数字信号

阅读 / 问答 / 标签

网线里传输的是什么信号,光纤入户信号怎么转换,还有电信号,数字信号,光信号有什么区别?

网线里传输的是高速的模拟信号,网线通过网口,用RJ45的线连在电脑上,电脑内部有以太网芯片,负责连接CPU的local bus到以太网。光纤传输的是光信号,而电脑是电信号,需要通过光模块把光信号转换为电信号,由于光信号是串行的,需要将串行信号转化为并行内信号给电脑cpu读。电信号,数字信号,光信号区别为:性质不同、传输渠道不同、抗干扰性不同。一、性质不同1、电信号:电信号是指随着时间而变化的电压或电流。2、数字信号:数字信号指自变量是离散的、因变量也是离散的信号。3、光信号:光信号是指光波,即电磁波谱中的可见光。二、传输渠道不同1、电信号:电信号的传输渠道为通过电线、电路电板进行传输。2、数字信号:数字信号的传输渠道为通过双绞线进行传输。3、光信号:光信号的传输渠道为通过光纤进行传输。三、抗干扰性不同1、电信号:电信号具有较高的抗干扰性。2、数字信号:数字信号在传输过程中不仅具有较高的抗干扰性,还可以通过压缩,占用较少的带宽,实现在相同的带宽内传输更多、更高音频、视频等数字信号的效果。3、光信号:光信号的抗干扰性较差,需要使用光纤收发器进行传输。

复试数字信号处理的学校

复试数字信号处理的学校:中国海洋大学。中国海洋大学是一所以海洋和水产学科为特色,包括理学、工学、农学、医(药)学、经济学、管理学、文学、法学、教育学、历史学、艺术学等学科门类较为齐全的教育部直属重点综合性大学。是国家“985工程”和“211工程”重点建设高校之一,是国务院学位委员会首批批准的具有博士、硕士、学士学位授予权的单位。校训是海纳百川,取则行远。学校师资力量雄厚,截至2021年8月,学校现有教职工3870余人,其中专任教师1960余人,博士生导师528人,正高级职称734人,副高级职称936人。中国科学院院士7人,中国工程院院士9人,其中学校拥有多支国家级教学团队,分别为海洋学教学团队、细胞生物学教学团队,海洋无眷椎动物养殖学课程教学团队、海洋化学课程教学团队等。211工程是指面向21世纪、重点建设100所左右的高等学校和一批重点学科的建设工程。于1995年11月经国务院批准后正式启动。“211工程”是新中国成立以来由国家立项在高等教育领域进行的重点建设工作,是中国政府实施“科教兴国”战略的重大举措、中华民族面对世纪之交的中国国内外形势而作出的发展高等教育的重大决策。1995年11月,经国务院批准,原国家计委、原国家教委和财政部联合下发了《“211工程”总体建设规划》,“211工程”正式启动。2002年9月,经国务院批准,原国家计委、教育部和财政部联合下发了《关于“十五”期间加强“211工程”项目建设的若干意见》。

什么信号是模拟信号 什么信号是数字信号,举例说说明最好,因为太抽象了,想象不到

连续的信号是模拟信号,分散的是数字信号

什么是数字信号?

权威的定义是:数字信号是 离散信号,不连续的信号。我的理解是:数字信号只有2个:这2个信号也有很多种表现方式,有人说是“开、关”,有人说是“高电平、低电平”,有人说是“0、1”。他们说得都对。“开、关”是从电路的动作来描述;“高电平、低电平”是从信号本身的电压值来描述;“0、1”是从数学(信息论)上来描述。整个系统都是由这2个信号组成。

请问数据信号与数字信号的区别是什么?

幅值被限制在有限个数值之内,不是连续的而是离散的信号称数字信号。信号波形模拟着信息的变化而变化,幅度连续( 连续的含义是在某一取值范围内可以取无限多个数值)的信号称为模拟信号。信号的数字化需要三个步骤:抽样、、量化和编码。抽样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。量化是用有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有一定间隔的离散值。编码则是按照一定的规律,把量化后的值用二进制数字表示,然后转换成二值或多值的数字信号流。这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输 。在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。数据是具有某种含义的数字信号的组合,如字母、数字和符号等。这些字母、数字和符号在传输时,可以用离散的数 字信号逐一准确地表达出来,例如可以用不同极性的电压、电流或脉冲来代表。将这样的数据信号加到数据传输信道上进行传输,到达接收地点后再正确地恢复出原始发送的数据信息 。数据信号是在时间上和幅度上都取有限离散数值的电信号即数字信号。

什么是数字信号,什么是模拟信号,什么区别和用处

信号家族两兄弟 信号是运载消息的工具,是消息的载体。从广义上讲,它包含光信号、声信号和电信号等。例如,古代人利用点燃烽火台而产生的滚滚狼烟,向远方军队传递敌人入侵的消息,这属于光信号;当我们说话时,声波传递到他人的耳朵,使他人了解我们的意图,这属于声信号;遨游太空的各种无线电波、四通八达的电话网中的电流等,都可以用来向远方表达各种消息,这属电信号。人们通过对光、声、电信号进行接收,才知道对方要表达的消息。 在信号这个大家族中,有两兄弟特别引人注目,就是“模拟”和“数字”。 什么是“模拟”? “模拟”是“数字”的兄长。 “模拟”是对我们生活的实体的一种表达方式。 比如说你在看一本书,白纸黑字映入你的眼帘,在你的大脑中就会有反应,你从书中知道了一些东西,我们说印在纸上的字是一种“模拟”。与此相类似,你用笔在纸上记下的一个电话号码或是写下的一首诗歌,还有刻在石头上的古代碑文,这些都是“模拟”。除了文字以外,我们在生活中还能见到许多“模拟”的东西,比如说一幅风景画,又比如说你在电视上或是电影院的屏幕上看到听到了孩子们的欢歌笑语,你在电话里听到了朋友的声音。 “模拟”需要载体或是信息的存储媒体,比如说一张白纸,又比如说是一盒胶卷。 “模拟”需要工具,比如说你有一台电视机,那么电视机的荧光屏和喇叭都属于模拟设备。 “模拟”需要传播方式,比如说你可以和一个十几米外的朋友说话,但是如果你的朋友在几百公里以外,你就不得不需要电话,电话网通过“模拟信号”将你的声音传到了几百公里甚至几千公里以外。 什么是“数字”? 类似于“模拟”,数字也是我们生活中的实体的一种表达方式。 你可以用笔在纸上记下一个电话号码,也可以把这个电话号码输入你的计算机存储器;你可以看一本印刷成册的书,也可以看存储在CD-ROM中的电子出版物;你可以听收音机播放的音乐,也可以听一盘音乐光盘(CD)。 数字信息的最小度量单位叫做“比特”,有时也叫“位”,意即二进制的一位。在媒体中传输的讯号是以比特的电子形式组成你的数据。 比特的定义是:比特是一种存在的状态:开或关,真或伪,上或下,入或出,黑或白。出于实用的目的,我们把比特想成1或0。 应该说这个定义相当准确,但一个在电脑和英语方面知识程度不高的人仍然没有弄懂“比特”究竟是什么。 “比特”是英语bit一词的音译。bit一词是由binary(二进制的)和digit(数字)两个词压缩而成的,所以bit即“二进制数字”,亦即0和1。“数字时代”准确的意思是“二进制数字时代”或“比特时代”那么这0和1到底是什么意思呢?我们从一个简单的例子说起。 在使用电脑的时候,我们可以根据我们的需要和喜好,通过一些位于显示器底部的旋钮来调节显示图形,在这些旋钮下面,分别写着center(居中度)、size(大小)、brightness(亮度)、contrast(对比度)。这些调节都有一定的可调幅度,我们可能在这个幅度内任意选择哪一种居中度、大小等。除这些旋钮外,还有一个“机关”却不是这样,这个机关的两边分别写着0和1。这就是显示屏的开关。它没有调节幅度,通过它我们只能选择非此即彼的两种状态:开(on)和关(off)。显示屏的亮度、对比度等都有两个极点,在这两个极点之间的“值”是多值性的。而开关的周期只有两个值,即它的两个极点。“进制”的“进”,就是周期所包含的“值”。比如“十进制”数字,就是一个变化周期里包含十个“值”数字。同样道理,二进制数字就是变化周期里包含二个值的数字。我们采用何种“进制”对一种事物的存在状态计数,表面上,要看衡量事物状态的“值”的多少,其实“进制”与事物的状态值并无必然的、唯一的关联。事实上,电脑完全可以用0和1这两个数字将多进制状态的“值”表示或“翻译”出来。数是抽象的,但数的观念却源于人的具体的感觉经验。我们对于十进制计数方法习以为常。当一个人说“一年有12个月”这句话时,他可能觉得“12”这个数字唯一正确地表示了一年的月份数。进而他可能会认为,数字与事物的数量同样都是客观的--除了说一年有12个月,你还能说一年有多少个月? 这是对于数字本质的一种似是而非的看法。极端地说,对于“一年有多少个月”这个问题,可以有很多不同的“答案”。这样说听起来简直荒唐透顶,细究起来却并不然。当我们采用不同进制来表示事物的数量时,我们对事物的数量就可以说出不同的“答案”,而且这些“答案”都是对的。比如可以说一人有65岁,也可说他有01000001岁。只是后一种说法我们听起来相当别扭,因为我们早已习惯了用十进制数字来表达数量。如果采用“六进制”数字(世界上似乎还没有哪个民族采用过这种进制的数字),那么就可以说一年有二“六”个月。如果螃蟹有朝一日进化到与人接近的水平,它们很可能采用“八进制数字”来计数,那么在它们看来,一年就有一“八”又四个月。 这样说并非完全是开玩笑。我只是想说明,“数字”其实并非我们通常所认为的那样“客观”。说到底,它是人对于客观事物的数量的主观映象。 除了“比特”(bit),我们还经常会遇到几个数字信息度量单位。字节(byte)是一种比“比特”更抽象或是高级的度量单位,一般来说,一个字节有8位,即8个比特。还有三个缩写,“K”、“M”和“G”。1K=1024,在中文里我们通常叫它“千”;1M=1024×1K,在中文里我们通常叫它“兆”;1G=1024×1M,在中文里我们通常叫它“千兆”或者“吉”。 比特(位)通常用于数据在网络上传输的情况下,比如我们一般都说这条电话线一秒钟可以传送9600比特的二进制流,而不是说1200字节。字节通常用在数据的存储系统中,比如说这个文件的大小是2M,这里指的是字节而不是比特,又比如是1.44M软盘、20G硬盘,指的也是字节。模拟信号和数字信号有着很大的区别。模拟信号是用连续变化的数值来表示要说明的信息;数字信号是用有限个“0”和“1”的代码来表示信息中某一个字符,当很多字符组合起来时,才能表达完整的信息。

