barriers / 阅读 / 详情

电脑CPU 发展史?

2023-06-06 08:17:01
共6条回复
北有云溪

电脑CPU 发展史分为几个阶段:

1、第1阶段(1971-1973年)是4位和8位低档微处理器时代,通常称为第1代,其典型产品是Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机。

英特尔在1971年11月15日向全球市场推出4004微处理器,4004 是英特尔第一款微处理器,为日后开发系统智能功能以及个人电脑奠定发展基础。

2、第2阶段(1974—1977年)是8位中高档微处理器时代,通常称为第2代,其典型产品是Intel8080/8085、Motorola公司、Zilog公司的Z80等。它们的特点是采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍(基本指令执行时间1~2μs)。

1974年,Intel推出8080处理器,并作为Altair个人电脑的运算核心,成为史上第一款下订单后制造的机种。Intel 8080晶体管数目约为6千颗。

3、第3阶段(1978—1984年)是16位微处理器时代,通常称为第3代,其典型产品是Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000等微处理器。

这一时期著名微机产品有IBM公司的个人计算机。1981年IBM公司推出的个人计算机采用8088CPU。紧接着1982年又推出了扩展型的个人计算机IBM PC/XT,对内存进行了扩充,并增加了一个硬磁盘驱动器。

80286(也被称为286)是英特尔首款能执行所有旧款处理器专属软件的处理器,这种软件相容性之后成为英特尔全系列微处理器的注册商标,在6年的销售期中,估计全球各地共安装了1500万部286个人电脑。

1984年,IBM公司推出了以80286处理器为核心组成的16位增强型个人计算机IBM PC/AT。由于IBM公司在发展个人计算机时采用 了技术开放的策略,使个人计算机风靡世界。

4、第4阶段(1985—1992年)是32位微处理器时代,又称为第4代。其典型产品是Intel公司的80386/80486,Motorola公司的M69030/68040等。

微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业。同期,其他一些微处理器生产厂商(如AMD、TEXAS等)也推出了80386/80486系列的芯片。

1989年,大家耳熟能详的80486芯片由英特尔推出。这款经过四年开发和3亿美元资金投入的芯片的伟大之处在于它首次实破了100万个晶体管的界限,集成了120万个晶体管,使用1微米的制造工艺。80486的时钟频率从25MHz逐步提高到33MHz、40MHz、50MHz。

5、第5阶段(1993-2005年)是奔腾(pentium)系列微处理器时代,通常称为第5代。典型产品是Intel公司的奔腾系列芯片及与之兼容的AMD的K6、K7系列微处理器芯片。

6、第6阶段(2005年至今)是酷睿(core)系列微处理器时代,通常称为第6代。“酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。早期的酷睿是基于笔记本处理器的。

酷睿2处理器的Core微架构是Intel的以色列设计团队在Yonah微架构基础之上改进而来的新一代英特尔架构。最显著的变化在于在各个关键部分进行强化。为了提高两个核心的内部数据交换效率采取共享式二级缓存设计,2个核心共享高达4MB的二级缓存。

扩展资料:

CPU发展史简单来说就是Intel公司的发展历史。CPU从最初发展至今已经有四十多年的历史了,这期间,按照其处理信息的字长,CPU可以分为:四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等等。

cloud123

电脑CPU,也叫做中央处理器,CPU发展史简单来说就是Intel公司的发展历史。

CPU从最初发展已经有四十多年的历史了,这期间,按照其处理信息的字长,CPU可以分为:四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等等。

1971 年,Intel 推出了世界上第一款微处理器 4004,它是一个包含了2300个晶体管的4位CPU。

1978年,Intel公司首次生产出16位的微处理器命名为i8086。

1978年,Intel还推出了具有 16 位数据通道、内存寻址能力为 1MB、最大运行速度 8MHz 的8086。

1979年,Intel公司推出了8088芯片,它是第一块成功用于个人电脑的CPU。

1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。

1982年,Intel推出80286芯片,它比8086和8088都有了飞跃的发展,进而使得以后的 PC 机不得不一直兼容于PC XT/AT。

1985年Intel推出了80386芯片,它X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步。

1989 年,80486 横空出世,它第一次使晶体管集成数达到了 120 万个,并且在一个时钟周期内能执行 2 条指令。

进入新世纪以来,CPU进入了更高速发展的时代,仍然是Intel跟AMD公司在 两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium III和Celeron,Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。

扩展资料:

电脑CPU的发展历史,其实是它的性能不断演化增强的过程。

CPU主要的性能指标有:

1、主频即CPU的时钟频率(CPU Clock Speed)。一般说来,主频越高,CPU的速度越快。由于内部结构不同,并非所有的时钟频率相同的CPU的性能都一样。

2、内存总线速度(Memory-Bus Speed) 指CPU与二级(L2)高速缓存和内存之间的通信速度。

3、扩展总线速度(Expansion-Bus Speed) 指安装在微机系统上的局部总线如VESA或PCI总线接口卡的工作速度。

4、工作电压(Supply Voltage) 指CPU正常工作所需的电压。早期CPU的工作电压一般是5V,随着CPU主频提高,CPU工作电压有逐步下降的趋势,以解决发热过高的问题。

参考资料:

电脑CPU百度百科

CPU发展史 百度百科

可乐

 世界上第一款微处理器——4004的诞生到现在已有三十多年了。在这三十多年里,它一直按照业界无人不知的“摩乐定律”发展。目前其运算速度已达到了GHz级。 但是它今天的辉煌是怎么得来的呢?在这个过程中它历经了什么磨练呢?下面我们就以“4004”开始我们的CPU之旅吧!

一、天之骄子,应运而生

  1971年,世界上第一款微处理器应运而生。它的母亲就是现今IT界的龙头老大英特尔公司(Intel)。4004是它的母亲赋予这位新生儿的名字。但是其中仅集成2300个晶体管,功能相当有限,而且速度也很慢。因此,蓝色巨人IBM及大部分商业用户不屑一顾。不管怎样,它都算得上是划时代的产品。它的母亲也因此与微处理器结下了不解之缘……

二、和平年代,新生儿的摇篮

  1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也把这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等(286、386、486等)更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后的CPU的命名上沿用了原先的X86序列。

  就在Intel不断发展壮大时,AMD及Cyrix也看上CPU这个潜力无穷的市场,并先后加入到芯片研发生产行列,并将其产品同样命名为386、486。由于它们的产品性能优异,且价格低廉,很快就抢占了Intel的半璧江山。其中AMD更是成为Intel在业界的日后的“死对头”。

三、硝烟四起,时势造英雄

 1、大战前夕的小插曲

  继承着80486大获成功的东风,赚翻了几倍资金的INTEL在1993年推出了全新一代的高性能处理器——奔腾。由于CPU市场的竞争越来越趋向于激烈化,INTEL觉得不能再让AMD和其他公司用同样的名字来抢自己的饭碗了,于是提出了商标注册,由于在美国的法律里面是不能用阿拉伯数字注册的,于是INTEL玩了个花样,用拉丁文去注册商标。奔腾在拉丁文里面就是“五”的意思了。INTEL公司还替它起了一个相当好听的中文名字——奔腾。

  至于AMD方面,也相应地推出了K5系列。它的频率一共有六种:75/90/100/120/133/166,内部总线的频率和奔腾差不多,都是60或者66MHz,虽然它在浮点 运算方面比不上奔腾,但是由于K5系列CPU都内置了24KB的一级缓存,比奔腾内置的16KB多出了一半,因此在整数运算和系统整体性能方面甚至要高于同频率的奔腾。即便如此,因为k5系列的 交付日期一再后拖,AMD公司在“586”级别的竞争中最终还是败给了INTEL。

 2、乘胜追击,霸占皇座

  初步占据了一部分CPU市场的Intel并没有停下自己的肢步,在其他公司正在不断追赶自己的奔腾之时,又在1996年推出了最新一代的第六代X86系列CPU——奔腾 Pro。1996年底,Intel又推出了Pentium MMX(多能奔腾)处理器。1997年5月,Intel推出了影响力最大的Pentium ⅡCPU——集Pentimu Pro 精华与MMX技术完美结合之典范。为了占领低端市场,Intel于1998年推出Celeron 处理器。在高端的、基于RISC的工作站和服务器上,于98与99年间,Intel公司推出了新一款Pentium ⅡXeon (至强处理器)。99年初,Intel推出了新一代处理器PentiumⅢ。同年10月,又推出了新制程的PentiumⅢ。

  在众多产品中,奔腾 Pro由于价格过于昂贵,只能充当市场中的一颗流星,稍纵即逝,并未为Intel带来什么优势。而真正作用非凡的是其改良版——Pentium MMX(多能奔腾)处理器。而PentiumⅢ更是这Intel创造了世纪末的辉煌。一次又一次的胜利使Intel登上了处理器市场的皇座。

  至于AMD方面也不甘示弱。继1995年推出了K5系列。1997年4月,AMD推出了自己研制的新产品K6。98及99年AMD先后推了出了K6的后续版本——K6Ⅱ及K6Ⅲ。而K7则是99年6月AMD公司为迎击Pentium而推出的首款SlotA架构CPU,并命名为Athlon。这都对Intel构成一定的威胁,K6Ⅱ性能更是全面超过Intel的同等产品,而价格却相当合理,使AMD扬眉吐气。

 3、新世纪之战

  进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium Ⅱ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。而这些产品都是我们耳熟能详的

蓓蓓

分为几个阶段:

  1. 第一阶段:

    第1阶段(1971-1973年)是4位和8位低档微处理器时代,通常称为第1代,其典型产品是Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机。

    英特尔在1971年11月15日向全球市场推出4004微处理器,4004 是英特尔第一款微处理器,为日后开发系统智能功能以及个人电脑奠定发展基础。

  2. 第二阶段:

    第2阶段(1974—1977年)是8位中高档微处理器时代,通常称为第2代,其典型产品是Intel8080/8085、Motorola公司、Zilog公司的Z80等。它们的特点是采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍(基本指令执行时间1~2μs)。

    1974年,Intel推出8080处理器,并作为Altair个人电脑的运算核心,成为史上第一款下订单后制造的机种。Intel 8080晶体管数目约为6千颗。

  3. 第三阶段:

    第3阶段(1978—1984年)是16位微处理器时代,通常称为第3代,其典型产品是Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000等微处理器。

    这一时期著名微机产品有IBM公司的个人计算机。1981年IBM公司推出的个人计算机采用8088CPU。紧接着1982年又推出了扩展型的个人计算机IBM PC/XT,对内存进行了扩充,并增加了一个硬磁盘驱动器。

    80286(也被称为286)是英特尔首款能执行所有旧款处理器专属软件的处理器,这种软件相容性之后成为英特尔全系列微处理器的注册商标,在6年的销售期中,估计全球各地共安装了1500万部286个人电脑。

