管产生光电流而导通。整个条形码被扫描过之后,光敏三极管将条形码变形一个个电脉冲信号,该信号经放大、整形后便形成脉冲列,再经计算机处理,完成对条形码信息的识别。3、产品计数器产品在传送带上运行时,不断地遮挡光源到光电传感器的光路,使光电脉冲电路产生一个个电脉冲信号。产品每遮光一次,光电传感器电路便产生一个脉冲信号,因此,输出的脉冲数即代表产品的数目,该脉冲经计数电路计数并由显示电路显示出来。4、光电式烟雾报警器没有烟雾时,发光二极管发出的光线直线传播,光电三极管没有接收信号。没有输出,有烟雾时,发光二极管发出的光线被烟雾颗粒折射,使三极管接受到光线,有信号输出,发出报警。5、测量转速在电动机的旋转轴上涂上黑白两种颜色,转动时,反射光与不反射光交替出现,光电传感器相应地间断接收光的反射信号,并输出间断的电信号,再经放大器及整形电路放大整形输出方波信号,最后由电子数字显示器输出电机的转速。6、光电池在光电检测和自动控制方面的应用光电池作为光电探测使用时,其基本原理与光敏二极管相同,但它们的基本结构和制造工艺不完全相同。由于光电池工作时不需要外加电压;光电转换效率高,光谱范围宽,频率特性好,噪声低等,它已广泛地用于光电读出、光电耦合、光栅测距、激光准直、电影还音、紫外光监视器和燃气轮机的熄火保护装置等。光电传感器的工作原理光电式传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。光电效应通常分为两大类,即外光电效应和内光电效应。外光电效应是指物质吸收光子并激发出自由电子的行为。当金属表面在特定的光辐照作用下,金属会吸收光子并发射电子,发射出来的电子叫做光电子。光的波长需小于某一临界值(相等于光的频率高于某一临界值)时方能发射电子,其临界值即极限频率和极限波长。由E=hn-W如果入射光子的能量hn大于逸出功W,那么有些光电子在脱离金属表面后还有剩余的能量,也就是说有些光电子具有一定的动能。因为不同的电子脱离某种金属所需的功不一样,所以它们就吸收了光子的能量并从这种金属逸出之后剩余的动能也不一样。由于逸出功W是使电子脱离金属所要做功的最小值,所以如果用E表示动能最大的光电子所具有的动能,那么就有下面的关系式E=hn-W(其中,h表示普兰克常量,n表示入射光的频率),这个关系式通常叫做爱因斯坦光电效应方程。

继电保护设备中的哪些部位用到光电传感器?如何应用?工作原理是什么

光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。如果你对光电传感器和继电系统有什么问题,可以联系上海前卫爱福蒙

美国FLUKE F43B电能质量测试仪的工作原理,应用方法,读表(主要是电流电压以及谐波)

我是FLUKE F435的,不过大概应该差不多,可以做为参考: 在开始测量之前,先针对你想要测量的电力系统的线路电压、频率及接线配置设置好分析仪。 对于三相测量,接线时首先将电流钳夹放置在相 A(L1)、B(L2)C(L3)和 N(中性线)的导线上。钳夹上标有箭头,用于指示正确的信号极性。接下来,完成电压连接:先从接地(Ground)连接开始,然后依次连接 N、A(L1),B(L2)和 C(L3)。要获得正确的测量结果,始终要记住连接地线(Ground)输入端。记住要复查连接是否正确。 要确保电流钳夹牢固并完全夹钳在导线四周。 对于单相测量,可使用电流输入端 A(L1)和电压输入地线输入端、N(中性线)及 A 相(L1)。 注意:A(L1)是所有测量的基准相位。 在读表时,波形的范围都作了预先调整,显示效果还是不错的。 测量谐波时,可利用设置(SETUP)键和功能键 F3 - 功能参数选择(FUNCTION PREF),你可以以基波电压的百分比(%f)或总谐波电压的百分比(%r,总 Vrms)来选择谐波显示。计量屏幕内容也可以在该菜单中选择。

起重机应用了什么原理?

运用滑轮、杠杆的原理哦~定滑轮和动滑轮组成滑轮组可以省力。杠杆省力的条件是:用力点到支点的距离要大于阻力点到支点。若用力点到支点的距离小于阻力点到支点的距离,则费力。距离相同的不省力也不费力。

化工原理在生产生活中的应用

利用福尔马林保存一些遗体,是一种防腐化学剂

天坛公园的回音壁是我国建筑历史上的一大奇迹,回音壁应用的声学原理是下面的(  )A.声音在墙壁中的

A、声音可以在固体中传播,但是回声是声音的反射产生的,不符合题意;B、回声壁是能让人听到回声,回声是声音的反射;符合题意;C、声音可以在气体中传播,回声是声音的反射产生,不符合题意;D、由于回音壁的墙体特殊构造,易于声音的反射;墙壁反射的声波和原声重叠时,会增强原声,因此回音壁的原理是利用回声增强原声的现象,符合题意;故选BD.

海洋声学典型声场模型的原理及应用

您要问的是海洋声学典型声场模型的原理及应用是什么吗?原理:声速剖面模型,相对应的应用:声呐系统设计。1、声速剖面模型原理:海洋中的声速剖面是指声速随深度距离变化的情况,典型声场模型会考虑海洋中的温度、盐度、压力等因素对声速的影,并使用数学函数或实测数据来描述声速剖面的变化。2、声呐系统设计应用:声呐系统设计通过建立声场模型(参考声速剖面模型),评估呐系统在不同海环境下的能,包括探测距离、分辨率信噪比等指标,从而指导声呐系统的设计和优化。

高铁应用到的物理原理?急!详细一点

高铁机车(即火车头)会采用流线型的“子弹头”造型。列车时速达160公里以上后,受到的空气阻力将明显增加。因此,京沪高铁的火车头将会采用可减少阻力的“子弹头”造型,这样的形状不但优美流畅,而且在列车“冲进”隧道的时候,还能有效削减“微气压波”。中国铁道科学院首席专家黄强打了个比方,如同猛然将瓶塞拔出,会有“砰”的一声一样,列车进隧道时,突然压缩隧道中的气体,也会产生强烈的气浪和呼啸声,“子弹头”车型将可大大减少这种阻力和噪音。

天坛公园的回音壁是我国建筑史上的一大奇迹,回音壁应用的声学原理是:A声音的反射使原声加强

正确的是A声音的反射使原声加强。详解如下:天坛第一声学奇迹是回音壁.回音壁是一个圆环形的围墙,高约3.72m,直径61.5m.在回音壁内的圆形场地上,偏北有一座圆形的建筑物叫“皇穹宇”,它与回音壁内壁间的最短距离是2.5 m;同时东西对称地盖着两座房屋.人们一进回音壁,往往第一件事便是与同伴贴着围墙作远距离的耳语.人们讲悄悄话,一般在6 m以外就听不见.而在回音壁边上讲,传播却要远得多.即使你和同伴分别在直线距离为45 m的甲、乙两处轻声对话,彼此还听得清清楚楚,就像同伴在跟前与你说话一般.这个声学奇迹是怎样形成的呢?原来语音的波长只有10~300 cm,比回音壁半径要小得多,因此在这种场合下可以认为声波是直线前进的.语音在甲、乙两处之间传播,一部分以束状沿围墙连续反射前进,全程有129 m;一部分沿直线直接通过空气传播,全程才45 m.因为墙面相当坚硬光洁,对声音的吸收小,是声音的优良反射体;而且在回音壁的具体条件下,声波沿墙面连续反射都是全反射,没有穿入墙体内部发生折射的部分,所以声音在传播中衰减很小.两个人在甲、乙两处发出轻声细语,通过墙面传播的声波,尽管走了129 m,对方还能听清楚,就像打电话一样.而直接经过空气传播的声波却衰减很快,只走6 m就消失了,根本传不到45 m外的对方耳朵里.这就是神秘的回音壁的声学原理.