数字信号和码元有区别吗?如果有请详细解释一下它们的定义

码元?好象没怎么听说过,是不是说的是模拟信号??如果是的话,帮你找了点下面的材料,你看行不行! 什么是码元?什么是码元长度? 答:在数字通信中常常用时间间隔相同的符号来表示一位二进制数字。这样的时间间隔内的信号称为二进制码元,而这个间隔被称为码元长度。信号是运载消息的工具,是消息的载体。从广义上讲,它包含光信号、声信号和电信号等。例如,古代人利用点燃烽火台而产生的滚滚狼烟,向远方军队传递敌人入侵的消息,这属于光信号;当我们说话时,声波传递到他人的耳朵,使他人了解我们的意图,这属于声信号;遨游太空的各种无线电波、四通八达的电话网中的电流等,都可以用来向远方表达各种消息,这属电信号。人们通过对光、声、电信号进行接收,才知道对方要表达的消息。 在信号这个大家族中,有两兄弟特别引人注目,就是“模拟”和“数字”。 什么是“模拟”? “模拟”是“数字”的兄长。 “模拟”是对我们生活的实体的一种表达方式。 比如说你在看一本书,白纸黑字映入你的眼帘,在你的大脑中就会有反应,你从书中知道了一些东西,我们说印在纸上的字是一种“模拟”。与此相类似,你用笔在纸上记下的一个电话号码或是写下的一首诗歌,还有刻在石头上的古代碑文,这些都是“模拟”。除了文字以外,我们在生活中还能见到许多“模拟”的东西,比如说一幅风景画,又比如说你在电视上或是电影院的屏幕上看到听到了孩子们的欢歌笑语,你在电话里听到了朋友的声音。 “模拟”需要载体或是信息的存储媒体,比如说一张白纸,又比如说是一盒胶卷。 “模拟”需要工具,比如说你有一台电视机,那么电视机的荧光屏和喇叭都属于模拟设备。 “模拟”需要传播方式,比如说你可以和一个十几米外的朋友说话,但是如果你的朋友在几百公里以外,你就不得不需要电话,电话网通过“模拟信号”将你的声音传到了几百公里甚至几千公里以外。 什么是“数字”? 类似于“模拟”,数字也是我们生活中的实体的一种表达方式。 你可以用笔在纸上记下一个电话号码,也可以把这个电话号码输入你的计算机存储器;你可以看一本印刷成册的书,也可以看存储在CD-ROM中的电子出版物;你可以听收音机播放的音乐,也可以听一盘音乐光盘(CD)。 数字信息的最小度量单位叫做“比特”,有时也叫“位”,意即二进制的一位。在媒体中传输的讯号是以比特的电子形式组成你的数据。 比特的定义是:比特是一种存在的状态:开或关,真或伪,上或下,入或出,黑或白。出于实用的目的,我们把比特想成1或0。 应该说这个定义相当准确,但一个在电脑和英语方面知识程度不高的人仍然没有弄懂“比特”究竟是什么。 “比特”是英语bit一词的音译。bit一词是由binary(二进制的)和digit(数字)两个词压缩而成的,所以bit即“二进制数字”,亦即0和1。“数字时代”准确的意思是“二进制数字时代”或“比特时代”那么这0和1到底是什么意思呢?我们从一个简单的例子说起。 在使用电脑的时候,我们可以根据我们的需要和喜好,通过一些位于显示器底部的旋钮来调节显示图形,在这些旋钮下面,分别写着center(居中度)、size(大小)、brightness(亮度)、contrast(对比度)。这些调节都有一定的可调幅度,我们可能在这个幅度内任意选择哪一种居中度、大小等。除这些旋钮外,还有一个“机关”却不是这样,这个机关的两边分别写着0和1。这就是显示屏的开关。它没有调节幅度,通过它我们只能选择非此即彼的两种状态:开(on)和关(off)。显示屏的亮度、对比度等都有两个极点,在这两个极点之间的“值”是多值性的。而开关的周期只有两个值,即它的两个极点。“进制”的“进”,就是周期所包含的“值”。比如“十进制”数字,就是一个变化周期里包含十个“值”数字。同样道理,二进制数字就是变化周期里包含二个值的数字。我们采用何种“进制”对一种事物的存在状态计数,表面上,要看衡量事物状态的“值”的多少,其实“进制”与事物的状态值并无必然的、唯一的关联。事实上,电脑完全可以用0和1这两个数字将多进制状态的“值”表示或“翻译”出来。数是抽象的,但数的观念却源于人的具体的感觉经验。我们对于十进制计数方法习以为常。当一个人说“一年有12个月”这句话时,他可能觉得“12”这个数字唯一正确地表示了一年的月份数。进而他可能会认为,数字与事物的数量同样都是客观的--除了说一年有12个月,你还能说一年有多少个月? 这是对于数字本质的一种似是而非的看法。极端地说,对于“一年有多少个月”这个问题,可以有很多不同的“答案”。这样说听起来简直荒唐透顶,细究起来却并不然。当我们采用不同进制来表示事物的数量时,我们对事物的数量就可以说出不同的“答案”,而且这些“答案”都是对的。比如可以说一人有65岁,也可说他有01000001岁。只是后一种说法我们听起来相当别扭,因为我们早已习惯了用十进制数字来表达数量。如果采用“六进制”数字(世界上似乎还没有哪个民族采用过这种进制的数字),那么就可以说一年有二“六”个月。如果螃蟹有朝一日进化到与人接近的水平,它们很可能采用“八进制数字”来计数,那么在它们看来,一年就有一“八”又四个月。 这样说并非完全是开玩笑。我只是想说明,“数字”其实并非我们通常所认为的那样“客观”。说到底,它是人对于客观事物的数量的主观映象。 除了“比特”(bit),我们还经常会遇到几个数字信息度量单位。字节(byte)是一种比“比特”更抽象或是高级的度量单位,一般来说,一个字节有8位,即8个比特。还有三个缩写,“K”、“M”和“G”。1K=1024,在中文里我们通常叫它“千”;1M=1024×1K,在中文里我们通常叫它“兆”;1G=1024×1M,在中文里我们通常叫它“千兆”或者“吉”。 比特(位)通常用于数据在网络上传输的情况下,比如我们一般都说这条电话线一秒钟可以传送9600比特的二进制流,而不是说1200字节。字节通常用在数据的存储系统中,比如说这个文件的大小是2M,这里指的是字节而不是比特,又比如是1.44M软盘、20G硬盘,指的也是字节。 模拟信号和数字信号有着很大的区别。模拟信号是用连续变化的数值来表示要说明的信息;数字信号是用有限个“0”和“1”的代码来表示信息中某一个字符,当很多字符组合起来时,才能表达完整的信息。

什么叫模拟信号?什么叫数字信号?区别是什么?