    1984年,IBM公司推出了以80286处理器为核心组成的16位增强型个人计算机IBM PC/AT。由于IBM公司在发展个人计算机时采用 了技术开放的策略,使个人计算机风靡世界。

  4. 第四阶段:

    第4阶段(1985—1992年)是32位微处理器时代,又称为第4代。其典型产品是Intel公司的80386/80486,Motorola公司的M69030/68040等。

    微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业。同期,其他一些微处理器生产厂商(如AMD、TEXAS等)也推出了80386/80486系列的芯片。

    1989年,大家耳熟能详的80486芯片由英特尔推出。这款经过四年开发和3亿美元资金投入的芯片的伟大之处在于它首次实破了100万个晶体管的界限,集成了120万个晶体管,使用1微米的制造工艺。80486的时钟频率从25MHz逐步提高到33MHz、40MHz、50MHz。

  5. 第五阶段:

    第5阶段(1993-2005年)是奔腾(pentium)系列微处理器时代,通常称为第5代。典型产品是Intel公司的奔腾系列芯片及与之兼容的AMD的K6、K7系列微处理器芯片。

  6. 第六阶段:

    第6阶段(2005年至今)是酷睿(core)系列微处理器时代,通常称为第6代。“酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。早期的酷睿是基于笔记本处理器的。 酷睿2:英文名称为Core 2 Duo,是英特尔在2006年推出的新一代基于Core微架构的产品体系统称。于2006年7月27日发布。酷睿2是一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Conroe,移动版的开发代号为Merom。

    酷睿2处理器的Core微架构是Intel的以色列设计团队在Yonah微架构基础之上改进而来的新一代英特尔架构。最显著的变化在于在各个关键部分进行强化。为了提高两个核心的内部数据交换效率采取共享式二级缓存设计,2个核心共享高达4MB的二级缓存。

okok云

计算机发展史

无处不在、无所不能的电脑,已历经了50多个春华秋实。50余年在人类的历史长河中只是一瞬间,电脑却彻底改变了我们的生活。回顾电脑发展的历史,并依此上溯它的起源,真令人惊叹沧海桑田的巨变;历数电脑史上的英雄人物和跌宕起伏的发明故事,将给后人留下了长久的思索和启迪。请读者随着我们的史话倒转时空,从电脑最初的源头说起。

谁都知道,电脑的学名叫做电子计算机。以人类发明这种机器的初衷,它的始祖应该是计算工具。英语里“Calculus”(计算)一词来源于拉丁语,既有“算法”的含义,也有肾脏或胆囊里的“结石”的意思。远古的人们用石头来计算捕获的猎物,石头就是他们的计算工具。著名科普作家阿西莫夫说,人类最早的计算工具是手指,英语单词“Dight”既表示“手指”又表示“整数数字”;而中国古人常用“结绳”来帮助记事,“结绳”当然也可以充当计算工具。石头、手指、绳子……,这些都是古人用过的“计算机”。

不知何时,许多国家的人都不约而同想到用“筹码”来改进工具,其中要数中国的算筹最有名气。商周时代问世的算筹,实际上是一种竹制、木制或骨制的小棍。古人在地面或盘子里反复摆弄这些小棍,通过移动来进行计算,从此出现了“运筹”这个词,运筹就是计算,后来才派生出“筹”的词义。中国古代科学家祖冲之最先算出了圆周率小数点后的第6位,使用的工具正是算筹,这个结果即使用笔算也很不容易求得。

欧洲人发明的算筹与中国不尽相同,他们的算筹是根据“格子乘法”的原理制成。例如要计算1248×456,可以先画一个矩形,然后把它分成3×2个小格子,在小格子边依次写下乘数、被乘数的各位数字,再用对角线把小格子一分为二,分别记录上述各位数字相应乘积的十位数与个位数。把这些乘积由右到左,沿斜线方向相加,最后就得到乘积。1617年,英国数学家纳皮尔把格子乘法表中可能出现的结果,印刻在一些狭长条的算筹上,利用算筹的摆放来进行乘、除或其他运算。纳皮尔算筹在很长一段时间里,是欧洲人主要的计算工具。算筹在使用中,一旦遇到复杂运算常弄得繁杂混乱,让人感到不便,于是中国人又发明了一种新式的“计算机”。

著名作家谢尔顿在他的小说《假如明天来临》里讲过一个故事:骗子杰夫向经销商兜售一种袖珍计算机,说它“价格低廉,绝无故障,节约能源,十年中无需任何保养”。当商人打开包装盒一看,这台“计算机”原来是一把来自中国的算盘。世界文明的四大发源地──黄河流域、印度河流域、尼罗河流域和幼发拉底河流域──先后都出现过不同形式的算盘,只有中国的珠算盘一直沿用至今。珠算盘最早可能萌芽于汉代,定型于南北朝。它利用进位制记数,通过拨动算珠进行运算:上珠每珠当五,下珠每珠当一,每一档可当作一个数位。打算盘必须记住一套口诀,口诀相当于算盘的“软件”。算盘本身还可以存储数字,使用起来的确很方便,它帮助中国古代数学家取得了不少重大的科技成果,在人类计算工具史上具有重要的地位。

15世纪以后,随着天文、航海的发展,计算工作日趋繁重,迫切需要探求新的计算方法并改进计算工具。1630年,英国数学家奥特雷德使用当时流行的对数刻度尺做乘法运算,突然萌生了一个念头:若采用两根相互滑动的对数刻度尺,不就省得用两脚规度量长度吗?他的这个设想导致了“机械化”计算尺的诞生。奥特雷德是理论数学家,对这个小小的计算尺并不在意,也没有打算让它流传于世,此后二百年,他的发明未被实际运用。18世纪末,以发明蒸汽机闻名于世的瓦特,成功地制出了第一把名副其实的计算尺。瓦特原来就是一位仪表匠,他的蒸汽机工厂投产后,需要迅速计算蒸汽机的功率和气缸体积。瓦特设计的计算尺,在尺座上多了一个滑标,用来“存储”计算的中间结果,这种滑标很长时间一直被后人所沿用。

1850年以后,对数计算尺迅速发展,成了工程师们必不可少的随身携带的“计算机”,直到20世纪五、六十年代,它仍然是代表工科大学生身份的一种标志。

凝聚着许许多多科学家和能工巧匠智慧的早期计算工具,在不同的历史阶段发挥过巨大作用,但也将随着科学发展而逐渐消亡,最终完成它们的历史使命。

第一台真正的计算机是著名科学家帕斯卡(B.Pascal)发明的机械计算机。

帕斯卡1623年出生在法国一位数学家家庭,他三岁丧母,由担任着税务官的父亲拉扯他长大成人。从小,他就显示出对科学研究浓厚的兴趣。

少年帕斯卡对他的父亲一往情深,他每天都看着年迈的父亲费力地计算税率税款,很想帮助做点事,可又怕父亲不放心。于是,未来的科学家想到了为父亲制做一台可以计算税款的机器。19岁那年,他发明了人类有史以来第一台机械计算机。

帕斯卡的计算机是一种系列齿轮组成的装置,外形像一个长方盒子,用儿童玩具那种钥匙旋紧发条后才能转动,只能够做加法和减法。然而,即使只做加法,也有个“逢十进一”的进位问题。聪明的帕斯卡采用了一种小爪子式的棘轮装置。当定位齿轮朝9转动时,棘爪便逐渐升高;一旦齿轮转到0,棘爪就“咔嚓”一声跌落下来,推动十位数的齿轮前进一档。

帕斯卡发明成功后,一连制作了50台这种被人称为“帕斯卡加法器”的计算机,至少现在还有5台保存着。比如,在法国巴黎工艺学校、英国伦敦科学博物馆都可以看到帕斯卡计算机原型。据说在中国的故宫博物院,也保存着两台铜制的复制品,是当年外国人送给慈僖太后的礼品,“老佛爷”哪里懂得它的奥妙,只把它当成了西方的洋玩具,藏在深宫里面。

帕斯卡是真正的天才,他在诸多领域内都有建树。后人在介绍他时,说他是数学家、物理学家、哲学家、流体动力学家和概率论的创始人。凡是学过物理的人都知道一个关于液体压强性质的“帕斯卡定律”,这个定律就是他的伟大发现并以他的名字命名的。他甚至还是文学家,其文笔优美的散文在法国极负盛名。可惜,长期从事艰苦的研究损害了他的健康,1662年英年早逝,死时年仅39岁。他留给了世人一句至理名言:“人好比是脆弱的芦苇,但是他又是有思想的芦苇。”

全世界“有思想的芦苇”,尤其是计算机领域的后来者,都不会忘记帕斯卡在浑沌中点燃的亮光。1971年发明的一种程序设计语言──PASCAL语言,就是为了纪念这位先驱,使帕斯卡的英名长留在电脑时代里。

帕斯卡逝世后不久,与法兰西毗邻的德国莱茵河畔,有位英俊的年轻人正挑灯夜读。黎明时分,青年人站起身,揉了一下疲乏的腰部,脸上流露出会心的微笑,一个朦胧的设想已酝酿成熟。虽然在帕斯卡发明加法器的时候,他尚未出世,但这篇由帕斯卡亲自撰写的关于加法计算机的论文,却使他似醍醐灌顶,勾起强烈的发明欲。他就是德国大数学家、被《不列颠百科全书》称为“西方文明最伟大的人物之一”的莱布尼茨(G.Leibnitz)。

莱布尼茨早年历经坎坷。当幸运之神降临之时,他获得了一次出使法国的机会。帕斯卡的故乡张开臂膀接纳他,为他实现计算机器的夙愿创造了契机。在巴黎,他聘请到一些著名机械专家和能工巧匠协助工作,终于在1674年造出一台更完美的机械计算机。

莱布尼茨发明的新型计算机约有1米长,内部安装了一系列齿轮机构,除了体积较大之外,基本原理继承于帕斯卡。不过,莱布尼茨技高一筹,他为计算机增添了一种名叫“步进轮”的装置。步进轮是一个有9个齿的长圆柱体,9个齿依次分布于圆柱表面;旁边另有个小齿轮可以沿着轴向移动,以便逐次与步进轮啮合。每当小齿轮转动一圈,步进轮可根据它与小齿轮啮合的齿数,分别转动1/10、2/10圈……,直到9/10圈,这样一来,它就能够连续重复地做加法。

稍熟悉电脑程序设计的人都知道,连续重复计算加法就是现代计算机做乘除运算采用的办法。莱布尼茨的计算机,加、减、乘、除四则运算一应俱全,也给其后风靡一时的手摇计算机铺平了道路。