功能原理的应用领域

该原理对一切惯性参考系都成立。功能原理是和机械能守恒定理一致的,后者可以看做前者等号两边都为零时的特殊情况。对其理解可以比较灵活处理功能转换等问题。功能原理引入了机械能守恒,当只有弹力、重力做功时的情况。W动-W阻=0,ΔE=0.功能原理实际上是动能定理的变形,在运用时应注意:如在考虑机械能时引入了重力势能,由于势能属于物体与地球共有,因此物体的重力势能即为内力(保守力),在计算合外力做功时应剔除重力做功;同样如引入弹性势能,就不应再考虑弹簧的弹力做功。另外,因为功是机械能变化的量度,所以机械能的变化需要通过做功来实现,W外反映系统和外界的能量转换,W非保守内力反映系统内部机械能和其他形式能量的转换;如系统内有滑动摩擦力时,W非保守内力为负值,表明系统的一部分机械能转换成了系统的内能。

(物理选择题)北京天坛回音壁应用的声学原理是:

回音壁有回音效果的原因是皇穹宇围墙的建 回音壁原理示意图造暗合了声学的传音原理。围墙由磨砖对缝砌成,光滑平整,弧度过度柔和,有利于声波的规则反射。加之围墙上端覆盖着琉璃瓦使声波不至于散漫地消失,更造成了回音壁的回音效果。A

(物理选择题)北京天坛回音壁应用的声学原理是:

回音壁有回音效果的原因是皇穹宇围墙的建回音壁原理示意图造暗合了声学的传音原理。围墙由磨砖对缝砌成,光滑平整,弧度过度柔和,有利于声波的规则反射。加之围墙上端覆盖着琉璃瓦使声波不至于散漫地消失,更造成了回音壁的回音效果。A

天坛公园回音壁应用的声学原理

回音壁是皇穹宇的围墙,高3.72米,厚0.9米,直径61.5米,周长193.2米。 回音壁有回音的效果。如果一个人站在东配殿的墙下面朝北墙轻声说话,而另一个人站在西配殿的墙下面朝北墙轻声说话,两个人把耳朵靠近墙,即可清楚地听见远在另一端的对方的声音,而且说话的声音回音悠长。 回音壁有回音效果的原因是皇穹宇围墙的建造暗合了声学的传音原理。围墙由磨砖对缝砌成,光滑平整,弧度过度柔和,有利于声波的规则折射。加之围墙上端覆盖着琉璃瓦使声波不致于散漫地消失,更造成了回音壁的回音效果。

南京中山陵风景区音乐台应用的声学原理

南京中山陵风景区音乐台应用的声学原理是理想流体中声波的基本性质和声波的反射。中山陵音乐台位于南京市玄武区紫金山钟山风景名胜区中山陵广场东南。,由关颂声、杨廷宝设计,1932年秋动工兴建,1933年8月建成。音乐台是中山陵的配套工程,主要用作纪念孙中山先生仪式时的音乐表演及集会演讲。其特殊的构造,可以使演讲者在演讲时声音可以由四周反射增大音效和回响度,让演讲听起来更有力量。

伯努利原理生活应用

1、汽油发动机的汽化器,与喷雾器的原理相同汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入。2、球类比赛中的"旋转球"旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它- ~起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,“飞行轨迹要向 下弯曲。3、飞机在天上飞的升力因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状,上:” 下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。4、 喷雾器的应用让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔”下边的细管升.上来,从细管的上口流出后,空气流的冲击,被喷成雾状。5、应用于环保空调环保空调就是应用的这个原理,一面进风,一面进水,以此来保持室内温度。6、列车站设置的警戒线列车进站的时候速度很快,车厢附近的空气被带着也会快起来,越靠近车厢的空气流速越快,越远的地方空气流速越慢。还是根据伯努利原理,靠近车厢的地方压力小,远离车厢的地方压力大,二者之间有压力差,因此,在站台,上候车,如果你靠轨道太近,就会感觉后面好像有人推你往前,很可能造成事故,其实是因为压力差把你推过去的。7、帆船的动力一般人对于帆船往往认为是被风推着跑的。其实风的动力以两种形式作用于帆,帆船的最大动力来源是所谓的“伯努利效应”。扩展资料:1、丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。2、伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。3、需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。参考资料:百度百科—伯努利原理

空间转录组应用领域与研究思路

细胞位置信息对于干细胞分化,组织发育以及肿瘤组织微环境起着重大的作用,那么空间转录组在这些研究领域中是如何设计如何解决科学问题的呢?跟着我一探究竟吧。 之前跟大家一起浏览了10X Genomics Visium 空间转录组的分析流程( 不可错过的单细胞转录组研究新维度:空间转录组 ) ,这次跟大家分享一下空间转录组的应用领域以及研究的思路。 根据10X Genomics 官网上公布的利用ST(Spatial Transcriptomics)技术进行研究的文献,可以看到该技术涵盖了 肿瘤 、 发育 、 疾病 等领域,涉及到肿瘤、淋巴、大脑、心脏等各种组织。同时空间转录组技术除了可以应用在常见的哺乳动物,也可以应用在 植物学 的研究上。 我们以2020年1月份发表在Nature Biotechnology 上,对PDAC(胰腺导管腺癌)的研究为例,探讨下空间转录组在肿瘤生物学方面的研究。 该研究主要整合了原ST技术和单细胞RNA技术,弥补了原ST分辨率较低、单细胞RNA缺乏空间信息的缺点,两者互相补充,实现了 单细胞水平加空间的全面无偏的癌症组织分析 。 1.探究PDAC组织的细胞类型,以及与空间相关的细胞亚型 2.探究不同肿瘤样本微环境特点 如上图所示,作者分两条线进行设计分析,取两名PDAC患者的2例新鲜PDAC-A和B肿瘤组织,同时进行scRNA-seq和ST建库测序分析。 scRNA-seq 细胞分类: 利用CNV和细胞分类分析以及荧光标记实验证实了PDAC-A包含两种癌症细胞群cluster1(TM4SF1)和cluster2(S100A4),PDAC-B包含一种癌症细胞群cluster1(TM4SF1)。 ST-seq细胞分群: 依据病理学进行组织分区,计算Spots表达水平进行PCA分类,发现cluster与组织分类是一致的。 MIA算法整合分析: 1.发现在组织空间受限区域中含有特定的细胞类型和特定细胞亚群的富集。例如PDAC-A的成纤维细胞特异性基因与ST分析结果中的特定区域的一组基因具有很强的一致性;除此之外,还发现了导管上皮区域富含导管细胞,胰腺组织区域富含腺泡细胞和分泌细胞。 2.依据MIA结果绘制了不同肿瘤样本微环境的特点、免疫环境状态、应激水平以及细胞之间相互作用的模式,有助于对患者预后进行预判。 荧光实验验证: 利用免疫荧光标记实验进行结果验证。 该文章的一大亮点是引入了MIA算法进行空间和单细胞的整合,目前10X Genomics visium 系统大大提升了空间分辨率,一个Spot大概包含1-10个单细胞(主要受研究的组织细胞直径的影响),几乎接近单细胞水平。 接下来我们一起看一下,发表在Cell上一篇关于人类心脏研究的文章,充分发挥了空间转录组技术, 全方位展示了单细胞空间分辨率下的全器官模式 。 该研究利用空间转录组(ST)、单细胞(scRNA)和原位测序(in situ sequencing,ISS)技术进行联合分析,最终获得了人类心脏发育的时间、空间的基因表达模式,并深入探讨了不同类型细胞的功能。同时创建了人类胚胎心脏的公共网络资源,共享研究数据和成果。 研究设计如上图所示,取来自3个人的孕4.5-5周、6.5周和9周的心脏组织,采用ST、scRNA 和原位测序三种技术手段,从时间、空间两个维度展示了人类心脏发育表达的模式。 STseq分析: 对不同孕期的胚胎心脏切片进行空间转录组技术分析,经过降维聚类,差异表达等分析,最终获得了10个cluster细胞类型,并标注了10个cluster特异性表达的基因。 scRNAseq分析: 对孕6.5周胚胎心脏分割两部分进行scRNA建库测序分析,经过降维聚类,获得15个cluster细胞类型,鉴定到的细胞类型与先前报道一致。 ISS分析: 利用ISS的亚细胞空间分辨率的特性,运用pciSeq方法创建了一个综合概率,确定scRNA定义的细胞类型的空间细胞图谱,从而实现单细胞分辨率的基因表达时空分析。 作者把运用这三种技术整合的人类胚胎心脏发育的时空基因表达图谱数据提交到一个公共网站上,以共享数据成果。 https://hdca-sweden.scilifelab.se/a-study-on-human-heart-development/ ISS技术是2013年发表在Nature Methods 上的一篇文章,主要讲述了这种扩增测序方法。滚环扩增:这种方法依赖一种锁式(padlock)探针,它与目标序列的任一侧杂交,以形成环状模板,进行复制。由于产物是拴在模板上的,这提供了可靠定位,并可通过连续的寡核苷酸探针掺入,实现原位测序。这项技术一般用于序列(RNA,基因)组织细胞定位验证分析。 关于ST技术在疾病研究领域的介绍,我们以2019年12月发表在Scientific Reports 上的一篇关于关节炎的研究为例,一起探讨下这项技术的应用思路。 该研究主要利用ST空间转录组技术,探索了类风湿性关节炎(RA)和脊柱关节炎(SpA)的炎症信号通路。揭示了在RA中,适应性免疫反应与T-B细胞相互作用,而在SpA中,适应性免疫反应与组织修复功能相关。 研究设计如上图所示,分别取RA和SpA各3名患者,取其髋部或者膝盖处的滑膜组织进行ST建库测序分析,揭示了慢性炎症性疾病的细胞机制和在组织中的功能的多样性。例如在RA中,适应性免疫反应与T-B细胞相互作用,而在SpA中,适应性免疫反应与组织修复功能相关。 ST分析: 取每个患者病患处3个部位滑膜组织,每个患者3个部位的数据合并在一起作为一个bulk对单个组织切片进行纠正对比。由bulk和单个组织差异表达分析来看,RA与T细胞、肿瘤坏死因子(tumor necrosis factor,TNF)关联更强,而SpA组织的特征更多在于软骨损伤和修复系统的过程。 功能分析: 利用Ingenuity Pathway Analysis (IPA) and Metascape ( http://metascape.org )软件对差异表达基因进行功能和分子网络通路分析,发现RA与适应性免疫应答相关,SpA与细胞外基质相关、与软骨损伤修复过程相关。 细胞类型鉴定: 利用Xcell软件进行细胞类型的鉴定,展现了空间组织区域细胞的类型。 前面介绍了人类肿瘤、发育和疾病相关的研究,那么ST技术能否应用于植物学上,为农林研究贡献一种新技术、新方案呢?答案是肯定的。下面这篇就是2017年发表在Nature Plant 杂志上的一篇关于植物学的研究。 该研究利用空间转录组技术首先在被子植物和裸子植物中模拟了生成空间转录组图谱的可行性,并且在拟南芥中识别了141个表达差异基因和花序组织区域的功能通路上的189个差异基因。空间转录组学与功能学结合研究,将为植物发育、进化等研究带来新的思路和新的方法。 研究设计如上图所示。作者对待研究的植物进行取样,如拟南芥花序、银杏芽等一些植物进行取样,切片,建库测序分析。 1.讨论被子植物和裸子植物空间转录技术的可行性 a.展示了金银花的叶子芽在一年四季的形态;b.金银花叶子芽两个发育中和休眠中的叶芽基因表达热图,每个颜色条代表一个横截切面,黑色箭头指示位置表示空间Spots的基因表达较低;c.展示不同组织切片空间位点PCA的情况,i为雌性锥组织切片Spots PCA;ii 为不同的组织结构(PT/LO)PCA;d.表明每个Spots的基因和转录本数量在拟南芥中复制。黑线表示每个重复中每个Spots的平均基因或转录本的数量;由b和c的PCA图示可以看到空间转录组信息(Spots)是可以区分组织差异性的。 2.空间转录组技术可用于拟南芥花序分化的分析 a.每个基因在空间上的表达水平。检测到基因表达情况用颜色斑点进行表示。b.拟南芥空间Spots分层聚类(t-SNE分析)。c.微观领域级别的组织域分类用于线性模型分析。d.组织微类别中141个差异基因检验水平。绿点,实际数据中的P值;红点,随机排列斑点标签后的P值;垂直虚线为排列后的P值的0.1%分位数(大约等于0.001),证实了模型的正确性,并用于估计FDR);水平虚线为任意阈值P(H0)= 0.05。e.列举线性模型中在组织区域微类别之间的差异表达基因。f.花序组织区域功能通路上的189个差异基因。颜色编码如d中所示。g.线性模型检测到的功能通路的例子。由拟南芥的研究可以知道空间转录组技术识别了141个表达差异基因和花序组织区域的功能通路上的189个差异基因。空间转录组学结合功能学研究,将有助于更好的理解研究植物的进化和发育。 这是ST技术发表以来,唯一应用于植物学研究的文章,实际经验还不足,尤其植物样本受到细胞壁,液泡,叶绿体和次生代谢产物的影响,需要对待研究的样本进行特定的优化。 举一反三的研究思路,加上ST升级版的10X Genomics Visium ,相信空间转录组会得到更广泛,更深入的应用。 参考文献 1.Moncada, R., Barkley, D., Wagner, F. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J].Nature biotechnology,2020 2.Asp M, Giacomello S, Larsson L, et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart[J]. Cell, 2019, 179(7). 3.Carlberg K, Korotkova M, Larsson L, et al. Exploring Inflammatory Signatures in Arthritic Joint Biopsies With Spatial Transcriptomics[J]. Scientific Reports, 2019, 9(1). 4.Giacomello S, Salmen F, Terebieniec B K, et al. Spatially resolved transcriptome profiling in model plant species[J]. Nature plants, 2017, 3(6).