模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。 数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 模拟信号与数字信号 (1)模拟信号与数字信号 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。 当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。 当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。 (2)模拟信号与数字信号之间的相互转换 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。 计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

数字信号的基本信息

在数字电路中,由于数字信号只有0、1两个状态,它的值是通过中央值来判断的,在中央值以下规定为0,以上规定为1,所以即使混人了其他干扰信号,只要干扰信号的值不超过闽值范围,就可以再现出原来的信号。即使因干扰信号的值超过阂值范围而出现了误码,只要采用一定的编码技术,也很容易将出错的信号检测出来并加以纠正因此,与模拟信号相比,数字信号在传输过程中具有更高的抗干扰能力,更远的传输距离,且失真幅度小 。数字信号在传输过程中不仅具有较高的抗干扰性,还可以通过压缩,占用较少的带宽,实现在相同的带宽内传输更多、更高音频、视频等数字信号的效果。此外,数字信号还可用半导体存储器来存储,并可直接用于计算机处理。若将电话、传真、电视所处理的音频、文本、视频等数据及其他各种不同形式的信号都转换成数字脉冲来传输,还有利于组成统一的通信网,实现今天rr界人士和电信工业者们极力推崇的综合业务数字网络(IS-DN).从而为人们提供全新的,更灵活、更方便的服务。正因为数字信号具有上述突出的优点,它正在迅速而且已经取得了十分广泛的应用 。从原始信号转换到数字信号一般要经地抽样、量化和编码这样三个过程。抽样是指每隔一小段时间,取原始信号的一个值。间隔时间越短,单位时间内取的样值也越多,这样取出的一组样值也就越接近原来的信号。抽样以后要进行量化,正如我们常常把成绩80~100分以上归为优,60~79分归为及格,60分以下归为不及格一样,量化就是把取出的各种各样的样值仅用我们指定的若干个值来表示。在上面的成绩“量化”中,我们就是把0~100分仅用三个度“优”、“及格”、“不及格”来量化。最后就是编码,把量化后的值分别编成仅由0和1这两个数字组成的序列,由脉冲信号发生器生成相应的数字信号。这样就可以用数字信号进行传送了 。数字信号的优点很多,首先是它抗干扰的能力特别强,它不但可以用于通讯技术,而且还可以用于信息处理技术,时髦的高保真音响、高清晰度电视、VCD、DVD激光机都采用了数字信号处理技术。其次,我们使用的电子计算机都是数字的,它们处理的信号本来就是数字信号。在通讯上使用了数字信号,就可以很方便地将计算机与通讯结合起来,将计算机处理信息的优势用于通讯事业。如电话通讯中采用了程控数字交换机,用计算机来代替接线员的工作,不仅接线迅速准确,而且占地小、效率高,省去不少人工和设备,使电话通讯产生了一个质的飞跃。再次,数字信号便于存储,现在流行的CD、MP3唱盘,VCD、DVD视盘及电脑光盘都是用数字信号来存储的信息。此外,数字通信还可以兼容电话、电报、数据和图像等多类信息的传送,能在同一条线路上传送电话、有线电视、多媒体等多种信息。数字信号还便于加密和纠错,具有较强的保密性和可靠性 。 数字信号指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示,例如,字长为2位的二进制数可表示4种大小的数字信号,它们是00、01、10和11;若信号的变化范围在-1~1,则这4个二进制数可表示4段数字范围,即[-1, -0.5)、[-0.5, 0)、[0, 0.5)和[0.5, 1] 。数字信号与离散时间信号的区别在因变量。离散时间信号的自变量是离散的、因变量是连续的,其自变量用整数表示,因变量用于物理量大小相对应的数字表示。离散时间信号的大小用有限位二进制数表示后,就是数字信号。对于离散时间信号x(n)=sin(0.3n),当自变量n=6时,因变量x(6)=sin(0.3×6)≈0.9738;若用2位二进制把它转变为数字信号,根据[-1, -0.5)、[-0.5, 0)、[0, 0.5)和[0.5, 1]对应00、01、10和11,用二进制数11表示0.9738最合适。在学习和研究数字信号理论时,用二进制数表示信号是很麻烦的;为了方便,这时人们一般把离散时间信号当作数字信号,而不考虑它们之间的区别。由于数字信号是用两种物理状态来表示0和1的,故其抵抗材料本身干扰和环境干扰的能力都比模拟信号强很多;在现代技术的信号处理中,数字信号发挥的作用越来越大,几乎复杂的信号处理都离不开数字信号;或者说,只要能把解决问题的方法用数学公式表示,就能用计算机来处理代表物理量的数字信号 。数字信号特点:抗干扰能力强、无噪声积累。在模拟通信中,为了提高信噪比,需要在信号传输过程中及时对衰减的传输信号进行放大,信号在传输过程中不可避免地叠加上的噪声也被同时放大。随着传输距离的增加,噪声累积越来越多,以致使传输质量严重恶化。对于数字通信,由于数字信号的幅值为有限个离散值(通常取两个幅值),在传输过程中虽然也受到噪声的干扰,但当信噪比恶化到一定程度时,即在适当的距离采用判决再生的方法,再生成没有噪声干扰的和原发送端一样的数字信号,所以可实现长距离高质量的传输。便于加密处理信息传输的安全性和保密性越来越重要,数字通信的加密处理的比模拟通信容易得多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密、解密处理。便于存储、处理和交换数字通信的信号形式和计算机所用信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储、处理和交换,可使通信网的管理、维护实现自动化、智能化。设备便于集成化、微型数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小、功耗低。便于构成综合数字网和综合业务数字网采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。另外,电话业务和各种非话业务都可以实现数字化,构成综合业务数字网。占用信道频带较宽一路模拟电话的频带为4kHz带宽,一路数字电话约占64kHz。随着宽频带信道(光缆、数字微波)的大量利用(一对光缆可开通几千路电话)以及数字信号处理技术的发展(可将一路数字电话的数码率由64kb/s压缩到32kb/s甚至更低的数码率),数字电话的带宽问题已不是主要问题了。以上介绍可知,数字通信具有很多优点,所以各国都在积极发展数字通信。我国数字通信得到迅速发展,正朝着高速化、智能化、宽带化和综合化方向迈进。 信号波形模拟随着信息的变化而变化,模拟信号其特点是幅度连续(连续的含义是在某一取值范围内可以取无限多个数值)。模拟信号,其信号波形在时间上也是连续的,因此它又是连续信号。模拟信号按一定的时间间隔T抽样后的抽样信号,由于其波形在时间上是离散的,但此信号的幅度仍然是连续的,所以仍然是模拟信号。电话、传真、电视信号都是模拟信号。信号抽样后时间离散,但辐值不离散。常见的抽样信号是周期矩形脉冲和周期冲激脉冲抽样。模拟信号在整个时间轴上都是有定义的,在“没有幅值”的区域的意义是幅值为零。而离散时间信号只在离散时刻上才有定义,其他地方没有定义,和幅值为零是不同概念,这两种信号在时间轴看上去很相似,其实是以不同类型的系统为基础的两种有本质区别的信号。直观的说,离散时间信号的横轴可以认为已经不代表时间了。 话音信号是模拟信号,它不仅在幅度取值上是连续的,而且在时间上也是连续的。要使话音信号数字化并实现时分多路复用,首先要在时间上对话音信号进行离散化处理,这一过程叫抽样。所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。理论和实践证明,只要抽样脉冲的间隔T≤1/(2fm)(或f≥2fm)(fm是话音信号的最高频率),则抽样后的样值序列可不失真地还原成原来的话音信号。例如,一路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率fs≥2×3400=6800Hz。如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话音信号,话音信号的抽样频率通常取8000Hz。对于PAL制电视信号。视频带宽为6MHz,按照CCIR601建议,亮度信号的抽样频率为13.5MHz,色度信号为6.75MHz。 抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。这就要对幅值进行舍零取整的处理,这个过程称为量化。量化有两种方式,量化方式中,取整时只舍不入,即0~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。量化方式在取整时有舍有入,即0~0.5伏间的输入电压都输出0伏,0.5~1?5伏间的输出电压都输出1伏等等。采用这种量化方式量化误差有正有负,量化误差的绝对值最大为Δ/2。因此,采用有舍有入法进行量化,误差较小。实际信号可以看成量化输出信号与量化误差之和,因此只用量化输出信号来代替原信号就会有失真。一般说来,可以把量化误差的幅度概率分布看成在-Δ/2~+Δ/2之间的均匀分布。可以证明,量化失真功率?,即与最小量化间隔的平方成正比。最小量化间隔越小,失真就越小。最小量化间隔越小,用来表示一定幅度的模拟信号时所需要的量化级数就越多,因此处理和传输就越复杂。所以,量化既要尽量减少量化级数,又要使量化失真看不出来。一般都用一个二进制数来表示某一量化级数,经过传输在接收端再按照这个二进制数来恢复原信号的幅值。所谓量化比特数是指要区分所有量化级所需几位二进制数。例如,有8个量化级,那么可用三位二进制数来区分,因为,称8个量化级的量化为3比特量化。8比特量化则是指共有个量化级的量化。量化误差与噪声是有本质的区别的。因为任一时刻的量化误差是可以从输入信号求出,而噪声与信号之间就没有这种关系。可以证明,量化误差是高阶非线性失真的产物。但量化失真在信号中的表现类似于噪声,也有很宽的频谱,所以也被称为量化噪声并用信噪比来衡量。上面所述的采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。这种非均匀量化级的安排称为非均匀量化或非线性量化。数字电视信号大多采用非均匀量化方式,这是由于模拟视频信号要经过校正,而校正类似于非线性量化特性,可减轻小信号时误差的影响。对于音频信号的非均匀量化也是采用压缩、扩张的方法,即在发送端对输入的信号进行压缩处理再均匀量化,在接收端再进行相应的扩张处理。国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。我国规定采用A律13折线压扩特性。采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。 抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。最简单的编码方式是二进制编码。具体说来,就是用n比特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流。编码过程在接收端,可以按所收到的信息重新组成原来的样值,再经过低通滤波器恢复原信号。用这样方式组成的脉冲串的频率等于抽样频率与量化比特数的积,称为所传输数字信号的数码率。显然,抽样频率越高,量化比特数越大,数码率就越高,所需要的传输带宽就越宽除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等,表2-1示出了这三种二进制码。这三种码各有优缺点:(1)自然二进制码和二进制数一一对应,简单易行,它是权重码,每一位都有确定的大小,从最高位到最低位依次为,可以直接进行大小比较和算术运算。自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。(2)格雷码则没有这一缺点,它在相邻电平间转换时,只有一位生变化,格雷码不是权重码,每一位码没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成模拟信号,要经过一次码变换,变成自然二进制码。(3)折叠二进制码沿中心电平上下对称,适于表示正负对称的双极性信号。它的最高位用来区分信号幅值的正负。折叠码的抗误码能力强。表2-1各种二进制码量化电平量化电平自然二进制码格雷码折叠二进制码00000000111001001010201001100130110100004100110100510111110161101011107111100111在通信理论中,编码分为信源编码和信道编码两大类。所谓信源编码是指将信号源中多余的信息除去,形成一个适合用来传输的信号。为了抑制信道噪声对信号的干扰,往往还需要对信号进行再编码,编成在接收端不易为干扰所弄错的形式,这称为信道编码。为了对付干扰,必须花费更多的时间,传送一些多余的重复信号,从而占用了更多频带,这是通信理论中的一条基本原理。