不久,因独立发明微积分而与牛顿齐名的莱布尼茨,又为计算机提出了“二进制”数的设计思路。有人说,他的想法来自于东方中国。

大约在公元1700年左右某天,友人送给他一幅从中国带来图画,名称叫做“八卦”,是宋朝人邵雍所摹绘的一张“易图”。莱布尼茨用放大镜仔细观察八卦的每一卦象,发现它们都由阳(—)和阴(--)两种符号组合而成。他挠有兴趣地把8种卦象颠来倒去排列组合,脑海中突然火花一闪──这不就是很有规律的二进制数字吗?若认为阳(—)是“1”,阴(--)是“0”,八卦恰好组成了二进制000到111共8个基本序数。正是在中国人睿智的启迪下,莱布尼茨最终悟出了二进制数之真谛。虽然莱布尼茨设计的计算机用的还是十进制,但他率先系统提出了二进制数的运算法则,直到今天,二进制数仍然左右着现代电脑的高速运算。

帕斯卡的计算机经由莱布尼茨的改进之后,人们又给它装上电动机以驱动机器工作,成为名符其实的“电动计算机”,并且一直使用到本世纪20年代才退出舞台。尽管帕斯卡与莱布尼茨的发明还不是现代意义上的计算机,但它们毕竟昭示着人类计算机史里的第一抹曙光。

要让机器听人类的话,按人类的意愿去计算,就要实现人与机器之间的对话,或者说,要把人类的思想传送给机器,让机器按人的意志自动执行。

说来也怪,实现人与机器对话的始作俑者却不是研制计算机的那些前辈,而是与计算机发明毫不相干的两位法国纺织机械师。他们先后发明了一种指挥机器工作的“程序”,把思想直接“注入”到了提花编织机的针尖上。

顾名思义,提花编织机具有升降纱线的提花装置,是一种能使绸布编织出图案花纹的织布机器。

应该是,提花编织机最早出现在中国。在我国出土的战国时代墓葬物品中,就有许多用彩色丝线编织的漂亮花布。据史书记载,西汉年间,钜鹿县纺织工匠陈宝光的妻子,能熟练地掌握提花机操作技术,她的机器配置了120根经线,平均60天即可织成一匹花布,每匹价值万钱。明朝刻印的《天工开物》一书中,还赫然地印着一幅提花机的示意图。可以想象,当欧洲的王公贵族对从“丝绸之路”传入的美丽绸缎赞叹不已时,中国的提花机也必定会沿着“丝绸之路”传入欧洲。

不过,用当时的编织机编织图案相当费事。所有的绸布都是用经线(纵向线)和纬线(横向线)编织而成。若要织出花样,织工们必须细心地按照预先设计的图案,在适当位置“提”起一部分经线,以便让滑梭牵引着不同颜色的纬线通过。机器当然不可能自己“想”到该在何处提线,只能靠人手“提”起一根又一根经线,不厌其烦地重复这种操作。

1725年,法国纺织机械师布乔(B.Bouchon)突发奇想,想出了一个“穿孔纸带”的绝妙主意。布乔首先设法用一排编织针控制所有的经线运动,然后取来一卷纸带,根据图案打出一排排小孔,并把它压在编织针上。启动机器后,正对着小孔的编织针能穿过去钩起经线,其他的针则被纸带挡住不动。这样一来,编织针就自动按照预先设计的图案去挑选经线,布乔的“思想”于是“传递”给了编织机,而编织图案的“程序”也就“储存”在穿孔纸带的小孔之中。真正成功的改进是在80年后,另一位法国机械师杰卡德(J.Jacquard),大约在1805年完成了“自动提花编织机”的设计制作。

那是举世瞩目的法国大革命的年代──攻打巴士底狱,推翻封建王朝,武装保卫巴黎,市民们高唱着“马赛曲”,纷纷走上街头,革命风暴如火如荼。虽然杰卡德在1790年就基本形成了他的提花机设计构想,但为了参加革命,他无暇顾及发明创造,也扛起来福枪,投身到里昂保卫战的行列里。直到19世纪到来之后,杰卡德的机器才得以组装完成。

杰卡德为他的提花机增加了一种装置,能够同时操纵1200个编织针,控制图案的穿孔纸带后来也换成了穿孔卡片。据说,杰卡德编织机面世后仅25年,考文垂附近的乡村里就有了600台,在老式蒸气机噗嗤噗嗤的伴奏下,把穿孔卡片上的图案变成一匹匹漂亮的花绸布。纺织工人最初强烈反对这架自动化的新鲜玩意的到来,因为害怕机器会抢去他们的饭碗,使他们失去工作,但因为它优越的性能,终于被人们普遍接受。1812年,仅在法国已经装配了万余台,并通过英国传遍了西方世界,杰卡德也因此而被受予了荣誉军团十字勋章和金质奖章。

杰卡德提花编织机奏响了19世纪机器自动化的序曲。在伦敦出版的《不列颠百科全书》和中国出版的《英汉科技词汇大全》两部书中,“JACQUARD”(杰卡德)一词的词条下,英语和汉语的意思居然都是“提花机”,可见,杰卡德的名字已经与提花机融为了一体。杰卡德提花机的原理,即使到了电脑时代的今天,依然没有更大的改动,街头巷尾小作坊里使用的手工绒线编织机,其基本结构仍与杰卡德编织机大体相似。

瑞瑞爱吃桃

发展历史

(1)大型主机阶段

  20世纪40-50年代,是第一代电子管计算机。经历了电子管数字计算机、晶体管数字计算机、集成电路数字计算机和大规模集成电路数字计算机的发展历程,计算机技术逐渐走向成熟。;

(2)小型计算机阶段

  20世纪60-70年代,是对大型主机进行的第一次“缩小化”,可以满足中小企业事业单位的信息处理要求,成本较低,价格可被接受;

(3)微型计算机阶段

  20世纪70-80年代,是对大型主机进行的第二次“缩小化”,1976年美国苹果公司成立,1977年就推出了AppleII计算机,大获成功。1981年IBM推出IBM-PC,此后它经历了若干代的演进,占领了个人计算机市场,使得个人计算机得到了很大的普及;

(4)客户机/服务器

  即C/S阶段。随着1964年IBM与美国航空公司建立了第一个全球联机订票系统,把美国当时2000多个订票的终端用电话线连接在了一起,标志着计算机进入了客户机/服务器阶段,这种模式至今仍在大量使用。在客户机/服务器网络中,服务器是网络的核心,而客户机是网络的基础,客户机依靠服务器获得所需要的网络资源,而服务器为客户机提供网络必须的资源。C/S结构的优点是能充分发挥客户端PC的处理能力,很多工作可以在客户端处理后再提交给服务器,大大减轻了服务器的压力;

(5)Internet阶段

  也称互联网、因特网、网际网阶段。互联网即广域网、局域网及单机按照一定的通讯协议组成的国际计算机网络。互联网始于1969年,是在ARPA(美国国防部研究计划署)制定的协定下将美国西南部的大学(UCLA(加利福尼亚大学洛杉矶分校)、Stanford Research Institute(史坦福大学研究学院)、UCSB(加利福尼亚大学)和University of Utah(犹他州大学))的四台主要的计算机连接起来。此后经历了文本到图片,到现在语音、视频等阶段,宽带越来越快,功能越来越强。互联网的特征是:全球性、海量性、匿名性、交互性、成长性、扁平性、即时性、多媒体性、成瘾性、喧哗性。互联网的意义不应低估。它是人类迈向地球村坚实的一步;

(6)云计算时代

  从2008年起,云计算(Cloud Computing)概念逐渐流行起来,它正在成为一个通俗和大众化(Popular)的词语。云计算被视为“革命性的计算模型”,因为它使得超级计算能力通过互联网自由流通成为了可能。企业与个人用户无需再投入昂贵的硬件购置成本,只需要通过互联网来购买租赁计算力,用户只用为自己需要的功能付钱,同时消除传统软件在硬件,软件,专业技能方面的花费。云计算让用户脱离技术与部署上的复杂性而获得应用。云计算囊括了开发、架构、负载平衡和商业模式等,是软件业的未来模式。它基于Web的服务,也是以互联网为中心。

相关推荐

Duron芯片是哪个公司的产品

Duron是美国AMD公司的一种为x86计算机平台而设的微处理器,属于AMD的第七代(K7)处理器,其中文官方名称为“钻龙”,根据其英文发音被俗称为“毒龙”。
2023-06-05 13:19:181

毒龙套餐啥意思

毒龙套餐是指CPU的一系列设备。1、毒龙是AMD很早以前的款式。毒龙就是duron,是AMD的台式机的一款cpu。2、Radeon,中文名称称为镭龙是一个英文产品的商标。Radeon是AMD公司出品的显示芯片的一种系,俗称A卡。
2023-06-05 13:19:241

毒龙,闪龙,速龙,的英文分别是什么??

“毒龙,闪龙,速龙”的英文名有两种解释:一、从一般翻译环境来解释,分别是:“Poisonousdragon、thedragonflashes、speeddragon”。二、从计算机专业角度解释,分别是:“DURON、Sempron、Athlon”。
2023-06-05 13:19:332

AMD的CPU显示 Duron和Athlon分别是什么意思啊?

毒龙-Duron速龙-AthlonSempron-闪龙
2023-06-05 13:19:414

在电影《街舞少年》中,主角DJ的弟弟Duron〈即开始不久就死去的那个>是由谁饰演的?

克里斯·布朗 他是个歌手加演员 很火的!,全名克里斯托弗·莫里斯·布朗(英语:Christopher Maurice "Chris" Brown,1989年5月5日-)是美国歌手、演员。2005年末,年仅16岁的他发布了首张同名专辑《Chris Brown》。该专辑中收录了打榜单曲《Run It!》,该曲曾登上告示牌单曲榜头名,这使得他成为继1995年蒙蒂尔u2022乔丹(英语:Montell Jordan)之后,首位出道单曲即登上排行榜头名的男性歌手。该专辑在全美销售量超过二百万拷贝,并被美国唱片业协会(RIAA)认证为双白金销量唱片。电影:《Takers》(2010)   《我的圣诞老公 This Christmas 》 (2007) ...Michael "Baby" Whitfield   《街舞少年 Stomp the Yard 》 (2007) ...Duron    《 After School 》 (2007) ...Travis   《 BET Awards 2006 》 (2006) ...Himself   《 The 20th Annual Soul Train Music Awards 》 (2006) ...Himself - Performer   《 MTV News Presents: Growing Up Black in America 》 (2006) ...Himself   《 The 48th Annual Grammy Awards 》 (2006) ...Himself - Presenter   《 MTV Video Music Awards 2006 》 (2006) ...Himself - Presenter
2023-06-05 13:19:481

毒龙到底是什么呢?