“taskkill.exe应用失败”,再开机的时候只显示桌面,没有图标

这个情况是一般是应用程序的窗口结束但应用程序还在运行,就像中木马一样,你是不是用过什么软件了,好好想想,把那个软件卸了,试试!这种情况不影响使用!

关机taskkill.exe应用程序错误

网上下载taskkill.exe文件,在C盘Windows--system32,把新文件放进去,把旧文件删除即可。

伯努利原理生活应用

1、在漏斗宽大处放一小球,用手抵住,在小口中吹气同时放开,小球上方的流线密,流速大,下方的流线疏,流速小,故小球不会落下,只会在漏斗中跳跃。2、压气机:燃气涡轮发动机中利用高速旋转的叶片给空气作功以提高空气压力的部件。在动叶中,气体相对速度减小,压力升高,静叶中绝对速度减小,使气体静压升高。3、泥沙运动时,由于水流流动,泥沙颗粒顶部和底部的流速不同,前者为水流的运动速度,后者则为颗粒间渗透水的流动速度,比水流的速度要小得多,根据伯努利定律,顶部流速高,压力小,底部流速低,压力高。这样造成的压差产生了上举力。4、气球有热气球和充有氢气(或氦气)的气球,它们都是利用气球平均密度小于大气密度在大气中上浮。跟液体中物体上浮的不同,是高空大气稀薄,也就是密度较小,大气压也小,气球会向外膨胀。到整个气球的平均密度跟外面大气的密度相等的时候,气球不会再上升。为了气球继续上升,办法是减小气球的质量,具体方法是将气球下面携带的沙袋丢掉一些。5、人喝水时,同样应用到伯努利效应。当把杯子举到口边时,嘴会习惯地去“吸”杯中的水。这时,胸部扩大,肺里和嘴里的气体压强减小,嘴附近的空气就向嘴里跑。并且越靠近嘴的空气跑的(流动)的越快,对水面的压强也就越小。于是对于杯里的水面来说,近嘴部分受到空气的压强小,较远部分则大,在不等的压强作用下,近嘴部分的水面就稍微高了一点起来,超过杯沿流到口内。扩展资料伯努利原理假设条件:使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值。1、定常流:在流动系统中,流体在任何一点之性质不随时间改变。2、不可压缩流:密度为常数,在流体为气体适用于马赫数(Ma)<0.3。3、无摩擦流:摩擦效应可忽略,忽略黏滞性效应。4、流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。参考资料来源:百度百科-伯努利原理参考资料来源:百度百科-伯努利效应

论述管理学的人本原理及其在护理中的应用

人本管理的定义我就不说了 百度百科都知道了在护理管理中的运用。。。。。我这有相关文献 要吗?PDF格式的 已发送 请查收

应用化学原理分析,工业炼铁时用纯氧而不用空气的原因是什么?

哦那个,因为纯氧反应速率快

win10关机提示taskill.exe应用程序错误

打开运行界面,输入gpedit.msc命令,依次打开”计算机配置>>管理模板>>系统>>关机选项“,在关机选项中,点击第一条内容,再点”策略设置;在打开的设置,选择“已启用”,点击应用--确定后完成设置。 Task host windows提示是系统的一个关机或重启前提示,因为还有一些应用程序没有关闭,需要做一些清理工作。如果你要马上关机,就按F,然后按Y,就可以强制关机了,但不保证数据的完整性,对系统会一般没有什么太大影响。taskkill.exe是系统正常运转、各种办公软件、游戏运行所不可或缺的重要文件。

每次关机时出现,taskkill.exe 应用初始化失败

建议先查杀一下木马,修复一下系统试试。建议你下载windows清理助手查杀恶意软件和木马(下载网址传到你的hi中了): 下载360系统急救箱扫描系统1、请你用系统自带的系统还原,还原到你没有出现这次故障的时候修复(或用还原软件进行系统还原,如果进不了系统,开机按F8进入安全模式还原系统)。 2、如果故障依旧,使用系统盘修复,打开命令提示符输入SFC /SCANNOW 回车(SFC和/之间有一个空格),插入原装系统盘修复系统,系统会自动对比修复的。 3、如果故障依旧,在BIOS中设置光驱为第一启动设备插入原装系统安装盘按R键选择“修复安装”即可。4、如果故障依旧,建议重装操作系统。 使用系统自带的系统还原的方法:系统自带的系统还原:“开始”/“程序”/“附件”/“系统工具”/“系统还原”,点选“恢复我的计算机到一个较早的时间”,按下一步,你会看到日期页面有深色的日期,那就是还原点,你选择后,点击下一步还原(Win7还原系统,在控制面板然后设备和安全子选项然后备份和还原子选项)。硬件方面,测试一下你的CPU的温度是否过高?硬盘及其它硬件是否有问题?请你查查(卸载出事前下载的软件、插件、补丁、驱动等试试)。

taskkill防止应用自动重启

taskkill防止应用自动重启的步骤是:1、在桌面上创建一个快捷方式。在电脑桌面上点击鼠标右键,选择新建、快捷方式。2、在请键入对象的位置中输入taskkill/F/FI"USERNAMEeqAdministrator"/FI"IMAGENAMEneexplorer.exe"/FI"IMAGENAMEnedwm.ex,点击下一步。3、在键入该快捷方式的名称中任意输入一个名字,点击完成即可。4、当需要关闭所有软件时,只需双击该快捷方式即可。双击时电脑会黑屏显示,无需担心,这需稍等一下即可恢复。

急!!!我的红米note刷入lineage os后相机应用经常打不开,有什么方法可以解决?