数字信号处理 h(n)是什么?

数字信号处理的h(n)相当于模拟信号处理的电路图,有了h(n),计算机就可以用它跟信号卷积,也就是按卷积编写程序,按程序处理信号,达到希望的目的。机械工业出版社杨毅明写的《数字信号处理》有141个应用实例、257幅插图、6个趣味实验。希望你看看。

模式识别、数字信号处理、机器人,这3个研究方向,哪个和生物的交叉学科挂钩?

应该是机器人,因为它用到许多仿生物学

求数字信号处理实验中离散时间信号分析,要用MATLAB实现描述如下,求大神啊

你是南工大的吗?怎么和我实验报告上一样,我快写好了

帮我看看数字信号处理第三版第十章第一个实验的的程序怎么改才行或者给我发个更好的也行啊

%实验1:系统响应及系统稳定性close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性======A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y="h(n)";tstem(hn,y); %调用函数tstem绘图title("(a) 系统单位脉冲响应h(n)");box ony1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y="y1(n)";tstem(y1n,y);title("(b) 系统对R8(n)的响应y1(n)");box ony2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y="y2(n)";tstem(y2n,y);title("(c) 系统对u(n)的响应y2(n)");box on%===内容2:调用conv函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y="h1(n)";tstem(h1n,y); %调用函数tstem绘图title("(d) 系统单位脉冲响应h1(n)");box onsubplot(2,2,2);y="y21(n)";tstem(y21n,y);title("(e) h1(n)与R8(n)的卷积y21(n)");box onsubplot(2,2,3);y="h2(n)";tstem(h2n,y); %调用函数tstem绘图title("(f) 系统单位脉冲响应h2(n)");box onsubplot(2,2,4);y="y22(n)";tstem(y22n,y);title("(g) h2(n)与R8(n)的卷积y22(n)");box on%=========内容3:谐振器分析========================un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y="y31(n)";tstem(y31n,y);title("(h) 谐振器对u(n)的响应y31(n)");box onsubplot(2,1,2);y="y32(n)";tstem(y32n,y);title("(i) 谐振器对正弦信号的响应y32(n)");box on

帮忙解决数字信号处理实验题目,请教高手在MATLAB下如何编制程序利用conv实现声音混响

n0=10;n=-n0:n0;% u(n)u1=n-0>=0;u2=n-3>=0;u3=n-4>=0;% Input: x(n)=-n(u(n)-u(n-3))x=-n.*(u1-u2);% Filter: H(n)=(1+n)(u(n)-u(n-4))h=(1+n).*(u1-u3);% Convolutiony=conv(x,h);% Length of the input and outputlength_output=length(x)+length(h)-1;n1=-n0:n0;n2=linspace(-2*n0,2*n0,length_output);% Plotfigure(1);subplot(2,2,1);stem(n1,x,"filled");grid;xlabel("n");ylabel("x[n]");title("System Input");subplot (2,2,2);stem(n1,h,"filled");grid;xlabel("n");ylabel("h[n]");title ("System Unit Impulse Response");subplot (2,1,2);stem (n2, y, "filled");grid;xlabel("n");ylabel("y[n]");title ("System Output Via Convolution");

数字信号处理 实验题 x(n)=[1,-1,3,5],产生并绘出下列序列样本。

4

数字图像处理,数字信号处理分别用什么做实验

一般用MATLAB软件进行仿真,学校的话可能做一些小项目时候会用到相关的理论,学校一般不会安排相关实验,都是布置一些仿真。 数字信号处理和数字图像处理在工程中应用广泛,数字图像处理是数字信号处理的一个分支。我之前有做过一些项目需要用到数字信号处理的知识。比如之前做过的一个三导联心电图仪,主控芯片是Crotex-M3系列的STM32,对心电信号进行处理比如IIR陷波器和SG post filter,这些滤波器需要先用matlab进行仿真,确保算法无误,再进行翻译成C代码烧录到单片机中。 还有很多应用,数字图像处理在相机领域的应用,等等

请问研究压缩感知需要学哪些相关知识?比如,数字信号处理?数字图像处理?请明白人指点迷津!谢谢啦!

我个人觉得,数字信号处理和数字图像处理是针对具体的应用领域做基础知识学习。而你说的压缩感知是一种高于具体应用领域的智能算法,压缩感知可以用于数字信号方面,同样也可以应用与数字图像处理。确切的说数字信号处理包含了数字图像处理,只是数字图像处理后来发展了跟多深入的知识,所以又把其独立成一门课程。比如Mallat的《信号处理的小波导引:稀疏方法(原书第3版)》这本书上的内容,就大部分说的应用时数字图像。总之,数字信号处理、数字图像处理肯定是要学的,否则你学了压缩感知也不知道用在什么领域,要具体学习压缩感知方面的知识,再去看看IEEE里的一些论文还有一些博士论文。

数字信号处理和数字图像处理有什么区别?

数字信号处理的范畴太大了,凡是数字信号都需要被处理,比如调制解调,或者是运算加密解密啊什么的,反正是处理嘛……按照需要走 数字图像处理,这个大家应该不陌生,比如大片《2012》中的特技,不就是应用图像处理技术的么?有时候你ps一张照片,也是数字图像处理。这个范畴也是不小的,比如图像去噪点,修正颜色,等等麻烦采纳,谢谢!

数字通讯技术就是把数字信号直接直接进行传输的技术对还是错

数字信号不能直接传输,除非采用逗开关地传输的方式。这是因为,自然界里的信息传递,都是模拟量,没有数字量。逗数字地,是由人类抽象出来的概念。所有数字信号,都要调制成模拟信号传输。早期的电报,就是典型的数字信号编码,然后由发报员以长短音(模拟信号)发出。