毒龙指的是凶恶的龙。 喻残暴者,恶势力,佛教故事。佛本身曾作大力毒龙,众生受害。但受戒以后,忍受猎人剥皮,小虫食身,以至身干命终,后卒成佛。见《大智度论》卷十四。后用以比喻妄心。毒龙佛家比喻邪念妄想,也是AMD公司生产一种Socket A接口CPU的名称。佛家毒龙:毒龙:佛家比喻邪念妄想。Socket A接口,也就是Socket 462接口。2000年7月,基于全新Socket A架构设计的Duron和Athlon处理器正式进入市场,引起了业界的震动,Socket A架构处理器在当时带动了整个电脑市场的发展。Athlon XP——Socket 462接口处理器中的一代经典,Barton核心的Athlon XP则更是经典中的经典,称得上是AMD的一座里程碑。兵种中的毒龙毒龙的攻击具有腐蚀性,每次攻击都会降低敌人部队的防御技能,一般攻击一次降低3点,这样很想反复对对方使用瓦解射线(又名毁灭之光)魔法。此外毒龙的攻击还会产生酸液攻击(出现概率很高),平均一条毒龙可多造成25点伤害,毒龙还可以攻击2格内的部队。
2023-06-05 13:19:551

AMD Duron(tm) 1.6GHz的CPU最高能支持多大的内存?

不是说CPU能支持多大的内存,要看主板能不能支持那么大的内存一般1G是可以上的到的。不过也没有那个必要,上1G的也没有什么效果还不如家条512M的好
2023-06-05 13:20:122

毒龙到底是指什么呀?

毒龙指的是:比喻邪念妄想;也是指AMD公司生产一种SocketA接口CPU的名称。CPU毒龙:SocketA接口,也就是Socket462接口。2000年7月,基于全新SocketA架构设计的Duron和Athlon处理器正式进入市场,引起了业界的震动,SocketA架构处理器在当时带动了整个电脑市场的发展。AthlonXPSocket462接口处理器中的一代经典,Barton核心的AthlonXP则更是经典中的经典,称得上是AMD的一座里程碑。经历了近五年的市场发展,SocketA架构处理器产品将AMD带到了一个新的高度,随着Socket 754接口的Athlon64和Sempron处理器出现,SocketA的K7架构终于走到了它的尽头,2005年5月15日,AMD宣布SocketA系列处理器停产。往后AMD的接口是754939940接口都换了3代了性能更是提高了不少,毒龙再也毒不起来了,也就比赛扬强一点点。SocketA接口的AMD系列处理器在当时拥有比相同价位Intel 处理器更加优越的超频能力。在频率至上的年代里,AMD与Intel仿佛进入了主频肉搏的怪圈,这一点在中低端CPU市场尤显突出。当时很多CPU的硬超频技术十分傻瓜化,仅以铅笔在触点间按一定规律画出碳粉线而破解超频给很多玩家带来了非常廉价而直接的体验乐趣。同时一些骨灰级玩家的超频试验更是将这场主频天王山之战的烽火引向了CPU本身的超频极限,但由于当时普通微型计算机在硬件架构和软件支持上的限制,这种对超频近乎歇斯底里的狂热本身对于整个系统所带来的性能提升则十分有限。
2023-06-05 13:20:191

毒龙.速龙.闪龙 英文如何写。

Athlon Sempron
2023-06-05 13:20:535

各种CPU类型的英文怎么写,如速龙,毒龙,等,

AMDduron毒龙雷鸟Athlon阿斯龙(速龙)SEMPRON闪龙Opteron皓龙竟然有人没见过毒龙……看来是对AMD太不了解了。。一般要有8年以上IT龄的人才了解毒龙毒龙可谓一代精品。它的狂热程度不亚于图拉丁。。甚至超过了图拉丁。。因为拥有了一块毒龙1.4或1.6,就=拥有了一块阿斯龙2500+L2金桥一连。瞬间变速龙。。。一个流水线下来的产品。只不过最后毒龙的L2被切断了。。
2023-06-05 13:21:072

k5,k6,k7,k8和Athlon,Duron有什么区别?有一些专门详细介绍它们的文章吗?

你用am2的速龙就好了,其他不用想
2023-06-05 13:21:143

谁给我讲讲“毒龙”和“雷鸟”的故事啊?

接口类型 针脚是CPU与主板连接的装置之一,其它接口方式有引脚式、卡式、触点式、针脚式等。而目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。CPU接口类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。 针脚类型 Socket 775 Socket 775又称为Socket T,是目前应用于Intel LGA775封装的CPU所对应的接口,目前采用此种接口的有LGA775封装的Pentium 4、Pentium 4 EE、Celeron D等CPU。与以前的Socket 478接口CPU不同,Socket 775接口CPU的底部没有传统的针脚,而代之以775个触点,即并非针脚式而是触点式,通过与对应的Socket 775插槽内的775根触针接触来传输信号。Socket 775接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。随着Socket 478的逐渐淡出,Socket 775将成为今后所有Intel桌面CPU的标准接口。 Socket 754 Socket 754是2003年9月AMD64位桌面平台最初发布时的CPU接口,目前采用此接口的有低端的Sempron和高端的Athlon 64,具有754根CPU针脚。随着Socket 939的普及,Socket 754最终也会逐渐淡出。 Socket 939 Socket 939是AMD公司2004年6月才推出的64位桌面平台接口标准,目前采用此接口的有高端的Athlon 64以及Athlon 64 FX,具有939根CPU针脚。Socket 939处理器和与过去的Socket 940插槽是不能混插的,但是,Socket 939仍然使用了相同的CPU风扇系统模式,因此以前用于Socket 940和Socket 754的风扇同样可以使用在Socket 939处理器。 Socket 940 1 接口类型 2 针脚类型 2.1 Socket 775 2.2 Socket 754 2.3 Socket 939 2.4 Socket 940 2.5 Socket 603 2.6 Socket 604 2.7 Socket 478 2.8 Socket A 2.9 Socket 423 2.10 Socket 370 2.11 SLOT 1 2.12 SLOT 2 2.13 SLOT A 3 针脚数 Socket 940是最早发布的AMD64位接口标准,具有940根CPU针脚,目前采用此接口的有服务器/工作站所使用的Opteron以及最初的Athlon 64 FX。随着新出的Athlon 64 FX改用Socket 939接口,所以Socket 940将会成为Opteron的专用接口。 Socket 603 Socket 603的用途比较专业,应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是Xeon MP和早期的Xeon,具有603根CPU针脚。Socket 603接口的CPU可以兼容于Socket 604插槽。 Socket 604 与Socket 603相仿,Socket 604仍然是应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是533MHz和800MHz FSB的Xeon。Socket 604接口的CPU不能兼容于Socket 603插槽。 Socket 478 Socket 478接口是目前Pentium 4系列处理器所采用的接口类型,针脚数为478针。Socket 478的Pentium 4处理器面积很小,其针脚排列极为紧密。英特尔公司的Pentium 4系列和P4 赛扬系列都采用此接口。 Socket A Socket A接口,也叫Socket 462,是目前AMD公司Athlon XP和Duron处理器的插座接口。Socket A接口具有462插空,可以支持133MHz外频。 Socket 423 Socket 423插槽是最初Pentium 4处理器的标准接口,Socket 423的外形和前几种Socket类的插槽类似,对应的CPU针脚数为423。Socket 423插槽多是基于Intel 850芯片组主板,支持1.3GHz~1.8GHz的Pentium 4处理器。不过随着DDR内存的流行,英特尔又开发了支持SDRAM及DDR内存的i845芯片组,CPU插槽也改成了Socket 478,Socket 423接口也就销声匿迹了。 Socket 370 Socket 370架构是英特尔开发出来代替SLOT架构,外观上与Socket 7非常像,也采用零插拔力插槽,对应的CPU是370针脚。英特尔公司著名的“铜矿”和”图拉丁”系列CPU就是采用此接口。 SLOT 1 SLOT 1是英特尔公司为取代Socket 7而开发的CPU接口,并申请的专利。这样其它厂商就无法生产SLOT 1接口的产品。SLOT1接口的CPU不再是大家熟悉的方方正正的样子,而是变成了扁平的长方体,而且接口也变成了金手指,不再是插针形式。 SLOT 1是英特尔公司为Pentium Ⅱ系列CPU设计的插槽,其将Pentium Ⅱ CPU及其相关控制电路、二级缓存都做在一块子卡上,多数Slot 1主板使用100MHz外频。SLOT 1的技术结构比较先进,能提供更大的内部传输带宽和CPU性能。此种接口已经被淘汰,市面上已无此类接口的产品。 SLOT 2 SLOT 2用途比较专业,都采用于高端服务器及图形工作站的系统。所用的CPU也是很昂贵的Xeon(至强)系列。Slot 2与Slot 1相比,有许多不同。首先,Slot 2插槽更长,CPU本身也都要大一些。其次,Slot 2能够胜任更高要求的多用途计算处理,这是进入高端企业计算市场的关键所在。在当时标准服务器设计中,一般厂商只能同时在系统中采用两个 Pentium Ⅱ处理器,而有了Slot 2设计后,可以在一台服务器中同时采用 8个处理器。而且采用Slot 2接口的Pentium Ⅱ CPU都采用了当时最先进的0.25微米制造工艺。支持SLOT 2接口的主板芯片组有440GX和450NX。 SLOT A SLOT A接口类似于英特尔公司的SLOT 1接口,供AMD公司的K7 Athlon使用的。在技术和性能上,SLOT A主板可完全兼容原有的各种外设扩展卡设备。它使用的并不是Intel的P6 GTL+ 总线协议,而是Digital公司的Alpha总线协议EV6。EV6架构是种较先进的架构,它采用多线程处理的点到点拓扑结构,支持200MHz的总线频率。 针脚数 目前CPU都采用针脚式接口与主板相连,而不同的接口的CPU在针脚数上各不相同。CPU接口类型的命名,习惯用针脚数来表示,比如目前Pentium 4系列处理器所采用的Socket 478接口,其针脚数就为478针;而Athlon XP系列处理器所采用的Socket 462接口,其针脚数就为462针。
2023-06-05 13:21:231

AMD有什么龙 英文是什么

速龙Athlon弈龙Phenom闪龙 Sempron 最长见到的就是这三个,多数人会用速龙。
2023-06-05 13:21:335

amd处理器从开始到今发展了那几代(中文名叫什么

以前的有毒龙、雷鸟、老速龙、闪龙、现在的是速龙 皓龙皓龙是服务器产品从高档到低档分 皓龙→毒龙(炫龙)→速龙→闪龙
2023-06-05 13:21:582

什么是超频

当然不算了。。。超频我打个比方就是你的身高是1.7(不帅)我硬功夫的把你的身高拉到1.8(非常帅)当然如果长时间这样肯定会多身体不好超频也是一样的道理!!
2023-06-05 13:22:0915

CPU的频率问题。。。请教!