下个努比亚相机.绝对比你这个好用.如果这个也打不开那就是你的系统不行,请换个rom包.

光电式接近开关的应用场合有哪些

摘要:光电式接近开关应用十分广泛,很多人很好奇光电式接近开关原理是什么呢?光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换,从而完成工作。光电式接近开关的应用场合有物位检测、液位控制、产品计数、宽度判别、速度检测以及安全防护等诸多领域。接下来本文将简单介绍光电式接近开关原理是什么以及光电式接近开关的应用场合有哪些,一起来看看吧!一、光电式接近开关原理是什么原理:在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。由振荡回路产生的调制脉冲经反射电路后,由发光管GL辐射出光脉冲。当被测物体进入受光器作用范围时,被反射回来的光脉冲进入光敏三极管DU。光电开关并在接收电路中将光脉冲解调为电脉冲信号,再经放大器放大和同步选通整形,然后用数字积分或RC积分方式排除干扰,最后经延时(或不延时)触发驱动器输出光电开关控制信号。光电开关一般都具有良好的回差特性,因而即使被检测物在小范围内晃动也不会影响驱动器的输出状态,从而可使其保持在稳定工作区。同时,自诊断系统还可以显示受光状态和稳定工作区,以随时监视光电开关的工作。这种新颖的光电开关是一种采用脉冲调制的主动式光电探测系统型电子开关,它所使用的冷光源有红外光、红色光、绿色光和蓝色光等,可非接触,无损伤地迅速和控制各种固体、液体、透明体、黑体、柔软体和烟雾等物质的状态和动作。具有体积小、功能多、寿命长、精度高、响应速度快、检测距离远以及抗光、电、磁干扰能力强的优点。二、光电式接近开关的应用场合有哪些光电开关已被用作物位检测、液位控制、产品计数、宽度判别、速度检测、定长剪切、孔洞识别、信号延时、自动门传感、色标检出、冲床和剪切机以及安全防护等诸多领域。此外,利用红外线的隐蔽性,还可在银行、仓库、商店、办公室以及其它需要的场合作为防盗警戒之用。

stylish应用对象网址怎么设置成所有网站

写 CSS 的时候下面有个应用对象,你设置成全部就可以了另外建议在每一条 CSS 后面加 !important

请问LED灯有关原理,或者说应用范围,

LED的确很广,但是招牌上用的更多,有很多种,大小也不一,有0。3的,也有0。5的

请你列举空气受热膨胀上升原理在生活中应用的事例

1.抽油烟机安装在炉灶的上方  2. 热空气发电  3. 热气球上升 4‘孔明灯

THA 和THB蝶形的区别和应用?

蝶形封头,THA是以内径为公称直径的规格,THB是以外径为公称直径。

激光原理及应用答案激光器的模式,何为纵模何为横模

普通激光器的模式可以分为横模和纵模。横模是激光光束在横截面上的光场分布,换句话说,就是你对着激光发射口看到的激光光场分布。纵模是指,在激光腔内有若干可以起振的激光,笼统上讲,每一个可以在腔内稳定震荡的频率光都是一个纵模,纵模就是这些频率的叠加,所谓单纵模可以大致等效于单频,就是单色性很好,频率很单一的激光。

单片机原理及应用?

1、单片机原理是指一种在线式实时控制计算机的原理方式。在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机(比如家用PC)的主要区别。2、应用:单片机普遍设置有并行地址总线、数据总线、控制总线,这些引脚用以扩展并行外围器件都可通过串行口与单片机连接,另外,许多单片机已把所需要的外围器件及外设接口集成一片内,因此在许多情况下可以不要并行扩展总线,大大减省封装成本和芯片体积,这类单片机称为非总线型单片机。更多关于单片机原理及应用,进入:https://m.abcgonglue.com/ask/2b50a51615841103.html?zd查看更多内容

激光原理及应用的介绍

激光原理及应用主要介绍了激光发展简史及激光的特性,激光产生的基本原理,光学谐振腔与激光模式,高斯光束,激光工作物质的增益特性,激光器的工作特性,激光特性的控制与改善,典型激光器,半导体激光器,光通信系统中的激光器和放大器,激光全息技术,激光与物质的相互作用,以及激光在其他领域的应用等内容。

单片机的原理及应用

单片机原理:单片机由运算器、控制器、存储器、输入输出设备构成。 单片机自动完成赋予它的任务的过程,也就是单片机执行程序的过程,即一条条执行的指令的过程,所谓指令就是把要求单片机执行的各种操作用的命令的形式写下来,这是在设计人员赋予它的指令系统所决定的,一条指令对应着一种基本操作;单片机所能执行的全部指令,就是该单片机的指令系统,不同种类的单片机,其指令系统亦不同。为使单片机能自动完成某一特定任务,必须把要解决的问题编成一系列指令(这些指令必须是选定单片机能识别和执行的指令),这一系列指令的集合就成为程序,程序需要预先存放在具有存储功能的部件——存储器中

激光原理与应用

激光是20世纪以来继核能、电脑、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。英文名Light Amplification by Stimulated Emission of Radiation,意思是“通过受激辐射光扩大”。激光的英文全名已经完全表达了制造激光的主要过程。激光的原理早在 1916年已被著名的犹太裔物理学家爱因斯坦发现。原子受激辐射的光,故名“激光”:原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候,所释放的能量以光子的形式放出。被引诱(激发)出来的光子束(激光),其中的光子光学特性高度一致。因此激光相比普通光源单色性、方向性好,亮度更高。激光应用很广泛,有激光打标、激光焊接、激光切割、光纤通信、激光测距、激光雷达、激光武器、激光唱片、激光矫视、激光美容、激光扫描、激光灭蚊器、LIF无损检测技术等等。激光系统可分为连续波激光器和脉冲激光器。

激光原理及应用

激光的原理:某些物质原子中的粒子受光或电的激发,由低能级的原子跃迁为高能级原子,当高能级原子的数目大于低能级原子的数目,并由高能级跃迁回低能级时,就放射出相位、频率、方向等完全相同的光,这种光叫做激光。激光又名“镭射”它的全名是“受激辐射光放大”。1917年爱因斯坦提出“受激发射”理论,一个光子使得受激原子发出一个相同的光子基础。1960年美国加利福尼亚州休斯航空公司实验室的研究员梅曼发明了世界上第一台红宝石激光器。1961年中国第一台激光器诞生于王大珩领导的长春光机所。1965年贝尔实验室发明了第一台YAG(固体)激光器。激光应用方面:激光技术可以广泛应用于切割、焊接、钻孔、打标、雕刻、测量、诊断等领域。我国的产业升级已是箭在弦上,在微焊接、精密测量、生物医疗诊断、芯片制造多个领域对激光技术的需求在不断攀升,激光技术进入高速发展的新进程。从激光行业的发展来看,激光技术已经广泛地应用于消费电子、3D打印、半导体、新能源、显示、生物医疗、激光检测等领域。

机械原理答案 写出四种应用简单机械的工具名称,并写出属于哪一种机械?

1、剪刀——利用了杠杆原理 2、转椅——包含有螺旋机构、气弹簧 3、嗮衣架(架设在阳台上的、用绳子拉的那种)——运用了滑轮机构 4、嗮衣架(架设在阳台上的、有交叉铰链杆拉的那种)——运用了平行四连杆机构 5、盘子钳(从蒸锅里夹取盘子的工具)——运用了连杆滑块机构 希望以上能够帮到你

机械原理答案 写出四种应用简单机械的工具名称,并写出属于哪一种机械?