数字通信之数字信号复接

u2002 u2002欧洲和中国的准同步数字体系: 注意:以一次群和二次群为例,这里的二次群的速率并不是一次群的4倍,因为PDH采用的是 异步复接 。PDH的弱点: (1)PCM复用 u2002 u2002PCM复用就是直接将多路信号编码复用。即将多路模拟话音信号按125μs的周期分别进行抽样,然后合在一起统一编码形成多路数字信号。(一次群的形成就属于PCM复用) (2)数字复接 u2002 u2002数字复接是将几个低此群在时间的空隙上迭加合成高次群。即高次群的形成采用数字复接的方法。比如四个一次群形成二次群,将四个一次群在时间的空隙上迭加就可以复接成一个二次群。 (1)按位复接 u2002 u2002按位复接,即每次复接各低次群(也称为支路)的一位码形成高次群。以4个一次群形成二次群为例,首先取第一个一次群的一位码,再取第二次一次群的一位码,取完4个一次群的一位码后,再依次取每个一次群的第二位码。 (2)按字复接 u2002 u2002按字复接,即每次复接各低次群(支路)的一个码字形成高此群。按字复接可以保证一个码字的完成性,而现代信号处理和交换都是以字节为单位的,所以SDH才用的就是按字(8个位)复接,而传统的PDH大多还是采用按位复接。 u2002 u2002数字复接首要解决的问题为,同步和复接。同步,即被复接的几个低次群的数码率相同。如果不同步,则复接后的数码就会产生码元间的重叠和错位。 u2002 u2002数字复接的方法分为,同步复接和异步复接。 u2002 u2002同步复接,是同一个高稳定的主时钟来控制被复接的几个低次群,使这几个低次群的数码率(简称码速)统一在主时钟的频率上(这样就使几个低次群系统达到同步的目的),可直接复接。同步复接在时钟控制下产生数字信号序列,数字信号苏烈的速率数值与时钟频率相同。同步复接虽然不需要码速调整,但需要码速变换。 (1)码速变换 u2002 u2002以四个一次群复接成二次群为例,码速变换是在各一次群中为插入附加码留下空位(复接时再插入附加码)且将码速由2048kbit/s 提高到 2112kbit/s 。码速变换的原因是,虽被复接的各支路的时钟都是由同一时钟源供给的,可以保证其数码率相等,但为满足在接收端分接的需要,需插入一定数量的帧同步码;而且为了使复接器、分接器正常工作,还需要加入对端告警码,邻站检测及勤务练习等公务码(以上各种插入的码元统称附加码)。故同步复接需要进行码速变换。 (2)码速变换的过程 u2002 u2002码速变换前,4个一次群的速率为 2048 kbit/s ,即125 μs内有 个bit,码速变换后希望提升到 2112 kbit/s,此时 125 μs 内有 个bit,则每个一次群在 125 μs 内需要插入8bit,即需要平均每 个码位插入1位码,最终码速调整后的一次群的速率为 2112 kbit/s。 u2002 u2002异步复接,是各次低次群各自使用自己的时钟,由于各低次群的是时钟频率不一定相等,使得各低次群的数码率不完全相同(这是不同步的),因而先要进行码速调整,使各低次群获得同步,再复接。故异步复接虽不需要码速变换,但需要码速调整。PDH大多采用异步复接,因为同步复接的方法一旦主时钟发生故障,相关的通信系统将全部中断,所以同步复接的方法只限于局部地区使用。 (1)码速调整方法 u2002 u2002假设4个一次群的码速在 左右,则通过插入一定的码元将这4个一次群的码速都同步调整到 2112kbit/s ,然后进行按位复接成二次群 。码速调整分为: (3)异步复接的码速调整和同步复接种的码速变换的区别 (1)二次群的数码率 u2002 u2002二次群 125 μs 内码元数为: u2002 u2002u2002 u2002 一次群125 μs内由256bit,其中32为异步复接过程中的插入码个数。 数码率为: u2002 u2002u2002 u2002 u2002 u2002u2002 u2002 (2)码速调整 u2002 u2002四个一次群的 ,进行码速调整过程中插入码元后,码速率为 ,码速调整后复接为二次群,码速率为 。 (3)数字复接系统的构成 u2002 u2002数字异步复接系统主要包括两个部分: 以4个一次群形成二次群为例,在发送端,有4个一次群,码速率在2048kbit/s左右不等,分别进行速率调整,插入码元后调整为2112kbit/s后进行复接形成二次群。在接收端,进行分接,得到4个码数率为2112kbit/s的一次群,然后进行码速恢复(和码速调整相对应,去掉插入的码元,即“消插”),最终得到码速率在2048kbit/s左右不等的4个一次群。因数字通信系统是时分制多路通信,各路信号的处理和传输都是在严格的时间内进行的,故数字复接系统的工作也需要在定时脉冲的控制下进行,所以数字复接框图中发端和收端都有定时系统。图中的同步指的收发两端定时的同步。 u2002 u2002二次群的帧周期为100.38μs,帧长为 848 bit。其中,最少有 4×205=820bit 个信息码(四个一次群进行码速调整之前的码元),最多有 28bit 的插入码。 一次群码速调整后 100.38μs 内有212个码元: u2002 u2002* 信息码 205~206 个。 u2002 u2002* 插入码有 6~7 个,其中码速调整用的插入码有 0~1 个(最多1个),插入标志码有3个。 二次群1帧内,有: u2002 u2002* 插入码 24~28个(最多28个) u2002 u2002* 码速调整用的插入码有 0~4 个(最多4个) u2002 u2002* 插入标志码有 12 个 u2002 u2002* 信息码最少为 820 个 其中,插入标志码,是为了用来通知接收端第161位有无插入,以便接收端“消插”。且插入标志码采用三位插入标志码,为了防止由于信道误码而导致的收端错误判决。ITU-T 规定数字传输系统的误码率要低于 10的负6次方,即100万个比特只允许一个比特出错,选择三位插入标志码,“ 三中取二 ”: u2002 u2002当收到两个以上的“1”码时,认为有 插入; u2002 u2002当收到两个以上的“0”码时,认为无 插入。 这样就可以大概率的防止由于信道误码而导致的收端错误判决。 u2002 u2002四个标称速率是 8.448 Mbit/s (瞬时速率可能不同)的二次群分别进行码速调整,将其速率统一调整成8.592 Mbit/s,然后按位复接成三次群。 PCM三次群帧结构如图所示: 扩展: u2002 u2002SDH网是由一些SDH的网络单元(NE)组成的,在光纤上进行同步信息传输、复用、分插和交叉连接的网络。SDH网中是不含交换设备的,它只是交换局之间的传输收端。SDH网最早是用于变换机之间的传输,后来又用于ATM网(ATM是Asynchronous Transfer Mode(ATM)异步传输模式的缩写,以信元为基础的一种分组交换和复用技术。其采用面向连接的传输方式,将数据分割成固定长度的信元,通过虚连接进行交换。ATM集交换、复用、传输为一体,在复用上采用的是异步时分复用方式,通过信息的首部或标头来区分不同信道。)和ATM交换机之间的传输,现在的路由器之间可以采用SDH网作为数据网去传输ip数据报。SDH网的概念中包含以下几个要点: 注意,这里的高次群是低此群的4倍,因为SDH采用的是 同步复接 。 u2002 u2002终端复用器的主要任务是,将低速支路信号纳入 STM-1 帧结构,并经 电/光转换成为 STM-1 光纤路信号,其逆过程正好相反。 u2002 u2002分叉复用器的作用是,将同步复用和数字交叉连接工程综合于一体,具有灵活地分插任意支路信号的能力,在网络设计上有很大的灵活性。ADM也具有光/电、电/光转换功能,因为ADM是在电信号的基础上分和插的,而线路上传的是光信号。 u2002 u2002再生中继器的作用是,将光纤长距离传输后受到较大衰减及色散畸变的光脉冲信号转换成电信号后进行放大整形、再定时、再生为规划的电脉冲信号,再调制光源变换为光脉冲信号送入光纤继续传输,以延长传输距离。 u2002 u2002数字交叉连接设备是用于实现支路之间的交叉连接。数字交叉连接设备在PDH网、SDH网中都有应用。在PDH网中,支路指的是PCM各次群等。而在SDH网中,指的是STM同步传递模块等。 u2002 u2002SDH的帧结构是块状态的如下图所示。 SDH的帧结构总共有9行270×N列,SDH的帧结构的每行每列对应一个字节,N=1、4、16、64 SDH在传输的时候是按照从上到下,从左到右的顺序,一个比特一个比特的去传输。SDH的帧周期都是 125 μs,帧长度为 9×270×N×8 bit,速率为 。其主要组成部分有: 比如STM-16的AU-PTR的容量(速率)为: 其中,125 μs为帧周期,AU-PTR在STM-16中的字节数为 1行9×N列字节,即1×9×16个字节。

信道中传输数字信号的通信系统称为

数字通信系统。通信系统中传输的基带信号为模拟信号时,这种系统称为模拟通信系统,传输的基带信号为数字信号的通信系统称为数字通信系统。通信系统都是在有噪声的环境下工作的(图中集中以噪声源表示)。

数字信号和模拟信号,我迷呀,有何区别?是不是模拟信号

模拟是y=sinx 来表示数据数字是1或0 来表示数据

模拟信号与数字信号的区别和优缺点

模拟信号和数字信号的区别:模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。 当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。 当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。模拟通信的优点是直观且容易实现,但存在两个主要缺点。模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多。数字化传输与交换的优越性:加强了通信的保密性。语音信号经A/D变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A变换还原成模拟信号。提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压 到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。以上就是关于模拟信号和数字信号的区别的一些优劣比较,希望对大家有帮助。

数字信号和模拟信号的最大区别?

模拟信号是用一系列连续变化的电磁波或电压信号来表示;数字信号是用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。 当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。 当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点 。

数字信号的数字通信

数字通信系统的主要性能指标信道传输速率 信道的传输速率通常是以每秒所传输的信息量多少来衡量。信息论中定义信源发生信息量的度量单位是“比特”(bit)。一个二进制码元所含的信息量是一个“比特”,所以信息传输速率的单位是比特/秒(bit/s)。例如一个数字通信系统,它每秒传输600个二进制码元,它的信息传输速率是600比特/秒(600bit/s)。? 数字信号的传输要求与模拟信号的要求不同,模拟信号的传输要求接收端无波形失真,而数字信号的传输是要求接收端无差错地恢复成原来的二进数码(可以允许接收波形失真,只要不影响正确恢复信码即可)。由于数字信号的频带非常宽(从直流一直到无限高的频率),但其主要能量则集中在低频段,而电缆传输信道是只允许比较低的频率成分通过的低通信道。当一系列数字脉冲信号通过带限的电缆信由于高频成分被滤去,使输出波形出现了失真。这种波形顶部变圆,底部展宽。一个码元的波形展宽到其他码元位置,影响到其他码元,这种影响称码间干扰。由于波形的拖尾很长,码间干扰将影响到数个码元。波形的拖尾可以是正的也可能是负的。如果所有的拖尾相加后是正值,而且达到门限判决电平就可能将“0”误判为“1”码;反之,如果所有的拖尾相加后在某个码元位置的值是负的,就可能将“1”码误判为“0”码。为了减少码间干扰,数字信号传输的基本理论——奈奎斯特第一准则规定带限信道的理想低道截止频率为fH时,最高的无码间干扰传输的极限速度为2fH。例如,信道带宽为2000Hz时,每秒最多可传送4000个二进制码元。一路数字电话速率为64kbit/s,则无码间干扰的信道带宽为32kHz。数字信号相关专业术语 1. digital signal processor (DSP)数字信号处理器 2. digital signal processor数字信号处理器 3. digital signal microprocessor数字信号微处理器 4. microprocessor, digital signal数字信号微处理器 5. processor, digital signal数字信号处理器 6. optically based digital signal processing engine 7. Digital Signal, Level 3三级数字信号 8. Digital Signal, Level 2二级数字信号 9. Digital Signal, Level 1一级数字信号 10. Digital Signal, Level O零级数字信号 11. Digital Signal数字信号

什么叫二进制数字信号?