分类: 电脑/网络 >> 硬件 问题描述: 看书以后知道了什么是主频什么是外频。。。 但是看多就搞不清楚了。。 比如说P3的550。。 倍频系数是5那到底什么是哪个是主频呢?是550还是110 现在的比如说P42.4G的。。。2.4G是什么? 解析: P42.4 主频是2400MHz 也就是2.4GHz 他的外频是200MHz 倍频是12 所以200 X 12 = 2400 P42.4 有几款 有P42.4A | P42.4B | P42.4C | P42.8GE A、B、C、的主频都是2400MHz E是2800MHz A、B的外频是133HMz 倍频是18 C是外频是200HMz 倍频是12 E是外频是200HMz 倍频是14 还有就是他们的前端总线不一样A、B是533HMz的 C、E是800HMz的 E支持超线程技术 还有就是他们一级缓存、二级缓存不一样,不对题目所以就不一一介绍了。 以下转自pchome 凡是懂得点电脑的朋友,都应该对"频率"两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?请随我来,让我给您详细说说吧! 所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异(如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和DURON,PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率最高(注意,并非最快)的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。 在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此,出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz(DURON)、266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输,因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而INTEL产CPU则不行。 由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即PCI设备4分频、AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备工作在33MHz,AGP设备工作在66MHz,才能说该芯片能正式支持该种外频。 最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等,这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定,甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危险,所以请大家慎重超频! 说到这里,大家是否已经对CPU的频率有了更深入的了解呢?如果还有什么问题,欢迎与我联系,我的QQ是***********,让我们共同走进神秘的电脑世界吧!
2023-06-05 13:22:341

什么是cpu

中央处理器(Central Processing Unit)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。
2023-06-05 13:23:062

关于CPU的频率问题

你好运行频率即是主频和外频跟倍频有关实际影响的是cpu的时钟周期速率类似于时钟走一圈的速度举个例子我用手去拿篮子里的苹果苹果就是数据我手每一次出手都有一定的时间而主频越高我每次出手的时间就越快这样苹果就能更快拿完放在cpu上也是一样的等同的数据量下主频越高提取数据的速率就越快
2023-06-05 13:23:234

电脑CPU怎么超频

你要是不怎么懂的话,,,最好别超频,,小心你的CPU被你超报废。楼上的长篇大论的罗嗦,,不知道在哪复制的,你最好别玩,,不然的话可要后悔咯。
2023-06-05 13:23:337

电脑常说的超频是指什么超频?品牌机如何超?烦请详细解释!

强行的让处理器超负荷运作 就是超频 可以再BIOS里设置处理器的频率
2023-06-05 13:23:506

AMD速龙,弈龙,闪龙,羿龙,毒龙,有什么区别?

一、Duron(毒龙) Socket A 1.支持双通道,不过这是由配套芯片组来实现的 2.不支持64位扩展 3.64KB二级缓存 4.最高型号:1.8GHz 5.总共经历了四种核心:Spitfire, Morgan, Appaloosa, Applebred 6.随着Sempron的发布,一代经典Duron的寿命即将终结 7.超频能力:最后一代Applebred核心Duron最高超至2.4GHz,使用VIA芯片组和风冷散热器,相信没有人会在Duron上使用水冷吧。 8.最佳配套主板:Abit NF7-S 2.0是Althon XP系列CPU的最佳主板,性价比高,超频能力强 9.SMP多处理器支持,但是需要在L5金桥上动手脚。 二、Athlon XP速龙 Socket A 1.支持双通道,不过这是由配套芯片组来实现的,而且受限于Althon XP自身前端总线,多余的50%内存带宽并不能充分利用 2.不支持64位扩展 3.Thoroughbred-B核心256KB二级缓存,最高端的Barton核心512KB二级缓存。虽然二级缓存增加了一倍,但是性能提升并不高 4.最高型号:Athlon XP: 3200+ (2.2GHz Barton) 5.核心按发布时间:Palomino, Thoroughbred A, Thoroughbred B, Barton, Thorton 6.AMD官方给出的声明是2005年第二季度将停止供货,05年底将会停止销售。不过现在看来配套主板非常丰富 7.超频能力:Barton核心AlthonXP-M可以轻松超过2.4GHz,使用水冷时可达2.7GHz。 8.最佳配套主板:仍然是Abit NF7-S 2.0,理由同Duron 9.SMP多处理器支持,但是同样需要在L5金桥上动手脚。新封装的AlthonXP要改金桥可能很麻烦。 三、Sempron闪龙 Socket A 1.支持双通道,不过这是由配套芯片组来实现的,而且受限于Sempron自身前端总线,多余的50%内存带宽并不能充分利用 2.不支持64位扩展 3.256KB二级缓存,不过最新的Sempron使用了Barton核心自然拥有512KB二级缓存。 4.最高型号:Sempron 2800+ (2.0GHz) 5.核心:Thoroughbred-B,Thorton 6.Sempron刚上市没多久,AMD用它来取代毒龙主攻低端市场,由于兼容性特好所以大受欢迎,不过Socket A的淘汰是必然的,之后Sempron将转向754和939接口 7.超频能力:Thoroughbred-B核心是用水冷可超至2.2G,最高的超频纪录是2.5G。 8.最佳配套主板:毫无疑问仍然Abit NF7-S 2.0 9.SMP多处理器支持,Sempron这款CPU比较奇怪,因为早先AMD用来定义是否支持SMP的金桥L5随着时间的推移以渐渐失去了意义,因此AMD将L5定义为Sempron与原有AlthonXP、Duron的区别,因此在新的主板上面,支持SMP的CPU将被识别为Sempron, 四、Sempron: Socket 754 1.不支持双通道,这是因为K8核心CPU在内核中集成内存控制器,主板北桥没有办法支持,不过内置的内存控制器性能非常优秀,即便是单通道也可以获得良好的性能 2.不支持64位扩展,被AMD人为屏蔽掉了 3.目前Socket 754接口的Sempron拥有256KB二级缓存 4.最高型号:目前为止只有一款Sempron 3100+ (1.8GHz) 5.核心也只有一种:Paris 6.Sempron是AMD低端直接和Intel Celeron交锋的选手 7.超频能力:没有详细记录,可超频性能良好 8.最佳配套主板:DFI LanPartyUT NF3 250GB 9.SMP多处理器支持:不可能的。
2023-06-05 13:24:061

cpu 多少 + 是什么意思?

+代表升级版 没啥意思 速龙 5000+ 仍然是2.2 而不是主频5g
2023-06-05 13:24:164

如何调整CPU倍频

目前,一般市场上销售的CPU会锁定倍频,所以CPU的倍频只能调低,无法调高。具体调高的方法如下: 重新启动计算机,按“Del”键进入主板BIOS设置界面。选择“Advanced Chipset Features”,然后选择“Systen Clock”,之后选择“CPU Multiplier”。调整到你需要的倍频,按“F10”保存并退出主办BIOS设置,设置即可完成!
2023-06-05 13:24:424

amdcpu是什么?

处理器内核剖析AMD当时推出的Duron(毒龙)处理器主要面对低端处理器市场,针对的竞争对手就是Intel抢先推出的同档处理器产品-赛扬II处理器。Duron(毒龙)处理器最初产品在速度上有600、650和700MHz三种速度,而intel赛扬II处理器的速度虽然已经提高到了667MHz,但是我们在市面上最高只能见到600MHz的赛扬II处理器。在高端市场,AMD雷鸟处理器已经推出了750、800、850、900、950和1000MHz,总共六款产品。Duron(毒龙)处理器采用了0.18微米制造工艺,芯片内部电路之间铝搭桥连接,制造于AMD在美国德州的奥斯丁Fab25工厂,铝制程的雷鸟处理器也是在这里制造的。和AMD已经推出的雷鸟处理器一样,Duron(毒龙)处理器也采用了SocketA封装形式(462针脚),AMD之所以采用SocketA封装形式的原因在于制造成本较低,适用范围比较灵活,和其相对的就是intelSocket370(370针脚)封装形式的赛扬II处理器
2023-06-05 13:25:411

CPU知识》?

报价:http://detail.zol.com.cn/price_search.php?navi_id=0性能的话,你可以下载Everest这个软件,有各种CPU的对比
2023-06-05 13:25:492

电脑超频率工作什么情况?

那么什么是超频呢?简单的来说,电脑的许多硬件都会有一个默认的工作频率,但是在一些极端环境之下,能够顺势提升自己的频率,来能够确保处理更加繁杂的工作。就好比人一样的,平时可能就会有自己固定的工作频率与效率,但是这时候突然老板要你临时加班并且还要在规定的时间内完成某项任务的时候,这时候的你就不得不开启"超频模式"。而其实不光是CPU可以超频,内存,主板等等组件其实都是可以进行超频的,好处就是当所有一整台平台都能够超频在某一更高效率的模式下工作时,你的电脑的处理速度自然就会更快,而带来的副作用则是电脑将会发热更加严重,以及许多小白玩家可能会操作不当而损坏电脑。所以对于普通玩家来说,不需要去为了那么一点效率的提升而冒风险,直接使用默认的频率默认模式就可以了。
2023-06-05 13:25:573