1、剪刀——利用了杠杆原理 2、转椅——包含有螺旋机构、气弹簧 3、嗮衣架(架设在阳台上的、用绳子拉的那种)——运用了滑轮机构 4、嗮衣架(架设在阳台上的、有交叉铰链杆拉的那种)——运用了平行四连杆机构 5、盘子钳(从蒸锅里夹取盘子的工具)——运用了连杆滑块机构 希望以上能够帮到你

什么是银镜反应?并简述起反应原理及其应用。

1. 银镜反应 是银(Ⅰ)化合物的溶液被还原为金属银的化学反应,由于生成的金属银附着在容器内壁上,光亮如镜,故称为银镜反应。 2.原理: 反应方程式: CH3CHO+2Ag(NH3)2OH→(水浴△)CH3COONH4+2Ag↓+3NH3+H2O 化合态银被还原,乙醛被氧化。备注: 原理是银氨溶液的弱氧化性。 本试验可以使用其他有还原性的物质代替乙醛,例如葡萄糖(与乙醛相似,也有醛基)等。甲醛(可看作有两个醛基)的话被氧化成碳酸铵(NH4)2CO3。 C6H12O6+2Ag(NH3)2OH----→(水浴加热)C5H11O5COONH4+3NH3↑+2Ag↓+H2O 葡萄糖的反应方程式若要体现出葡萄糖内部的结构以及断键情况: CH2OH-CHOH-CHOH-CHOH-CHOH-CHO+2Ag(NH3)2OH→(水浴加热) CH2OH-CHOH-CHOH-CHOH-CHOH-COONH4+2Ag↓+3NH3↑+H2O 3.应用: 主要用于制镜工业,同时用于在工业实验室中的有机物原料的浓度鉴别,热水瓶内胆镀银有效防止热辐射从而保温。

农杆菌转化法应用的是基因重组还是染色体变异?

基因重组

光栅传感器的应用

  导语:光栅式传感器是一种新型的传感器,,它是指使用光栅叠栅条纹原理来测量距离的传感器。所谓的光栅就是一块呈长方形的光学玻璃上刻画着许多等距平行的线,一般情况下,刻线的密度大约在十毫米到一百毫米之间。光学传感器的应用还是比较广泛的,那么生活中到底有哪些地方用到了光学传感器呢。小编在此整理了一些光栅传感器的相关资料,让我们一起来了解一下吧。    光栅的发现距今已经有两百多年的时间了,在一九七八年的时候,加拿大渥太华的一家通信研究中心,一群研究人员第一次在掺入锗石英的光纤中发闲了一种神奇的效应,光敏效应。在发现这项效应之后,被当时的驻波写入,制作成了世界上的第一根光栅。在十九世纪以后,美国的一家技术研究中心光栅的侧面写入技术,正是因为这些科学家的不懈努力,所以才使得光栅技术有了很大的进展。同时随着科学技术的不断进步,光栅的制造技术也在不断完善,而且在各个领域的应用也在不断普及。    因为光栅是利用光纤制作而成的,所以光栅也具备光纤的一些特性,比如说光纤对光线的折射率会随着光强的空间分布发生变化而产生相应的变化。本文之中的一些语句是比较复杂难懂的,但是这也是没有办法的事情,希望大家体谅。在光纤的内芯会形成一定的光栅,而所谓的光栅,其实也就是一个类似于反射镜的东西。光栅式传感器正是利用这一特性制作而成。利用光栅原理制作的器械有着以下许多优点:附加的损耗小,一般体积也比较小而且反射范围相对要比较大。    光栅式传感器的工作原理是这样的。传感器上的标尺光栅会随着指示光栅进行移动,当移动到一定的距离之后,在标尺光栅上就会形成一些明暗相间的条纹。这些条纹会照射到光电元件上,并且会进行快速的移动。一般情况下,光栅传感器的光路形式有两种,一个是反射式光栅,另一种是投射式光栅。光栅传感器的应用范围十分广泛,它大量的应用于数控机床,远程操和一些坐标测量机构中。    就目前的情况而言,光栅传感器的发展前景还是十分广阔的。因为光栅传感器的尺寸很小,易于携带也易于安放,同时它的重量也很轻。所以广泛的应用于航空航天领域。  通过对本文的阅读,大家是否对光栅传感器有了一定的了解呢。

螺旋可控硅有哪些应用?

一、可控硅的概念和结构? 晶闸管又叫可控硅(Silicon Controlled Rectifier, SCR)。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 可控硅 二、晶闸管的主要工作特性 为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示实验给了我们什么启发呢? 可控硅 这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。 晶闸管的特点: 是“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加的是交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。 三、用万用表可以区分晶闸管的三个电极吗?怎样测试晶闸管的好坏呢? 普通晶闸管的三个电极可以用万用表欧姆挡R×100挡位来测。大家知道,晶闸管G、K之间是一个PN结〔图2(a)〕,相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接的是阴极K,剩下的一个就是阳极A了。测试晶闸管的好坏,可以用刚才演示用的示教板电路(图3)。接通电源开关S,按一下按钮开关SB,灯泡发光就是好的,不发光就是坏的。 四、晶闸管在电路中的主要用途是什么? 普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成晶闸管,就可以构成可控整流电路、逆变、电机调速、电机励磁、无触点开关及自功控制等方面。现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180°,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。可控硅 五、在桥式整流电路中,把二极管都换成晶闸管是不是就成了可控整流电路了呢? 在桥式整流电路中,只需要把两个二极管换成晶闸管就能构成全波可控整流电路了。现在画出电路图和波形图(图5),就能看明白了。 六、晶闸管控制极所需的触发脉冲是怎么产生的呢? 晶闸管触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小晶闸管触发大晶闸管的触发电路,等等。今天大家制作的调压器,采用的是单结晶体管触发电路。 七、什么是单结晶体管?它有什么特殊性能呢? 单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。我们先画出它的结构示意图〔图7(a)〕。在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是两个电阻RB2、RB1的串联〔图7(b)〕。值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:若发射极电压UE 八、怎样利用单结晶体管组成晶闸管触发电路呢? 单结晶体管组成的触发脉冲产生电路在今天大家制作的调压器中已经具体应用了。为了说明它的工作原理,我们单独画出单结晶体管张弛振荡器的电路(图8)。它是由单结晶体管和RC充放电电路组成的。合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿〔图8(b)〕。随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。这样,在R1两端输出的是尖顶触发脉冲。此时,电源UBB又开始给电容器C充电,进入第二个充放电过程。这样周而复始,电路中进行着周期性的振荡。调节RP可以改变振荡周期。 九、在可控整流电路的波形图中,发现晶闸管承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角α和导通角θ都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢? 为了实现整流电路输出电压“可控”,必须使晶闸管承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。 怎样才能做到同步呢?大家再看调压器的电路图(图1)。请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。在晶闸管没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。当交流电压过零瞬间,晶闸管VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了晶闸管的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。 双向晶闸管的T1和T2不能互换。否则会损坏管子和相关的控制电路。 十、可控硅元件的工作原理及基本特性电路 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用, 可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断c 所以一旦的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 表1 可控硅导通和关断条件 状态 条件 说明 从关断到导通 1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通 1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断 1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2、基本伏安特性 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。 图3 阳极加反向电压 (2)正向特性 当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压 图4 阳极加正向电压 由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。 这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段 3、触发导通 在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 图5 阳极和控制极均加正向电压 十一、可控硅参数符号 参数符号说明: IT(AV)--通态平均电流 VRRM--反向重复峰值电压 IDRM--断态重复峰值电流 ITSM--通态一个周波不重复浪涌电流 VTM--通态峰值电压 IGT--门极触发电流 VGT--门极触发电压 IH--维持电流 dv/dt--断态电压临界上升率 di/dt--通态电流临界上升率 Rthjc--结壳热阻 VISO--模块绝缘电压 Tjm--额定结温 VDRM--通态重复峰值电压 IRRM--反向重复峰值电流 IF(AV)--正向平均电流 十二、如何鉴别可控硅的三个极 鉴别可控硅三个极的方法很简单,根据P-N结的原理,只要用万用表测量一下三个极之间的电阻值就可以。 阳极与阴极之间的正向和反向电阻在几百千欧以上,阳极和控制极之间的正向和反向电阻在几百千欧以上(它们之间有两个P-N结,而且方向相反,因此阳极和控制极正反向都不通)。 控制极与阴极之间是一个P-N结,因此它的正向电阻大约在几欧-几百欧的范围,反向电阻比正向电阻要大。可是控制极二极管特性是不太理想的,反向不是完全呈阻断状态的,可以有比较大的电流通过,因此,有时测得控制极反向电阻比较小,并不能说明控制极特性不好。另外,在测量控制极正反向电阻时,万用表应放在R*10或R*1挡,防止电压过高控制极反向击穿。 若测得元件阴阳极正反向已短路,或阳极与控制极短路,或控制极与阴极反向短路,或控制极与阴极断路,说明元件已损坏。 可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件。实际上,可控硅的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电,等等。可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。 一、 可控硅的结构和特性 ■可控硅从外形上分主要有螺旋式、平板式和平底式三种(见图表-25)。螺旋式的应用较多。 ■可控硅有三个电极----阳极(A)阴极(C)和控制极(G)。它有管芯是P 型导体和N 型导体交迭组成的四层结构,共有三个PN 结。其结构示意图和符号见图表-26。 ■从图表-26中可以看到,可控硅和只有一个PN 结的硅整流二极度管在结构上迥然不同。可控硅的四层结构和控制极的引用,为其发挥“以小控大”的优异控制特性奠定了基础。在应用可控硅时,只要在控制极加上很小的电流或电压,就能控制很大的阳极电流或电压。目前已能制造出电流容量达几百安培以至上千安培的可控硅元件。一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。 ■可控硅为什么其有“以小控大”的可控性呢?下面我们用图表-27来简单分析可控硅的工作原理。 ■首先,我们可以把从阴极向上数的第一、二、三层看面是一只NPN 型号晶体管,而二、三四层组成另一只PNP 型晶体管。其中第二、第三层为两管交迭共用。这样就可画出图表-27(C)的等效电路图来分析。当在阳极和阴极之间加上一个正向电压Ea ,又在控制极G和阴极C之间(相当BG1 的基一射间)输入一个正的触发信号,BG1 将产生基极电流Ib1 ,经放大,BG1 将有一个放大了β1 倍的集电极电流IC1 。因为BG1 集电极与BG2 基极相连,IC1 又是BG2 的基极电流Ib2 。BG2 又把比Ib2 (Ib1 )放大了β2 的集电极电流IC2 送回BG1 的基极放大。如此循环放大,直到BG1 、BG2 完全导通。实际这一过程是“一触即发”的过程,对可控硅来说,触发信号加入控制极,可控硅立即导通。导通的时间主要决定于可控硅的性能。 ■可控硅一经触发导通后,由于循环反馈的原因,流入BG1 基极的电流已不只是初始的Ib1 ,而是经过BG1 、BG2 放大后的电流(β1 *β2 *Ib1 )这一电流远大于Ib1 ,足以保持BG1 的持续导通。此时触发信号即使消失,可控硅仍保持导通状态只有断开电源Ea 或降低Ea ,使BG1 、BG2 中的集电极电流小于维持导通的最小值时,可控硅方可关断。当然,如果Ea 极性反接,BG1 、BG2 由于受到反向电压作用将处于截止状态。这时,即使输入触发信号,可控硅也不能工作。反过来,Ea 接成正向,而触动发信号是负的,可控硅也不能导通。另外,如果不加触发信号,而正向阳极电压大到超过一定值时,可控硅也会导通,但已属于非正常工作情况了。 ■可控硅这种通过触发信号(小的触发电流)来控制导通(可控硅中通过大电流)的可控特性,正是它区别于普通硅整流二极管的重要特征。 二、可控硅的主要参数 可控硅的主要参数有: 1、 额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、 正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、 反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、 控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。 5、 维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 ■近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。61可控硅 Top 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。61可控硅的分类 Top 按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。61可控硅的触发 Top 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。61可控硅的主要参数 Top 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。61可控硅的常用封装形式 Top 常用可控硅的封装形式有TO-92、TO-126、TO-202AB、TO-220、TO-220AB、TO-3P、SOT-89、TO-251、TO-252等。61可控硅的主要厂家 Top 主要厂家品牌:ST,NXP/PHILIPS,NEC,ON/MOTOROLA,RENESAS/MITSUBISHI,LITTELFUSE/TECCOR,TOSHIBA,JX ,SANREX,SANKEN ,SEMIKRON ,EUPEC,IR等。