什么叫二进制数字信号?具有两种不同状态的,就是二进制信号。比如常见的民用电,就是一种二进制信号: 有电时,是 220V。 无电时,是 0V。

模拟信号和数字信号各有什么优缺点

数字信号表示的是0,1代码;模拟信号是波型表示的。数字信号是不连续的模拟信号是连续的模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,时间上离散的模拟信号是一种抽样信号,数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。1. 模拟通信模拟通信的优点是直观且容易实现,但存在两个主要缺点。(1) 保密性差模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。(2) 抗干扰能力弱电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多2. 数字通信(1) 数字化传输与交换的优越性① 加强了通信的保密性。② 提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。③ 可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。(2) 数字化通信的缺点① 占用频带较宽。因为线路传输的是脉冲信号,传送一路数字化语音信息需占20?64kHz的带宽,而一个模拟话路只占用4kHz带宽,即一路PCM信号占了几个模拟话路。对某一话路而言,它的利用率降低了,或者详它对线路的要求提高了。② 技术要求复杂,尤其是同步技术要求精度很高。接收方要能正确地理解发送方的意思,就必须正确地把每个码元区分开来,并且找到每个信息组的开始,这就需要收发双方严格实现同步,如果组成一个数字网的话,同步问题的解决将更加困难。③ 进行模/数转换时会带来量化误差。随着大规模集成电路的使用以及光纤等宽频带传输介质的普及,对信息的存储和传输,越来越多使用的是数字信号的方式,因此必须对模拟信号进行模/数转换,在转换中不可避免地会产生量化误差。数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。模拟信号与数字信号(1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(AnalogSignal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(DigitalSignal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。(2)模拟信号与数字信号之间的相互转换模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(PulseCodeModulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(PhaseShift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。具体来说,数字信号有以下几个优势:“一是抗干扰能力比较强,传输信号的质量比较高,第二个是图像的清晰度高,换音的效果好。第三是可以更有效地利用频道资源,可以传输几百套节目,在模拟电视信号中,只能传输几十套。第四是可以提供各种信息服务,可以提供股市行情啊,电子商务信息啊

模拟信号和数字信号的转换问题?

对信号的分类方法很多,信号按数学关系、取值特征、能量功率、处理分析、所具有的时间函数特性、取值是否为实数等,可以分为确定性信号和非确定性信号(又称随机信号)、连续信号和离散信号(即模拟信号和数字信号)、能量信号和功率信号、时域信号和频域信号、时限信号和频限信号、实信号和复信号等。模拟信号和数字信号模拟信号是指信号波形模拟着信息的变化而变化,其主要特征是幅度是连续的,可取无限多个值;而在时间上则可连续,也可不连续。如图2所示。数字信号是指不仅在时间上是离散的,而且在幅度上也是离散的,只能取有限个数值的信号。如电报信号,脉冲编码调制(PCM,Pulse Code Modulation)信号等都属于数字信号。二进制信号就是一种数字信号,它是由“1”和“0”这两位数字的不同的组合来表示不同的信息。人们依据在通信系统中传送的是模拟信号还是数字信号,把通信系统分成模拟通信系统和数字通信系统。如果送入传输系统的是模拟信号,则这种通信方式为模拟通信。如今所使用的大多数电话和广播、电视系统都是采用的模拟通信方式。如果把模拟信号经过抽样、量化、编码后变换成数字信号后再进行传送,那么这种通信方式就是数字通信。和模拟通信相比,数字通信虽然占用信道频带较宽,但它具有抗干扰能力强,无噪声积累,便于存储、处理和交换,保密性强,易于大规模集成,实现微型化等优点,正越来越得到广泛的应用。模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

数字信号与集成电路的关系

数字信号,是指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示。,集成电路是一种采用特殊工艺,将晶体管、电阻、电容等元件集成在硅基片上而形成的具有一定功能的器件,英文缩写为IC。

在数字广播电视系统中,()的作用是把代表一定节目信息的数字信号还原为原始的模拟信号。

【答案】:B本题考核的是解码器的作用。编码器的作用是将信源发出的模拟信号转换成有规律的、适应信道传输的数字信号,解码器的功能与之相反,是把代表一定节目信息的数字信号还原为原始的模拟信号。

难道我们国内还没有发送数字信号广播吗?

国内早已发送数字信号广播。数字广播是指将数字化了的音频信号、视频信号,以及各种数据信号,在数字状态下进行各种编码、调制、传递等处理。同时,数字广播也是一项有别于传统所熟知的AM、FM的广播技术,它通过地面发射站,以发射数字信号来达到广播以及数据资讯传输目的。在中国,2009年北京电台下属的北京悦龙数字广播传媒科技有限公司自主研发了基于数字广播技术的推送式广播技术系统,从而开启了利用数字广播技术创新传统广播服务模式的大门,将传统的实时广播拓展为实时和非实时兼容的新型广播服务。

fm广播能传数字信号吗

可以的,数字广播(Digital broadcasting)是指将数字化了的音频信号、视频信号,以及各种数据信号,在数字状态下进行各种编码、调制、传递等处理。同时,数字广播也是一项有别于传统所熟知的AM、FM的广播技术,它通过地面发射站,以发射数字信号来达到广播以及数据资讯传输目的。

什么是数字信号?什么是数字电路?

数字信号:在时间上和数值上都是不连续变化的信号。处理数字信号的电路称为数字电路(digitalcircuit),它注重研究的是输入、输出信号之间的逻辑关系。在数字电路中,晶体管一般工作在截止区和饱和区,起开关的作用。

数字信号和模拟信号各是什么

二、模拟数据通信和数字数据通信 (Analog Data Communication & Digital Data Communication) 1.模拟数据与数字数据 我们一般将数据分为模拟数据和数字数据两大类。 模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。 数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 2.模拟信号与数字信号 (1)模拟信号与数字信号 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。 当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。 当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。 (2)模拟信号与数字信号之间的相互转换 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。 计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。 3.模拟数据通信与数字数据通信(1)模拟数据通信 路来传输模拟数据或数字数据对应的模拟信号。例如目前我们广泛使用公用电话线路来传输语音或计算机数字数据对应的模拟信号,我们也可以使用公共有线电视网来传输视频和计算机数字数据对应的模拟信号;而微波与卫星通信传输的也可以是模拟数据或数字数据对应的模拟信号。 为了用模拟数据通信的方法实现模拟数据和数字数据的远距离传输,我们一般不直接传输模拟信号(包括由数字信号转换而来的模拟信号),而是在发送方使用某一频率的电磁波作为载波(Carrier),然后用模拟信号或数字信号对其进行调制(Modulation),调制后的载波信号(为模拟信号)占有以该载波频率为中心的一段频谱,并能在适于该载波频率的介质上传输;而在接收方则通过解调制(Demodulation)还原叠加于载波上的模拟信号或数字信号。我们将可同时完成调制和解调的装置称为调制解调器(MODEM)。(2)数字数据通信 数字数据通信(Digital Data Communication)指直接利用数字传输技术在数字设备之间传输数字数据,或模拟数据对应的数字信号。由于计算机使用二进制数字信号,因而计算机与其外部设备之间,以及计算机局域网、城域网大多直接采用数字数据通信。此外,目前北美采用的24路PCM脉码调制(速率为1.544Mpbs),以及欧洲和我国采用的30路PCM脉码调制(速率为2.048Mbps)电话系统均是数字数据通信系统。由于数字数据通信传送的是离散的数字信号,即逐位传送二进制数字代码,因此要求系统应能确知传输线上正在传送的数位是0还是1。(3)数字数据通信的优点 与模拟数据通信相比较,数字数据通信具有下列优点: a. 来自声音、视频和其他数据源的各类数据均可统一为数字信号的形式,并通过数字通信系统传输 b. 以数据帧为单位传输数据,并通过检错编码和重发数据帧来发现与纠正通信错误,从而有效保证通信的可靠性 c. 在长距离数字通信中可通过中继器放大和整形来保证数字信号的完整及不累积噪音 d. 使用加密技术可有效增强通信的安全性 e. 数字技术比模拟技术发展更快,数字设备很容易通过集成电路来实现,并与计算机相结合,而由于超大规模集成电路技术的迅速发展,数字设备的体积与成本的下降速度大大超过模拟设备,性能/价格比高 f. 多路光纤技术的发展大大提高了数字通信的效率。 需要指出,鉴于传统公用电话网已在世界范围普及,目前家庭个人计算机用户大都通过电话线路与计算机网络相连;此外,随着卫星通信的发展,高容量、高宽带的多路复用传输也大大提高了模拟通信的传输效率。但是,如果在两台计算机的通信线路之间,只有部分电路采用数字通信,则数字通信的优点并不能充分地得到发挥。因此,为了提高通信效率,有条件的用户应安装数字数据通信专线,或直接接入局域网;此外,应大力发展陆上和海底的洲际光缆。 近20年来,数字数据通信技术已开始发展并得到广泛应用。目前,数字通信已开始在长距离话音和数字数据领域逐渐替代传统的模拟通信。计算机网络技术的应用发展,则大大推动了数字通信技术的迅速发展。可以预言,数字数据通信最终将取代模拟数据通信。数据通信的主要技术指标 在数字通信中,我们一般使用比特率和误码率来分别描述数据信号传输速率的大小和传输质量的好坏等;在模拟通信中,我们常使用带宽和波特率来描述通信信道传输能力和数据信号对载波的调制速率。 1.带宽 在模拟信道中,我们常用带宽表示信道传输信息的能力,带宽即传输信号的最高频率与最低频率之差。理论分析表明,模拟信道的带宽或信噪比越大,信道的极限传输速率也越高。这也是为什么我们总是努力提高通信信道带宽的原因。