求AMD CPU型号大全 英特尔CPU型号大全 显卡型号大全 N卡和A卡都要 461184225@qq.com 谢谢了

英特尔公司的主要 CPU 系列型号有: Pentium Pentium Pro Pentium II Pentium III Pentium 4 Pentium 4EE Pentium-m Celeron Celeron II Celeron III Celeron IV Celeron D Xeon 等等 而 AMD 公司的主要 CPU 系列型号有: K5 K6 K6-2 Duron Athlon XP Sempron Athlon 64 Opteron 等等 3、接口类型 我们知道,CPU 需要通过某个接口与主板连接,才能进行工作。CPU 经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。而目前 CPU 的接口,都是针脚式接口,对应到主板上,就有相应的插槽类型。CPU 接口类型不同,在插孔数、体积、形状上都有变化,所以不能互相混用接插。 1) Socket 775 Socket 775 又称为 Socket T,是目前应用于 Intel LGA775 封装的 CPU 所对应的接口,目前采用此种接口的有 LGA775 封装的 Pentium 4、Pentium 4 EE、Celeron D 等 CPU。与以前的 Socket 478 接口 CPU 不同,Socket 775 接口 CPU 的底部没有传统的针脚,而代之以 775 个触点,即并非针脚式而是触点式。通过与对应的 Socket 775 插槽内的 775 根触针接触,来传输信号。Socket 775 接口,不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率,降低生产成本。随着 Socket 478 的逐渐淡出,Socket 775 将成为今后所有 Intel 桌面 CPU 的标准接口。 2) Socket 754 Socket 754 是2003年9月 AMD 64 位桌面平台最初发布时的 CPU 接口,目前采用此接口的,有低端的 Athlon 64 和高端的 Sempron,具有 754 根 CPU 针脚。随着 Socket 939 的普及,Socket 754 最终也会逐渐淡出。 3) Socket 939 Socket 939 是 AMD 公司2004年6月才推出的 64 位桌面平台接口标准,目前采用此接口的,有高端的 Athlon 64 以及 Athlon 64 FX,具有 939 根 CPU 针脚。Socket 939 处理器和与过去的 Socket 940 插槽是不能混插的,但是,Socket 939 仍然使用了相同的 CPU 风扇系统模式。因此,以前用于 Socket 940 和 Socket 754 的风扇,同样可以使用在 Socket 939 处理器。 4) Socket 940 Socket 940 是最早发布的 AMD 64 位接口标准,具有 940 根 CPU 针脚,目前采用此接口的,有服务器/工作站所使用的 Opteron 以及最初的 Athlon 64 FX。随着新出的 Athlon 64 FX 改用 Socket 939 接口,所以 Socket 940 将会成为 Opteron 的专用接口。 5) Socket 603 Socket 603 的用途比较专业,应用于 Intel 方面高端的服务器/工作站平台,采用此接口的 CPU 是 Xeon MP 和早期的 Xeon,具有 603 根 CPU 针脚。Socket 603 接口的 CPU,可以兼容于 Socket 604 插槽。 6) Socket 604 与 Socket 603 相仿,Socket 604 仍然是应用于 Intel 方面高端的服务器/工作站平台,采用此接口的 CPU 是 533MHz 和 800MHz FSB 的 Xeon。Socket 604 接口的 CPU 不能兼容于 Socket 603 插槽。 7) Socket 478 Socket 478 接口是目前 Pentium 4 系列处理器所采用的接口类型,针脚数为 478 针。Socket 478 的 Pentium 4 处理器面积很小,其针脚排列极为紧密。英特尔公司的 Pentium 4 系列和 P4 赛扬系列都采用此接口。 8) Socket A Socket A 接口,也叫 Socket 462,是目前 AMD 公司 Athlon XP 和 Duron 处理器的插座接口。Socket A 接口具有 462 插脚,可以支持 133MHz 外频。 9) Socket 423 Socket 423 插槽是最初 Pentium 4 处理器的标准接口,Socket 423 的外形和前几种 Socket 类的插槽类似,对应的 CPU 针脚数为 423。Socket 423 插槽多是基于 Intel 850 芯片组主板,支持 1.3GHz~1.8GHz 的 Pentium 4 处理器。不过随着 DDR 内存的流行,英特尔又开发了支持 SDRAM 及 DDR 内存的 i845 芯片组,CPU 插槽也改成了 Socket 478,Socket 423 接口也就销声匿迹了。 10) Socket 370 Socket 370 架构是英特尔开发出来代替 SLOT 架构,外观上与 Socket 7 非常像,也采用零插拔力插槽,对应的 CPU 是 370 针脚。英特尔公司著名的“铜矿”和”图拉丁”系列 CPU,就是采用此种接口。 11) SLOT 1 SLOT 1 是英特尔公司为取代 Socket 7 而开发的 CPU 接口,并申请的专利。这样,其它厂商就无法生产 SLOT 1 接口的产品。SLOT1 接口的 CPU 不再是大家熟悉的方方正正的样子,而是变成了扁平的长方体,而且接口也变成了金手指,不再是插针形式。 SLOT 1 是英特尔公司为 Pentium Ⅱ 系列 CPU 设计的插槽,其将 Pentium Ⅱ CPU 及其相关控制电路、二级缓存都做在一块子卡上,多数 Slot 1 主板使用 100MHz 外频。SLOT 1 的技术结构比较先进,能提供更大的内部传输带宽和 CPU 性能。此种接口已经被淘汰,市面上已无此类接口的产品。 12) SLOT 2 SLOT 2 用途比较专业,都采用于高端服务器及图形工作站的系统。所用的 CPU 也是很昂贵的 Xeon(至强)系列。Slot 2 与 Slot 1 相比,有许多不同。首先,Slot 2 插槽更长,CPU 本身也要大一些。其次,Slot 2 能够胜任更高要求的多用途计算处理,这是进入高端企业计算市场的关键所在。在当时标准服务器设计中,一般厂商只能同时在系统中采用两个 Pentium Ⅱ 处理器,而有了 Slot 2 设计后,可以在一台服务器中同时采用 8 个处理器。而且采用 Slot 2 接口的 Pentium Ⅱ CPU,都采用了当时最先进的 0.25 微米制造工艺。支持 SLOT 2 接口的主板芯片组有 440GX 和 450NX。 13) SLOT A SLOT A 接口类似于英特尔公司的 SLOT 1 接口,供 AMD 公司的 K7 Athlon 使用。在技术和性能上,SLOT A 主板可完全兼容原有的各种外设扩展卡设备。它使用的并不是 Intel 的 P6 GTL+总线协议,而是 Digital 公司的 Alpha 总线协议 EV6。EV6 架构是较先进的架构,它采用多线程处理的点到点拓扑结构,支持 200MHz 的总线频率。 Intel 4004 Intel 4040 Intel 8086 Intel 8088 80186 80286 80386 80486 奔腾(Pentium) Pentium Pro Pentium II 赛扬(Celeron) 奔腾III(Pentium III) 奔腾4 (Pentium 4) 奔腾4极致版(Pentium 4 Extreme Edition) 赛扬D(Celeron D) 奔腾D(Pentium D) 酷睿 双核 Intel Core Duo 酷睿2 双核 Intel Core 2 Duo 奔腾双核 pentium dual core 酷睿2 至尊版 Intel Core 2 Extreme 酷睿2 四核 Intel Core 2 Quad 赛扬双核 Intel Celeron Duo 笔记型电脑用CPU Pentium III Mobile Pentium 4 Mobile 区别于机动版Pentium 4 奔腾M(Pentium M) 赛扬M(Celeron M) 酷睿 双核 (Intel Core Duo) 酷睿2 双核 (Intel Core 2 Duo) 酷睿 单核(Intel Core Solo) 奔腾双核 pentium dual core 凌动超低功耗处理器(Atom) 赛扬双核 Intel Celeron Duo 服务器用CPU 奔腾II至强(Pentium II Xeon) 奔腾III至强(Pentium III Xeon) 至强(Xeon) 安腾(Itanium) 安腾2(Itanium 2) 安腾3(Itanium 3)amd cpu 型号大全 AMD Athlon 64 FX-55 AMD Athlon64 FX-55为ClawHammer核心,实际工作频率为2600MHZ,一级缓存为128K,二级缓存为1M,外频为200MHz,采用0.13微米工艺,额定电压为1.5V,接口类型为Socket 939并支持双通道DDR 400内存。 AMD Athlon 64 FX-55是2004年10月推出的旗舰级处理器产品,仍采用130纳米制造工艺,于Athlon 64 FX-53相比,频率提高了200MHz,其他参数变化不是很大,它已经改进过了ClawHammer核心,得以支持双通道DDR 400,在以后的日子里,估计AMD将推出的则是90纳米的处理器产品,FX-55可能会成为该系列CPU中最高端的一款。 AMD Athlon 64 FX-53 实际工作频率为2.40GHz,二级缓存为1MB,核心内部集成了双通道DDR内存控制器,采用0.13微米制程,采用Socket939接口,前端总线为200MHz。 AMD Athlon 64 FX-51 这款针对桌面台式机的Athlon64 FX51拥有高达64位的寻址能力,支持双通道DDR400,高达1M的二级缓存等等,性能非常出色,不过由于功耗过大,价格过高,所以极少有人问津。 采用s940接口 AMD Opteron 244 AMD Opteron(皓龙) 处理器有三个不同系列可供选择:100 系列 (单路)、200 系列 (单或双路) 及 800 系列 (最高到 8 路)。 二级缓存 1M FSB 800MHz 制程工艺 0.13 主频 1.5-2.0G 接口类型 SOCKET 940 AMD Opteron 240 AMD Opteron 242 AMD Opteron 246 AMD Athlon 64 4000+ Athlon 64 4000+ Socket 939处理器采用0.13微米制程,工作频率为2.4GHz,工作电压1.5v,配备1MB L2缓存。支持32位和64位台式电脑;它还支持Cool"n"Quiet低耗能技术,配有增强病毒防护技术(EVP)功能,可以提供更高一级集成安全性,以发现和阻止某些恶意病毒、计算机蠕虫和特洛伊木马的传播。 二级缓存 1M FSB 400MHz 制程工艺 0.13 主频 2.0-3.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 939 AMD Athlon 64 3500+(Winchester核心) AMD Athlon 64 3500+(Winchester核心)为Winchester核心,实际工作频率为2200MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为1.5V,接口类型为Socket 939并支持双通道DDR 400内存。 二级缓存 512KB FSB 400MHz 制程工艺 0.09 主频 2.0-3.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 939 AMD Athlon 64 3200+(Winchester核心) AMD Athlon 64 3200+(Winchester核心)为Winchester核心,实际工作频率为2000MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为1.5V,接口类型为Socket 939并支持双通道DDR 400内存。 AMD Athlon 64 3000+(Winchester核心) AMD Athlon 64 3000+(Winchester核心)为Winchester核心,实际工作频率为1800MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为1.5V,接口类型为Socket 939并支持双通道DDR 400内存。 AMD Athlon 64 3400+(Clawhammer核心) AMD Athlon 64 3400+微处理器采用Socket 754针脚,内建128 KB容量一级缓存(64 KB指令 + 64 KB数据)及1 MB容量二级缓存,支持64位单通道DDR400 / 333 / 266 / 200内存,功耗为89瓦,千颗量购单价为417美元。 二级缓存 1M FSB 400MHz 制程工艺 0.13 主频 2.0-3.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 754 AMD Athlon 64 3000+(Newcastle核心) Athlon 64 3000+微处理器采用Newcastle核心,它的实际频率2GHz,采用0.13微米制程,共集成1亿500万个晶圆管,内含512 KB容量全速二级缓存,采用Socket 754脚位,可支援64位单通道DDR400 / 333 / 266 / 200内存,工作电压为1.5 V。 二级缓存 512KB FSB 400MHz 制程工艺 0.13 主频 2.0-3.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 754 AMD AthlonMP 2400+ Athlon MP2400+ 采用SOCKET A接口,FSB 266MHZ,0.13um工艺制造,主频为1.866MHZ,二级缓存为256K。 Athlon MP2400+的Smart MP技术是AMD多处理器平台的主要功能特色,由于可以提高两个中央处理器、芯片组及存储器系统之间的数据传输量,因此能大幅提升整体平台的性能。Smart MP技术采用两个设有错误校正代码(ECC)的点对点266MHz高速系统总线,力求可为双处理器系统的每一中央处理器提供高达2.1Gbps的总线带宽。Smart MP技术也采用经优化的MOESI高速缓存同调协议,可以为多处理器系统管理数据及存储器的传输操作。 AMD AthlonMP处理器采用已获专利的QuantiSpeed结构,其中包括设有硬件数据预取功能的高性能全速高速缓存、全面设有流水线的超标量(superscalar)浮点运算器、以及一个专用的L2翻译后援缓冲器(TLB)。此外,这款处理器也采用由AMD的3DNow!技术发展出来并添加了51个新指令的专业3DNow!? 技术,使系统可以提供更细致逼真的影像、更准确的数字音响以及多采多姿的网上乐趣。 AMD AthlonMP处理器可与性能稳定的AMDSocketA结构兼容,并可支持DDR内存。 二级缓存 256KB FSB 266MHz 制程工艺 0.13 主频 1.5-2.0G 接口类型 SOCKET A AMD AthlonMP 2600+ AthlonMP 2600+基于TBred核心,266MHz前端总线,256K L2 Cache,工作电压为1.65V。 AMD AthlonMP 2800+ AMD AthlonXP 3200+(400MHz FSB) AthlonXP 3200+为Barton 核心,实际工作频率为2200 MHz,一级缓存为128K,二级缓存为512k,倍频为11,外频为166MHz,采用0.13微米工艺,额定电压为1.65V,接口类型为SocketA(462针脚)。 二级缓存 512KB FSB 400MHz 制程工艺 0.13 主频 2.0-3.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A AMD AthlonXP 2500+(Barton核心) Athlon XP 2500+为Barton 核心,实际工作频率为1830MHZ,一级缓存为128K,二级缓存为512k,倍频为11,外频为166MHz,采用0.13微米工艺,功率为68.3W,额定电压为1.65V,接口类型为SocketA(462针脚)。 AMD AthlonXP 3000+(333MHz FSB) Athlon XP 3000+实际运行频率是2.167GH AMD AthlonXP 2600+(TB核心,333MHz FSB) Athlon XP 2600+为TB核心,实际工作频率为1917MHz,一级缓存为128K,二级缓存为512k,倍频为12.5,外频为166MHz,采用0.13微米工艺,额定电压为1.65V,接口类型为SocketA(462针脚)。 二级缓存 512KB FSB 333MHz 制程工艺 0.13 主频 1.5-2.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A AMD AthlonXP 2800+(Barton核心) AMD AthlonXP 2700+ Athlon XP 2700+为Thoroughbred-B核心,实际工作频率为2.16GMHz,一级缓存为128K,二级缓存为512k,倍频为13,外频为166MHz,采用0.13微米工艺,额定电压为1.65V,接口类型为SocketA(462针脚)。 二级缓存 512KB FSB 333MHz 制程工艺 0.13 主频 2.0-3.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A AMD AthlonXP 2400+ 二级缓存 512KB FSB 333MHz 制程工艺 0.13 主频 1.5-2.0G 接口类型 SOCKET A AMD AthlonXP 2200+(TB核心,266MHz FSB) AMD AthlonXP 1800+ 二级缓存 256KB FSB 266MHz 制程工艺 0.13 主频 1.5-2.0G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A AMD AthlonXP 1700+NVIDIA与ATI显卡系列型号大全2007-12-26 11:56在的显卡后缀简直是眼花缭乱,简直让很多人不知所措,今天看到一个网友便陷入困境之中,所以特此发帖帮助大家分辨一下纷乱的显卡后缀先来解释一下nVIDIA的显卡后缀6系显卡6200系列分:6200, 6200TC, 6200A 3种。其中6200A是针对于AGP平台的,6200和6200TC为PCI-E平台的,区别在于6200TC是不搭载显存的,直接调用系统内存作为显存,6200就是搭载了显存的6200TC,6500是6200的加强版,规格和6200相同,只是频率上的差别6600系列分:6600LE,6600,660GT。其中6600,6600GT是统一规格,即:8管线,3顶点,6600LE为4管线,3顶点,所以性能排序应该是:6600LE<6600<6600GT影驰还有一款6600GE的,其实GE不是NV的产品代号,而是影驰的“玩家版”(GAMER EDITION ) 的缩写6800系列分:6800LE,6800,6800GT,6800ULTRA,6800GS,6800XT 。其中6800GS用的是6800GT的板形,6800的规格,性能超越6800,弱于6800GT(因为管线顶点数的关系)6800LE<6800<6800GS<6800GT<6800ULTRA6800标准版和6800LE又称为6800NU,6800XT的定义是只搭载DDR显存,因为显存的关系,所以限制了他的性能,市面上也有DDR3 1.6ns显存的6800XT,性能不俗,完全超越6600GT,但是这里还是以DDR显存的6800XT为准。NV6系总体排序:6200TC<6200<6500<6600LE<6600<6800XT<6800LEXT<6600GT<6800<6800GS<6800GT<6800ULTRA7系显卡7300系列分为:7300LE,7300GS,7300GT三种,其中7300LE和7300GS都是4管线3顶点,7300GS的频率高于7300LE,7300GT是8管线4顶点7300LE<7300GS<7300GT7600系列分为:7600GS,7600GT两种,两款显卡的均为12管线5顶点,7600GT频率高于7600GS,但是由于高频的7300GT问题,7600GS的频率已经普遍接近7600GT注:影持在7600这个级别依然出现了GE这个后缀,其实为7600GS7600GS<7600GT7800系列:7800GT,7800GTX,7800GTX512三种,7800GT是屏蔽一部分管线的7800GTX为20管线7顶点,7800GTX是24管线8顶点,并且采用110NM制造频率更高,7800GTX512是7800GTX的显存加大版,并且核心频率更高7800GT<7800GTX<7800GTX5127900系列:分为7900GS 7900GT 7950GT 7900GTX,其核心均为G71,7900GS是屏蔽部分管线的G71核心,为20管线7顶点。7900GT与7900GTX核心一致,均为24管线8顶点。但是核心频率被降低并且版型做了重新设计并且显存多位256,少部分是512M,7950GT为高频版的7900GT,7900GTX是7系单核芯的最高端,搭配512MDDR3显存,显存位宽为256BIT,采用90NM制造工艺,但是7900GTX在架构上与7800GTX没有任何差别,只是制造工艺的不同7900GS<7900GT<7950GT<7900GTX7950GX2:集成了两个G71核心的显卡,512BIT显存位宽,1GDDR3显存7100GS:nVIDIA新出的目的为占领低端市场的产品,据悉就是62007系总体排序7100GS<7300LE<7300GS<7300GT<7600GS<7600GT<7800GT<7900GS<7900GT<=7800GTX<7800GTX512<7950GT<7900GTX<7950GX2注:新产品80NM的7系显卡不记其列,G80的8800GTX和8800GTS目前并非主流也不记,其性能大家清楚.x1950对7900 X1600对7600 X2400对8500 X2600对8600 X2900对8800从9系列开始 一代: 9700pro>9700>9500pro>9500>9000 二代: 9800xt>9800pro>9800>9600xt>9600pro>>9800se>9600>9550>9100>9200>9250 X代: x850xtpe>x850xt>x800xtpe>x800xt>x800gto>x800>x700xt>x700pro>x700>x550xt/x700se>x600pro>x600>x550>x300>x300se 最新一代: x1900xtx>x1900xt>x1800xtpe>x1800xt>x1600xt>x1600pro>x1600>x1300pro>x1300 以上资料来自网络,仅供参考。
2023-06-05 13:26:171