各种电子元件的介绍及应用和原理要求全面些 如电阻、电容、电感、电位器、变压器、三极管、二极管、IC。

干嘛要在网上买,自己去本地书店仔细看看选一本就是了嘛,这种书多得是!

用莫尔条纹分析光栅传感器的原理及应用

我们课本就是这样写的。。。我亲自打出来的,不是复制奥原理:指示光栅与标尺光栅叠放在一起,中间留有适当的微小间隙,并使两块光栅的刻线之间保持一很小的夹角口,两块光栅的刻线相交,当在诸多相交刻线的垂直方向有光源照射时,光线就从两块光栅刻线重和处的缝隙通过,于是就形成了明暗条纹,这些条文成为莫尔条纹。特性:1.调整夹角即可得到很大的莫尔条纹宽度,起到了放大作用,又提高了测量精度2.莫尔条纹有位移放大作用3.莫尔条纹对光栅刻线的误差起到了平均作用

光栅的应用原理

人们观察物体时由于两眼间的视角和距离等原因,左右两眼所看到的物体图像就会产生差异(即视差),这是人们获得立体视觉的根本因素。左右眼从不同角度观察形成两眼视觉上的差异,构成的各种图像反映到大脑中,使人们在观察物体时能自然地产生远近感和立体感。柱透镜立体光栅由许多结构参数和性能完全相同的小圆柱透镜组成,这一特性使得它对图像具有 “ 压缩 ” 和 “ 隔离 ” 作用。圆柱立体光栅能将从不同角度拍摄到的许多图像以条纹状态记录在同一张图片上。在观看时,也利用同一种圆柱立体光栅,使人双眼看到的是同一景物的两个不同的像,于是人的意念中就产生具有视差立体效果的深度图像。

光栅的应用原理

光栅效果可以分为以下几种:立体[3D]、两变[Flip]、变大变小[Zoom]、爆炸[Explosion]、连续动作[Animation]、扭转[Twist]....等,其实可以更简化分类为:立体[3D]、变图[Flip],在变图中就涵盖所有变化的效果,这些效果可以透过许多市面上的动画软体、绘图软体、网页多媒体软体,产生所需要的分解图档,经由光栅视觉软体将分解图合成为光栅线数即可将平面的效果做成立体[3D]、变图[Flip]的特殊效果。3D Effect [立体影像]注意事项: 图层必须独立且影像完整。 图档解析度300dpi。 档案格式必须为PSD档。[CMYK、RGB]皆可。 背景图层必须出血至少1CM。 光栅也称衍射光栅。是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果。 衍射光栅在屏幕上产生的光谱线的位置,可用式(a+b)(sinφ ± sinθ) = kλ表示。式中a代表狭缝宽度,b代表狭缝间距,φ为衍射角,θ为光的入射方向与光栅平面法线之间的夹角,k为明条纹光谱级数(k=0,±1,±2……),λ为波长,a+b称作光栅常数。用此式可以计算光波波长。光栅产生的条纹的特点是:明条纹很亮很窄,相邻明纹间的暗区很宽,衍射图样十分清晰。因而利用光栅衍射可以精确地测定波长。衍射光栅的分辨本领R=l/Dl=kN。其中N为狭缝数,狭缝数越多明条纹越亮、越细,光栅分辨本领就越高。增大缝数N提高分辨本领是光栅技术中的重要课题。最早的光栅是1821年由德国科学家J.夫琅和费用细金属丝密排地绕在两平行细螺丝上制成的。因形如栅栏,故名为“光栅”。现代光栅是用精密的刻划机在玻璃或金属片上刻划而成的。光栅是光栅摄谱仪的核心组成部分,其种类很多。按所用光是透射还是反射分为透射光栅、反射光栅。反射光栅使用较为广泛;按其形状又分为平面光栅和凹面光栅。此外还有全息光栅、正交光栅、相光栅、闪耀光栅、阶梯光栅等。 由光栅方程d(sinα±sinβ)=mλ可知,对于相同的光谱级数m,以同样的入射角α投射到光栅上的不同波长λ1、λ2、λ2.....组成的混合光,每种波长产生的干涉极大都位于不同的角度位置;即不同波长的衍射光以不同的衍射角β出射。这就说明,对于给定的光栅,不同波长的同一级主级大或次级大(构成同一级光栅光谱中的不同波长谱线)都不重合,而是按波长的次序顺序排列,形成一系列分立的谱线。这样,混合在一起入射的各种不同波长的复合光,经光栅衍射后彼此被分开。这就是衍射光栅的分光原理。