模拟通讯系统可以传输数字信号吗?

发送设备的基本功能是使不同种类和速率的信息源与传输媒介相匹配,通常是将信息源产生的信息经过编码,并变换为便于传送的信号形式,送往传输介质。

索尼地面数字电视一体机 怎么搜地面数字信号?

找一根无线天线接入

lg电视地面数字信号接收怎么用

  目前地面的数字电视信号都受到当地广电管理部门的屏蔽和控制,用户基本是收不到该信号的;如果需要使用该电视机观看数字电视节目,建议联系当地的数字电视服务提供商购买、安装数字电视机顶盒和服务套餐;开通数字电视服务后,用户可以按以下方法进行连接:<br/>1、将室外引入的数字电视信号线插入数字电视机顶盒的信号输入接口;如有智能卡则将智能卡插入机顶盒的卡槽内;<br/>2、使用AV线,将数字电视机顶盒和电视机连接起来;<br/>3、将电视机的信号源切换为AV模式即可显示出机顶盒的画面,表明电视机和机顶盒已经成功连接;<br/>4、接下来就可以使用机顶盒的遥控器操作,执行自动搜台,搜台完成后就可以开始观看数字电视节目了。

请问一下电视带地面数字一体机的功能,可以接收地面数字信号,用锅盖的效果好还是天线的效果好

数字电视一体机也有多种类型,按信号传输方式分类,可以分为:1.地面数字电视一体机(连接天线)、2.有线数字电视一体机(接有线电视网络)、3.卫星数字电视(通过卫星接收天线,即俗称“锅”,和卫星制式的外置机顶盒)。1是用天线免费接收,但只有个别城市开通;节目少,2要到广电开通,收费;3锅盖就是你自己弄了。效果的话,只要信号强度够,能能够收看高清节目,只是锅盖相对有线,受干扰的可能更大,雷雨、电磁等可以造成信号干扰,而有线则基本上很小。综上所述,3锅盖可以免费,但基本上目前是违规的,1可以免费,但只有屈指可数的几个台,所以只有选择2,收费,说白了就是机顶盒。你先弄不明白了你的电视是什么类型再说下一步。

普通电视怎么可以接收地面数字信号,需要买什么设备

地面数字信号指的是有线还是无线的数字电视信号?

这个个电路图中LM393的工作原理,为什么上面那个是数字信号,下面是模拟信号,真心求教

没发现有数字信号啊

磁带存储的是模拟信号还是数字信号?顺便介绍一下他和磁头的工]作原理

gauss white niose

求基于matlab的数字信号调制解调的外文翻译

引言---美国ni公司推出的labview语言是一种优秀的面向对象的图形化编程语言,使用图标代替文本代码创建应用程序,拥有大量与其他应用程序通信的vi库。labview作为目前国际上应用最广的数据采集和控制开发环境之一,在测试与测量、数据采集、仪器控制、数字信号分析、通信仿真等领域获得了广泛的应用。本文主要研究基于labview的通信仿真。 labview程序结构---labview程序主要包括两部分:前面板(即人机界面)和方框图程序。前面板用于模拟真实仪器的面板操作,可设置输入数值、观察输出值以及实现图表、文本等显示。框图程序应用图形编程语言编写,相当于传统程序的源代码。其用于传送前面板输入的命令参数到仪器以执行相应的操作。labview的强大功能在于层次化结构,用户可以把创建的vi程序当作子程序调用,以创建更复杂的程序,而且,调用阶数可以是任意的。labview编程方法与传统的程序设计方法不同,它拥有流程图程序设计语言的特点,摆脱了传统程序语言线性结构的束缚。labview的执行顺序依方块图间数据的流向决定,而不像一般通用的编程语言逐行执行。在编写方块图程序时,只需从功能模块中选用不同的函数图标,然后再以线条相互连接,即可实现数据的传输。 仿真过程---信号源产生的是模拟信号,必须首先对它进行数字处理。在仿真过程中,用100hz的正弦信号作为信号源。按照一般语音通信的要求,这里采用8khz速率对100hz的正弦号进行抽样,得到的是间隔为125μs的离散抽样值。信号的幅度为归一化幅度,最小幅度为-1,最大幅度为1,再进行32级(4bit)pcm量化编码。再将每一个样值转化成4bit的二进制的pcm代码流,其速率为32kbps。对pcm编码的数据流进行汉明编码,得到的是56kbps的纠错编码后的数据流。随后进行调制,在发送端对码流进行4psk数字编码调制,采用的载波是400khz的正弦波,然后送上信道进行传输。信道是最常见的高斯加性白噪声信道,信号传输过程中受到高斯噪声的干扰。在接收端对接受到的码流进行数字解调、汉明码解码,最后pcm信号恢复所发送的信号。---这里所使用的仿真环境为labview软件。下文中主要针对4psk的仿真进行叙述。● 抽样、量化和编码---在发送端,源(source)子vi产生一个100hz的正弦信号作为信号源,通过量化(quantify)子vi对它进行抽样和量化。对信号源进行8khz的抽样,抽样产生的离散抽样值归一化为绝对值小于等于1的数据流。量化器把-1~1的范围等分为32个小区间,每一个区间用0~31之间的一个整数表示,每个样值通过它被量化成32个值中的某一个值,再转化成元素为0、1的矢量,即c端输出的源信息流。这时输出的是长度为4的矢量,进入到编码(coding)子vi。在信号传输的过程中,为了提高信号的传输效率,降低误码率,采用了纠错编码技术。这里采用的是(4,7)汉明纠错编码技术。对8ksps的矢量信号中,每个矢量加入3bit的控制位,但所占的时间长度仍为原来4位矢量的时间长度。接着,将7位的矢量信号进行串行化,产生56kbps的0、1数据流输出到a端,如图1所示。● 调制、解调和信道传输---从a端输出的二进制数据流在调制(modulation)子vi中进行4psk数字调制。4psk是受0~3这4个数据调制的,这四个值是用连续两个二进制位表示的。这里进行的调制是基带调制,调制子vi输出的调制过后的基带信号。采用多个控件实现对调制的一些基本参数的设定,如字符速率、每个字符的采样数、波形形成滤波器的类型及参数。输出的基带信号通过上变频(upconverter)vi实现上变频,把基带信号搬移到400khz的频率段。对应实际中的信号,就可以直接发射到信道上了。仿真过程中,采用的是一个简单的加性高斯白噪声信道模型。通过对信噪比(eb/no)控件的设置,实现对信道信噪比参数的选择。接受端收到一个被信道噪声损伤的信号,通过相逆过程实现解调功能。经过下变频(downconverter)vi程序下变频的基带信号进入到解调(demodulation)子vi。在解调中进行相位检测,将4个不同的相位检测出来,映射成0~3的4个不同的量值,然后转换为2bit的二进制比特流从b端输出。所述实现了调制解调和高斯白噪声信道的传输,如图2所示。● 解码和信号恢复---b端输出的二进制比特流进入到解码(decode)子vi,其完成数据流的汉明码译码的功能。解码vi将比特流组成七维的矢量数组,经汉明距离的判断,再把七维矢量纠错转化为四维矢量,即d端输出的接受信息流,完成纠错译码的功能。四维的矢量数组由to dwave子vi化为数字波形进行显示,接下来通过数模转换vi恢复到模拟的信号,如图3所示。● 信号的同步---为了实现信号的同步,避免信道延迟带来的影响,在整个传输过程中引入了保护信号和同步信号。生成的保护和同步信号从e端输出。在信息比特进入调制子vi之前,就在信息比特的前面加上了保护信号和同步信号,e端和a端输出的信号合为一路信号,然后再进行调制。在接受方通过把同步信号映射为字符,再与接受的字符流进行比较,确定同步信号的位置,实现接受和发射的同步。同步信号的产生和输出,如图4所示。● 误码率的计算---为了计算误码率,c端的源信息流和d端的接受信息流通过一个比较(compare)子vi进行比较,计算出误码的个数,从而计算出误码率,如图5所示。● 性能分析---4psk数字相位调制波形可表示为---其向量表达式为---4psk符号错误概率为---由于进行了(7,4)汉明码纠错编码,然后进行4psk调制,并且 比特符号对相应信号相位映射中采用格雷(gray)码,因而编码比特能量可以用信息比特能量表示为---且---程序采用的模拟加性高斯白噪声信道,设定信道的信噪比则为 ,可得---图6为仿真生成和理论生成的误码率的对照图。信道信噪比超过7db以后,要求样本数很大,由于计算机内存的限制,使得仿真的结果与理论的结果有一定偏差。在7db之前,仿真误比特率和理论值很接近,拟合得很好。结论---作为应用最广的数据采集和控制开发环境之一,labview在通信仿真中有着重要的作用。由于labview有很强的仪器控制功能,相对于matlab等其他仿真软件,labview能更有效地把仿真试验移植到实际中。labview只需要用实际的发射和接受机及实际的信道来替换模拟的发射和接受机及模拟的信道,但也要进行一定量的相应改动。这样就能很好地把labview在仿真和仪器控制两方面的功能有机结合起来,更好地发挥labview在虚拟仪器中的作用。参考文献1 田丽华编著.编码理论.西安电子科技大学出版社.20042 john g. proakis. digital communication. fourth edition. mcgraw-hill companies. 20013 曹志刚,钱亚生编著.现代通信原理.清华大学出版社. 2002