什么是cpu的AO版和BO版?

步进版本 主要是改进了生产工艺,消除了BUG
2023-06-05 13:26:263

电脑术语有哪些

你应该用的ghost版本的吧,parfifion是分区的意思。就是从parfifion到parfifion(gho镜像在一个分区上,把它备份以另外一个分区),还有一些其他的,你应该知道是什么意思吧~网上有详细的U盘重装系统步骤,其实和光盘装系统差不多,只是一个用光驱,一个用U盘。
2023-06-05 13:26:343

cpu主频如何计算

   cpu 主频该怎么样去计算呢? 方法 不难的!我来教你!下面由我给你做出详细的cpu主频计算介绍!希望对你有帮助!  cpu主频计算介绍一   CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。   CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。   由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能已较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。   因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能   说直白一点就是像电扇是多少瓦的一样   cpu主频计算介绍二   CPU的实际工作频率是外频和倍频的乘积,外频好比马路的宽度,倍频好比在这条马路上单位时间允许通过的车辆数。目前主流CPU的外频通常为66、100或133,比如PentiumIII 667就是133外频乘以5倍频。   一般来说,外频高的CPU性能要好一些,这就是为什么使用133外频的PIII667会与使用100外频的PIII700不相上下的原因。所以在选择CPU的时候除了要看总频率,还要注意频率的构成。   CPU的频率   凡是懂得点电脑的朋友,都应该对u2018频率u2019两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重   要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?请随我来,   让我给您详细 说说 吧!   所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率   越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异   (如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和DURON,   PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率   最高(注意,并非最快)的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。   在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工   艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此,出现了倍频技术,该技术能   够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后   我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今   天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的   CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部   分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz(DURON)、   266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是   100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输,   因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改   变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段   。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。   眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的   DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而INTEL产CPU则不行。   由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯   片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早   期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设   备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即   PCI设备4分频、AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备   工作在33MHz,AGP设备工作在66MHz,才能说该芯片能正式支持该种外频。   最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整   个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产   而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的   66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁   然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就   不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等,   这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定   甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危   险,所以请大家慎重超频!   cpu主频计算介绍三   算法都是一样的 CPU主频=外频x倍频   pentium(R)4 2.5GHz 这个主频是2.5G   CPU除了主频外还得看二级缓存甚至三级缓存 同样频率的CPU缓存越大 性能越好 就像E5200和E7200 频率差不多 2.5和2.53 但二级缓存一个2M,一个3M,价钱也就相差了将近400,E7200也就要比E5200好   同样缓存的话,频率越高性能越好,像E5200和E5400,2.5和2.7,E5400好   这是INTEL的,AMD的也类似,至于两家互比的话,那就见仁见智了 不过主流的话一般看价格,同一价格水平的,基本就在同一档次,高端除外
2023-06-05 13:26:501

什么叫做超频?