现代数字伺服系统及应用实验报告:数字万用电表的使用实验报告

《现代数字伺服系统及应用》 姓 名: 学 号: 专 业: 学 院: 指导教师: 2017年6月 现代数字伺服系统及应用实验报告 一、实验目的 通过实验深入理解伺服系统的系统结构及工作原理,掌握伺服系统的位置控制器设计与系统调试方法。 二、实验内容及结果 1. 系统理论分析 (1)永磁电动机 永磁同步电动机(PMSM )是由电励磁三相同步电动机发展而来。它用永磁体代替了电励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相同步电动机基本相同,所以称为永磁同步电动机。 (2)矢量控制 在永磁同步电动机的控制方法中,目前矢量控制方案是使用最广泛的。矢量控制的基本思想是模拟直流电机的控制方法,将磁链与转矩通过坐标转换,进行解耦,形成以转子磁链定向的两相参考坐标系,这样就可以将交流电机等效为直流电机来控制,因而获得与直流调速系统的静、动态性能。矢量控制的优点是能精确地实现转速控制并具有良好的转矩响应。但是矢量控制的前提是获得转子磁场的准确位置,通常情况下通过安装转子位置传感器来获得转子磁场的准确位置。 对永磁电动机的矢量控制方式通常分为两种,一种是电压控制(SVPWM ),另一种是电流滞环控制(HCC)。本系统采用的是电流滞环控制。电流滞环控制的目的是使三相定子电流严格跟踪给定电流信号。为了获得平稳的转矩,定子各相电流应是互相平衡、随转子位置正弦变化的。常规的电流滞环控制是将给定电流信号与实际检测的逆变器输出电流信号相比较,若实际电流值较大,调节逆变器开关状态使之减小;若实际电流值较小,调节逆变器开关状态使之增大。 在本系统中,位置信号指令与检测到的转子位置相比较,经过位置控制器的调整,输出速度指令信号,速度指令信号与检测到的转子速度信号相比较,经速度调节器的调节,输出控制转矩的电流分量iq ,电流分量信号iq 经过坐标变换输出后,与电机实际电流分量iabc 比较,再经PWM 逆变器,输出三相电压,驱动电机工作。 2. 伺服系统实验 如图2.1为基于MA TLAB/SimPowerSystems的PMSM 电机模型搭建伺服系统(Matlab2014a ); PI 控制器,图中第二个PID 控制器为速度环PI 控制器,根据电机实际速度及给定速度来确定电流转矩分量;PWM 模块采用电流滞环控制(如图2.2) ,使电机实际电流跟随给定电流变化,具体实现如图2.3;模块dq2abc 实现2r /3s 变换,具体实现如图2.4,其中函数模块Fcn 、Fcnl 和Fcn2一起实现2r /3s 变换;PMSM 模块为MA TLAB 提供了永磁同步电机模型,它的参数设置如图2.5。 图2.2 电流滞环控制模块 图2.3 PWM inverter 模块 图2.4 dq2abc实现2r /3s 变换模块 3. 控制方式选定及仿真结果分析 图2.5 PMSM模块参数 三、结果分析 PID 控制器由比例单元P 、积分单元I 和微分单元D 组成。通过Kp ,Ki 和Kd 三个参数的设定。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。 在本系统调试PID 控制器时,主要PI 控制器 通过试凑法将速度环和位置环的PI 参数进行整定。 首先确定速度环控制器PID 参数。先确定下速度环控制器PID 参数,不再改动。通过仿真,当位置环控制器的P 值较大时,无论怎么调节位置环的P 参数,总是无法同时满足3个输入信号的性能要求,当正弦信号满足要求时,阶跃输出信号总会有很大的振荡,导致系统超调量过大,系统不稳定。积分作用I 较大时,阶跃信号的调节时间过大, 超调量也增大, 系统产生振荡。在实际调试过程中,当出现稳态误差时,先调节参数P ,但是 P 不能过大,在1~3比较合适,再大阶跃输出信号就会完全不稳定。确定好P 后,不再改动。再慢慢调节积分参数I ,进一步消除误差。通过多次试凑,确定了速度环的PI 参数为P=2.2,I=0.8,位置环的PI 参数为P=2.3,I=0.9。 仿真结果如下: (1)阶跃信号输入:幅值200 要求:调节时间 图3.1系统输入、输出曲线 图3.2系统误差曲线 从图3.1中可以看出,系统调节时间为0.1s ,超调量为0.095%,从图3.2可以看出,系统稳态误差约为0.17,均满足要求。 (2)斜坡信号输入:斜率100 要求:稳态误差 图3.3 系统输入、输出曲线 图3.4 系统误差曲线 最终系统稳态误差为0.16,满足要求。 (3)正弦信号输入:幅值60,频率2 rad/s 要求:稳态最大误差 图3.5系统输入、输出曲线 图3.6系统误差曲线 从图3.6可以看出,系统误差为0.68,当系统满足阶跃信号全部要求时,正弦信号的稳态误差总是大于0.5。把位置环PID 控制器的P 参数调至3.5满足正弦信号稳态误差小于0.5,但是阶跃输出信号会产生严重的振荡。 四、延迟环节对系统的影响 在本系统中,将延迟时间增大至0.05ms 。 (1)阶跃信号: 图4.1 系统输入输出曲线 图4.2 系统误差曲线 (2)斜坡信号: 图4.3 系统输入、输出曲线 4.4 系统误差曲线 (3)正弦信号: 图4.5 系统输入、输出曲线 图4.6 系统误差曲线 当延迟环节取0.1ms 时 (1)阶跃信号: 图4.7 系统输入、输出曲线 图4.8系统误差曲线 (2)斜坡信号: 图4.9 系统输入、输出曲线 图4.10 系统误差曲线 (3)正弦信号: 图4.11 系统输入、输出曲线 图4.12 系统误差曲线 当去掉延迟环节后: (1) 阶跃信号: 图4.13 系统输入、输出曲线 图4.14 系统误差曲线 (2) 斜坡信号 图4.15 系统输入、输出曲线 图 4.16 系统误差曲线 (3) 正弦信号 图4.17 系统输入、输出曲线 图 4.18 系统误差曲线 从上面的图可以看出,当延迟环节的延迟时间增加到0.05ms 时,正弦和斜坡的影响不大,但是阶跃信号产生轻微的振荡。但是当延迟环节的延迟时间增加到0.1ms 时,阶跃信号产生严重的振荡。加入延迟环节后,会造成系统的不稳定,延迟时间越大,稳定性就越差。 五、控制器作用学习心得 PID 控制器由比例单元 P 、积分单元 I 和微分单元 D 组成。通过Kp , Ki 和Kd 三个参数的设定。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。 (1)比例作用P :比例作用将加快系统的响应,减小误差。它能快速影响系统的控制输出值,但仅靠比例系数的作用,系统不能很好地稳定在一个理想的数值,其结果是虽较能有效地克服扰动的影响,但有稳态误差出现。过大的比例系数还会使系统出现较大的超调并 产生振荡,使稳定性变差。 (2)积分作用I :积分作用是消除稳态误差,它能对稳定后有累积误差的系统进行误 差修整,消除稳态误差。在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统为有差系统。为 了消除稳态误差,在控制器中必须引入积分项。积分作用的强弱取决于积分时间常数Ti , Ti 越小,积分作用就越强。但是积分作用过大,也会引起系统振荡,超调量过大,调节时 间也会变大。 (3)微分作用D :微分具有超前作用,对于具有滞后的控制系统,引入微分控制,在 微分项设置得当的情况下,对于提高系统的动态性能指标有着显著效果,它可以使系统超 调 量减小,稳定性增加,动态误差减小。在微分控制中,控制器的输出与输入误差信号的微分 (即误差的变化率) 成正比关系。自动控制系统在克服误差的调节过 程中可能会出现振荡甚至 失稳,其原因是由于存在有较大惯性环节或滞后的被控对象,具有抑制误差的作用,其变化 总是落后于误差的变化。解决的办法是使抑制误差作用的变化“超前”,即在误差接近零时, 抑制误差的作用就应该是零。微分项能预测误差变化的趋势,从而做到提前使抑制误差的控 制作用等于零,甚至为负值,从而避免了被控量的严重超调,改善了系统在调节过程中的动 态特性。微分作用不能单独使用,需要与另外两种单元相结合,组成PD 或PID 控制器。 参考文献 [1] 陈伯时.电力拖动自动控制系统[M].机械工业出版社,2006 [2] 胡寿松. 自动控制原理(第四版)[M].科学出版社,2001. [3] 李伟光, 郭忺, 侯跃恩. 永磁同步电动机SVPWM 和电流滞环控制仿真分析[J]. 现代制造工程, 2014(5). [4] 廖金国, 花为, 程明, 等. 一种永磁同步电机变占空比电流滞环控制策略[J]. 中国电机工程学报, 2015, 35(18):4762-4770. [5] 逄玉俊, 柏松, 马向哲. 永磁同步电机的电流滞环控制研究[J]. 科技信息, 2008(30):444-44 10 [1] 陈伯时.电力拖动自动控制系统[M].机械工业出版社,2006 [2] 胡寿松. 自动控制原理(第四版)[M].科学出版社,2001. [3] 李伟光, 郭忺, 侯跃恩. 永磁同步电动机SVPWM 和电流滞环控制仿真分析[J]. 现代制造工程, 2014(5). [4] 廖金国, 花为, 程明, 等. 一种永磁同步电机变占空比电流滞环控制策略[J]. 中国电机工程学报, 2015, 35(18):4762-4770. [5] 逄玉俊, 柏松, 马向哲. 永磁同步电机的电流滞环控制研究[J]. 科技信息, 2008(30):444-44 11

MFC可控硅模块的应用电路有哪些?