吉大考研通信工程数字信号处理的书是什么样的第几版的

081001通信与信息系统、081002信号与信息处理:电路与数字信号处理:《电路》(第四版)邱关源,高等教育出版社;或《电路分析基础》(第三版)李瀚逊,高等教育出版社。《数字信号处理》姚天任,华中科技大学出版社;或《数字信号处理原理及其Matlab实现》丛玉良,电子工业出版社,2005年;信号与系统和通信原理:《信号与线性系统分析基础》林梓,北京邮电大学出版社;或《信号与线性系统》(第二版)吴大正,高等教育出版社。《现代通信原理教程》赵蓉等编,北京邮电大学出版社;或《通信原理》(第三版)周炯槃,北京邮电大学出版社

南京邮电大学考研科目:数字信号处理、微机原理及应用、通信系统原理哪个比较好学?容易考?

南邮各个专业要求是不一样的。比如通院,通原应该是必考。初试补考复试也必须考。具体的你可以去南邮网站上去看看。各个专业课总体来说都不是很难,难度差不多,认真看下去,应该都不会有太大问题,往年试卷一定要看会看懂。南邮每年考的人很多,因此分数相当高。通院尤其如此,往年分数你也是可以在南邮网站上看到的。计算机貌似考的人少点,你可以考虑考虑。计算机的就业也是相当牛的,貌似有赶超通院的趋势,去腾讯,百度的貌似还不真不少。

LVDS是数字信号吗

当然是的。这通常用于传输高速信号。因为是一对线可以消除传输通道中的共模干扰

请问数字信号处理主要学什么?

数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。数字信号处理课程主要研究用数字序列或符号序列表示信号,并用数字计算方法对这些序列进行处理,以便把这些信号变成符合某种需要的形式,例如对信号进行滤波处理、频谱分析、功率谱估计等。本课程重点讨论确定性数字信号的处理,在此基础上,对随机信号处理进行研究。其主要内容有:(1)离散傅里叶变换(DFT):DFT基本理论、基本方法、基本性质,利用循环卷积计算线性卷积方法。快速傅里叶变换(FFT)方法。运用FFT对信号进行谱分析,运用FFT计算线性卷积;(2)数字滤波器原理和设计方法:数字滤波器IIR和FIR类型滤波器基本网络结构,冲激不变法、双线性变换法数字滤波器设计方法,数字巴特沃斯(Butterworth)、切比雪夫(Chebyshev)及椭圆数字滤波器设计方法、步骤及特性。IIR数字滤波器频率变换方法技术,FIR窗函数方法设计滤波器,频率取样方法设计FIR类数字滤波器方法及其特性;(3)离散随机过程:离散随机过程的几个基本特性,功率谱基本性质和计算方法,随机信号通过线性系统;(4)有限长效应:有限长效应引起的误差的分类,不同方法表示负数时量化效应的不同影响。信号由于量化所引入的噪声情形,定点、浮点运算中有限长影响的情形,IIR滤波器、FFT中的数字量化效应情形;(5)功率谱估计:估计理论的几个基本概念,自相关、周期图、直接变换谱估计方法的分析、实现。现代谱估计的几个基本方法。

如何将酒店的数字信号改成模拟电视信号

面对数字机顶盒的即将全面普及,作为连锁酒店的管理者的您,是否曾考虑过给自己的连锁酒店的电视播放做一个全新的宾馆数字共享改造.百套旅店客房的电视到底该怎么做呢?天光(Skylight)--连锁酒店百套客房电视播放解决方案工程部这样介绍到:如果有百套客房的话建议申请30个数字电视播放机顶盒,作为机房电视共享播放前端信号来源,然后借助调制器,混合器,放大器等等数字电视改造共享设备就可以解决了百套房间电视收视问题.100个房间共享30个机顶盒播放的节目(一个机顶盒控制输出一个节目),这样一来原本需要申请100个数字电视播放机顶盒的现在仅需要30个就解决了,不仅省下了70个购买数字电视机顶盒,每年12个月机顶盒的收视费用都省下来了,比方机顶盒一个月25元收视费用(70*25*12=21000),一年就节省了2万多元的收视费用。并且还可以利用自己的改造完的数字电视共享网络增加自己的连锁酒店的广告宣传。也可以利用免费电视信号源来充实自己的酒店客房电视共享信号。 示意图如下所示:

通信原理与数字信号处理学哪个更简单、好学?

这两个都不好学,都枯燥的

要知道数字信号是怎么把音频加密和解调,需要学习什么书籍?

学习数字信号对音频的加密和解调需要以下几种书籍:"数字信号处理" (Digital Signal Processing)"信息安全原理与实践" (Principles and Practice of Information Security)"数字通信原理" (Digital Communications Principles)"音频工程技术" (Audio Engineering Technology)这些书籍将帮助您了解数字信号处理的基础知识,以及数字信号对音频加密和解调的原理和实际应用。在学习过程中,您还可以通过实践和实验来加深对数字信号的理解。

数字信号处理VS通信原理,谁更难,谁更难理解

个人感觉通原难些

通信原理的 数字信号的量化 是怎么回事?有知道的帮忙回答一下,谢谢~

分为均匀量化和非均匀量化,均匀量化,就是把输入信号的取值域等距离分割就行了。非均匀量化就是量化间隔不等的量化。

数字信号的基本处理过程是什么?

1.数字通信原理--简介数字通信是用数字信号作为载体来传输消息,或用数字信号对载波进行数字调制后再传输的通信方式。它可传输电报、数字数据等数字信号,也可传输经过数字化处理的语声和图像等模拟信号。数字通信的早期历史是与电报的发展联系在一起的。2.数字通信原理--结构组成通信系统一般由信息源、发送设备、信道、接受设备、受信者以及噪声源几部分构成。各部分功能如下:信源/信宿:产生发出/接收信息的人或机器;信源编/译码:将信源送出的模拟信号数字化或将信源输出的数字信号进行变换以提高有效性,A/D转换、压缩编码;信道编/译码:提高数字通信的可靠性,又叫抗干扰编码,如差错控制编码;调制:把信号频谱搬移到较高的频段上,以提高信号在信道上的传输速率,达到信号复用的目的,提高抗干扰性能。同步:发送端和接收端要有统一的时间标准,使“步调一致”或“节拍一致”,是数字通信的前提;信道:信号的通路,即用来传输信号的媒质,在数字通信系统模型中,可将其分为狭义信道和广义信道。噪声:在传输和接收之间塞进来的额外有害信号,也称为信道噪声,如起伏噪声、脉冲干扰、热噪声等;3.数字通信原理--优点随着微电子技术和计算机技术的迅猛发展和广泛应用,数字通信在今后的通信方式中必将逐步取代模拟通信而占主导地位。与模拟通信系统相比具有突出的优点:1)数字传输的抗干扰能力强,尤其在帧中继时,数字信号可以再生而消除噪声的积累;2)通信可靠性高,传输差错可控制,可有效改善传输质量;3)便于使用现代的数字信号处理技术来对数字信息进行处理;4)数字信息易于做高保密性的加密处理;5)数字通信可以综合传递各种消息,使通信系统的功能增强,便于形成ISDN网。4.数字通信原理--应用数字通信技术的应用:1)已应用的:集群通信系统、蜂窝式移动电话、CT2无绳通信;2)正在发展中的:卫星宽带接入系统、宽带CDMA蜂窝系统、无线局域网等系统。