智能硬件操作

光栅传感器的应用

  导语:光栅式传感器是一种新型的传感器,,它是指使用光栅叠栅条纹原理来测量距离的传感器。所谓的光栅就是一块呈长方形的光学玻璃上刻画着许多等距平行的线,一般情况下,刻线的密度大约在十毫米到一百毫米之间。光学传感器的应用还是比较广泛的,那么生活中到底有哪些地方用到了光学传感器呢。小编在此整理了一些光栅传感器的相关资料,让我们一起来了解一下吧。    光栅的发现距今已经有两百多年的时间了,在一九七八年的时候,加拿大渥太华的一家通信研究中心,一群研究人员第一次在掺入锗石英的光纤中发闲了一种神奇的效应,光敏效应。在发现这项效应之后,被当时的驻波写入,制作成了世界上的第一根光栅。在十九世纪以后,美国的一家技术研究中心光栅的侧面写入技术,正是因为这些科学家的不懈努力,所以才使得光栅技术有了很大的进展。同时随着科学技术的不断进步,光栅的制造技术也在不断完善,而且在各个领域的应用也在不断普及。    因为光栅是利用光纤制作而成的,所以光栅也具备光纤的一些特性,比如说光纤对光线的折射率会随着光强的空间分布发生变化而产生相应的变化。本文之中的一些语句是比较复杂难懂的,但是这也是没有办法的事情,希望大家体谅。在光纤的内芯会形成一定的光栅,而所谓的光栅,其实也就是一个类似于反射镜的东西。光栅式传感器正是利用这一特性制作而成。利用光栅原理制作的器械有着以下许多优点:附加的损耗小,一般体积也比较小而且反射范围相对要比较大。    光栅式传感器的工作原理是这样的。传感器上的标尺光栅会随着指示光栅进行移动,当移动到一定的距离之后,在标尺光栅上就会形成一些明暗相间的条纹。这些条纹会照射到光电元件上,并且会进行快速的移动。一般情况下,光栅传感器的光路形式有两种,一个是反射式光栅,另一种是投射式光栅。光栅传感器的应用范围十分广泛,它大量的应用于数控机床,远程操和一些坐标测量机构中。    就目前的情况而言,光栅传感器的发展前景还是十分广阔的。因为光栅传感器的尺寸很小,易于携带也易于安放,同时它的重量也很轻。所以广泛的应用于航空航天领域。  通过对本文的阅读,大家是否对光栅传感器有了一定的了解呢。

变频电机工作原理与应用

高压电机要实现调速,主要采用三种方式:(1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节;(2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。(3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。   上述三种方式,发展到目前都是比较成熟的技术。液力耦合器和串级调速的调速精度都比较差,调速范围较小,维护工作量大,液力耦合器的效率相比变频调速还有一定的差距,所以这两项技术竞争力已经不强了。至于高低方式,能够达到比较好的调速效果,但是相比真正的高压变频器,还有如下缺点:效率低,谐波大,对电机的要求比较严格,功率较大时(500KW以上),可靠性较低。高低方式的主要优势在于成本较低。  (1) 市场普遍接受。如果在5年以前推广高压变频器,一般还要给用户讲解其原理,为什么要使用它。但是现在,经过众多厂家的共同努力,和市场使用效果的宣传,用户已经普遍接受高压变频器,只是在众多厂家中选择谁的问题。  (2) 业绩很重要。高压变频器一般功率较大,都使用在非常关键的部位。所以用户对产品的可靠性是最关心的。考查可靠性的最好办法,就是去已经使用的用户那里去了解情况,这样的用户越多,说服力就越强.  (3) 服务的重要性不容忽视。高压变频器是大功率的电子设备,在使用中,总会遇到一些问题,高压变频器工作的场合又非常关键,因此,对用户的及时服务是非常重要的。服务是维持用户关系的非常重要的方面。如果服务不到位,或者像有些国外厂家,服务和备件的价格较高,都会影响用户的选择。  (4) 现场的适应性非常重要。一般的高压变频器开发厂家,在自己的实验室里,都很难完全模仿用户现场的情况,所以,产品设计的灵活性怎么样,到了现场遇到问题能否尽快解决,都是非常重要的。由于耗电量大,负载又非常重要,用户往往不希望设备较长时间的试运行,所以,产品设计不严谨,一旦遇到问题,就非常难以解决。近年来,许多厂家的产品裹足不前,就是这个原因。  (5) 价格进一步下降。由于激烈的竞争,以及后来者为了夺取业绩而不得已采用的低价策略,高压变频器的价格下降很快,在某些项目上,一些竞争厂家报出的价格甚至低于成本价。 随着技术的进步,高压变频器除了在已有的市场上继续扩大规模外,还将进一步扩展应用的领域,对于很多负载,还需要解决变频器的工程应用上的问题。总之,高压变频器正在迎来发展的黄金时期。

变频调速SVPWM技术的原理、算法与应用的目录

电气自动化新技术丛书序言5届电气自动化新技术丛书编辑委员会的话前言第1章 变频调速与SVPWM技术1.1 变频调速概述1.1.1 变频调速系统1.1.2 变频器1.1.3 电力电子电器件1.2 变频器谐波的影响与对策1.2.1 输入侧谐波的影响与对策1.2.2 输出侧谐波的影响及对策1.3 SPWM技术1.3.1 调?的原理和分类1.3.2 SPWM波形成的方法1.3.3 SPWM的优点与缺点1.3.4 SPWM的优化1.4 变频调速系统的控制1.4.1 开环控制1.4.2 闭环控制1.5 SVPWM技术1.5.1概述1.5.2 SVPWM技术的原理与分类1.5.3 SVPWM技术的优点与展望参考文献第2章 两电子SVPWM?术2.1 两电平逆变器2.2 两电乎逆变器合成电压矢量与磁链的空间分布2.2.1 逆变器输出电压空间矢量的空间分布2.2.2 电压矢量与磁链矢量轨迹2.3 SVPWM的调制模式和算法2.3.1 多个电压矢量连续切换的SVPWM模式2.3.2 矢量合成法的SVPWM模式2.4 对称调制模式和算法2.4.1 基本原理2.4.2 实施算法2.4.3 对称调制模式与SPWM的比较2.4.4 对称调制模式的特点和优点2.4.5 对称调制模式的推广2.5 两电平SVPWM的新算法2.5.1 随机控制算法2.5.2 免疫算法2.5.3 反向传播神经网络算法2.6 两电平三维空间电压矢量SVPWM控制2.6.1 三相四桥臂逆变器2.6.2 三相四桥臂逆变器的电压空间矢量2.6.3 三相四桥臂逆变器的电压空间矢量控制参考文献第3章 两电平SVPWM技术的应用3.1 两电平SVPWM技术在矢量变换控制中的应用3.1.1 矢量变换控制的基本原理3.1.2 SVPWM矢量控制系统的构成与控制原理3.1.3 矢量变换控制的特点3.2 SVPWM在直接转矩控制系统中的应用3.2.1 直接转矩控制的基本原理3.2.2 直接转矩控制系统的构成与控制原理3.2.3 电压矢量与少 的关系3.2.4 采用电压矢量选择表的直接转矩控制系统3.2.5 直接转矩控制的数字化3.2.6 直接转矩控制的特点与存在的问题3.3 直接转矩控制的改进方案3.3.1 模糊控制的直接转矩控制3.3.2 预测转矩的直接转矩控制3.4 采用谐振极软开关逆变器的直接转矩控制3.4.1 RPZVT逆变器的构成及工作原理3.4.2 控制系统的构成3.4.3 控制原理3.4.4仿真及实验结果3.5 PWM整流器的控制3.5.1 PWM整流器第4章 三电平SVPWM技术第5章 三电平SVPWM技术的应用第6章 多电平SVPWM技术及其应用第7章 SVPWM技术工程应用实例

MFC可控硅模块的应用电路有哪些?

用MFC可控硅模块控制交流的应用很广泛,单结晶体管交流调压电路就是一种典型的交流调压电路。调压原理是:通过改变单结晶体管发出触发脉冲的导通角度来控制MFC可控硅的导通时间,来实现交流调压。此电路中,单结晶体管是接在交流电路中的,通过半波整流和降压获取工作电源。 通常在调压电路中,触发电路由控制电路产生,控制电路工作在直流电路中。其实,不必深究是否是直流控制交流,只要知道MFC可控硅模块的控制原理就行了,其最基本的原理就是用触发脉冲控制可控硅模块的导通,用较小的触发电流控制较大电流的负载工作。
 首页 上一页  13 14 15 16 17 18 19 20 21 22 23  下一页  尾页