CPU一般的频率是厂商出厂固定的。比如P42.8G。3.2G有一些发烧友把这些频率在使用的过程中加大。也就是超频。厂商也支持这种做法,让CPU使用率达到更高。显卡也可以超频。这是白话。专业点的超频文件请参考http://detail.zol.com.cn/product_param/index3447.html内容如下电脑的超频就是通过人为的方式将CPU、显卡等硬件的工作频率提高,让它们在高于其额定的频率状态下稳定工作。以Intel P4C 2.4GHz的CPU为例,它的额定工作频率是2.4GHz,如果将工作频率提高到2.6GHz,系统仍然可以稳定运行,那这次超频就成功了。 CPU超频的主要目的是为了提高CPU的工作频率,也就是CPU的主频。而CPU的主频又是外频和倍频的乘积。例如一块CPU的外频为100MHz,倍频为8.5,可以计算得到它的主频=外频×倍频=100MHz×8.5 = 850MHz。 提升CPU的主频可以通过改变CPU的倍频或者外频来实现。但如果使用的是Intel CPU,你尽可以忽略倍频,因为IntelCPU使用了特殊的制造工艺来阻止修改倍频。AMD的CPU可以修改倍频,但修改倍频对CPU性能的提升不如外频好。 而外频的速度通常与前端总线、内存的速度紧密关联。因此当你提升了CPU外频之后,CPU、系统和内存的性能也同时提升了。CPU超频主要有两种方式: 一个是硬件设置,一个是软件设置。其中硬件设置比较常用,它又分为跳线设置和BIOS设置两种。 1.跳线设置超频 早期的主板多数采用了跳线或DIP开关设定的方式来进行超频。在这些跳线和DIP开关的附近,主板上往往印有一些表格,记载的就是跳线和DIP开关组合定义的功能。在关机状态下,你就可以按照表格中的频率进行设定。重新开机后,如果电脑正常启动并可稳定运行就说明我们的超频成功了。 比如一款配合赛扬1.7GHz使用的Intel 845D芯片组主板,它就采用了跳线超频的方式。在电感线圈的下面,我们可以看到跳线的说明表格,当跳线设定为1-2的方式时外频为100MHz,而改成2-3的方式时,外频就提升到了133MHz。而赛扬1.7GHz的默认外频就是100MHz,我们只要将外频提升为133MHz,原有的赛扬1.7GHz就会超频到2.2GHz上工作,是不是很简单呢:)。另一块配合AMD CPU使用的VIA KT266芯片组主板,采用了DIP开关设定的方式来设定CPU的倍频。多数AMD的倍频都没有锁定,所以可以通过修改倍频来进行超频。这是一个五组的DIP开关,通过各序号开关的不同通断状态可以组合形成十几种模式。在DIP开关的右上方印有说明表,说明了DIP开关在不同的组合方式下所带来不同频率的改变。例如我们对一块AMD 1800+进行超频,首先要知道,Athlon XP 1800+的主频等于133MHz外频×11.5倍频。我们只要将倍频提高到12.5,CPU主频就成为133MHz×12.5≈1.6GHz,相当于Athlon XP 2000+了。如果我们将倍频提高到13.5时,CPU主频成为1.8GHz,也就将Athlon XP 1800+超频成为了Athlon XP2200+,简单的操作换来了性能很大的提升,很有趣吧。2.BIOS设置超频 现在主流主板基本上都放弃了跳线设定和DIP开关的设定方式更改CPU倍频或外频,而是使用更方便的BIOS设置。 例如升技(Abit)的SoftMenu III和磐正(EPOX)的PowerBIOS等都属于BIOS超频的方式,在CPU参数设定中就可以进行CPU的倍频、外频的设定。如果遇到超频后电脑无法正常启动的状况,只要关机并按住INS或HOME键,重新开机,电脑会自动恢复为CPU默认的工作状态,所以还是在BIOS中超频比较好。 这里就以升技NF7主板和Athlon XP 1800+ CPU的组合方案来实现这次超频实战。目前市场上BIOS的品牌主要有两种,一种是PHOENIX-Award BIOS,另一种是AMI BIOS,这里以Award BIOS为例。 首先启动电脑,按DEL键进入主板的BIOS设定界面。从BIOS中选择Soft Menu III Setup,这便是升技主板的SoftMenu超频功能。进入该功能后,我们可以看到系统自动识别CPU为1800+。我们要在此处回车,将默认识别的型号改为User Define(手动设定)模式。设定为手动模式之后,原有灰色不可选的CPU外频和倍频现在就变成了可选的状态。如果你需要使用提升外频来超频的话,就在External Clock:133MHz这里回车。这里有很多外频可供调节,你可以把它调到150MHz或更高的频率选项上。由于升高外频会使系统总线频率提高,影响其它设备工作的稳定性,因此一定要采用锁定PCI频率的办法。Multiplier Factor一项便是调节CPU倍频的地方,回车后进入选项区,可以根据CPU的实际情况来选择倍频,例如12.5、13.5或更高的倍频。菜鸟:如果CPU超频后系统无法正常启动或工作不稳定,我听说可以通过提高CPU的核心电压来解决,有这个道理吗? 阿萌:对啊。因为CPU超频后,功耗也就随之提高。如果供应电流还保持不变,有些CPU就会因功耗不足而导致无法正常稳定的工作。而提升了电压之后,CPU就获得了更多的动力,使超频变得更容易成功和稳定。 在BIOS中可以设置和调节CPU的核心电压(如图7)。正常的情况下可以选择Default(默认)状态。如果CPU超频后系统不稳定,就可以给CPU核心加电压。但是加电压的副作用很大,首先CPU发热量会增大,其次电压加得过高很容易烧毁CPU,所以加电压时一定要慎重,一般以0.025V、0.05V或者0.1V步进向上加就可以了。3.用软件实现超频 顾名思义,就是通过软件来超频。这种超频更简单,它的特点是设定的频率在关机或重新启动电脑后会复原,菜鸟如果不敢一次实现硬件设置超频,可以先用软件超频试验一下超频效果。最常见的超频软件包括SoftFSB和各主板厂商自己开发的软件。它们原理都大同小异,都是通过控制时钟发生器的频率来达到超频的目的。 SoftFSB是一款比较通用的软件,它可以支持几十种时钟发生器。只要按主板上采用的时钟发生器型号进行选择后,点击GET FSB获得时钟发生器的控制权,之后就可以通过频率拉杆来进行超频的设定了,选定之后按下保存就可以让CPU按新设定的频率开始工作了。不过软件超频的缺点就是当你设定的频率让CPU无法承受的时候,在你点击保存的那一刹那导致死机或系统崩溃。CPU超频秘技: 1.CPU超频和CPU本身的“体质”有关 很多朋友们说他们的CPU加压超频以后还是不稳定,这就是“体质”问题。对于同一个型号的CPU在不同周期生产的可超性不同,这些可以从处理器编号上体现出来。 2.倍频低的CPU好超 大家知道提高CPU外频比提高CPU倍频性能提升快,如果是不锁倍频的CPU,高手们会采用提高外频降低倍频的方法来达到更好的效果,由此得出低倍频的CPU具备先天的优势。比如超频健将AMD Athlon XP1700+/1800+以及Intel Celeron 2.0GHz等。 3.制作工艺越先进越好超 制作工艺越先进的CPU,在超频时越能达到更高的频率。比如Intel新推出就赢得广泛关注的Intel Celeron D处理器,采用90纳米的制造工艺,Prescott核心。已经有网友将一快2.53GHz的Celeron D超到了4.4GHz。 4.温度对超频有决定性影响 大家知道超频以后CPU的温度会大幅度的提高,配备一个好的散热系统是必须的。这里不光指CPU风扇,还有机箱风扇等。另外,在CPU核心上涂抹薄薄一层硅脂也很重要,可以帮助CPU良好散热。 5.主板是超频的利器 一块可以良好支持超频的主板一般具有以下优点:(1)支持高外频。(2)拥有良好供电系统。如采用三相供电的主板或有CPU单路单项供电的主板。(3)有特殊保护的主板。如在CPU风扇停转时可以立即切断电源,部分主板把它称为“烧不死技术”。(4)BIOS中带有特殊超频设置的主板。(5) 做工优良,最好有6层PCB板。
2023-06-05 13:26:583

AMD 处理器英文与中文名对照大全

Athlon、Duron、Thunderbird都是美国AMD(超微)公司的产品。 Athlon:Athlon是AMD公司为x86计算机平台而设的微处理器,其中文官方名称为「速龙」。1999年8月的第一款Athlon处理器属于AMD的第七代(K7),与当时英特尔的Pentium 3处理器竞争,及后出现Athlon XP、MP等。现在最新的Athlon处理器有属于K8的Athlon 64系列,专为AMD64平台而设,以及兼容现有的x86平台。 Duron:中文名“毒龙”。据AMD的说法,Duron来自于拉丁字根"durare",它的意思是"持久、耐久"之意,而"on"则表示"单元"的意思,所以Duron就是"持久、耐久的单元"的意思。 Thunderbird:雷鸟(北美印第安人神话中的一种能呼唤雷电的巨鸟)于2000年8月发布,是AMD的第三代Athlon核心的处理器了。它以SocketA封装形式替代了成本较高的SlotA,而且整合了二级缓存,依然采用0.18微米工艺生产。它只是AMD ATHLON处理器众多核心中的一种。例如还有Palomino核心的和最为经典难忘的Barton核心。
2023-06-05 13:27:061

芯片锁死是什么意思

什么意思啊 ? 什么芯片锁了?
2023-06-05 13:27:163

毒龙800的处理器是多少针的???

749
2023-06-05 13:27:352

经常听到超频,我不知道电脑怎么样能超频它又有什么用

超频是在主板上面的一个小扭上调结~比如赛扬1.7的调完之后再开机就显示是2.0的了!超频虽然可以提高电脑的性能,但是有利自然有弊~这样也容易烧主板!就相当于人经常干一些超出他体力范围内的工作,就会乏力生病之类的~
2023-06-05 13:27:435

cpu核心频率是什么

核心频率( core frequency)指的是电子元器件核心部件的工作频率。针对不同的电子元器件,有不同的核心频率。处理器的核心频率是指处理器工作频率,也就是CPU的主频。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。
2023-06-05 13:27:582

笔记本厂商说的频率指的是什么?

别听一楼的。一楼的 太老了哈
2023-06-05 13:28:144

什么是CPU?

很好,我觉得不错,楼上的好棒呀!不过文字能简单些就更好了!
2023-06-05 13:28:259

CPU超频是指什么?

分类: 电脑/网络 >> 电脑常识 问题描述: 我是个电脑菜鸟,请高手给我解释解释。 解析: 严格意义上的超频是一个广泛的概念,它是指任何提高计算机某一部件工作频率而使之在非标准频率下工作从而提高该部件工作性能的行为,其中包括CPU超频、主板超频、内存超频、显示卡超频和硬盘超频等等很多部分。 通常所说的CPU超频仅仅是提高CPU的工作频率而采用的一种方法。一般来说,CPU制造商都会为了保证产品质量而预留一点频率余地,例如实际能达到2GHz的P4CPU可能只标称成1.8GHz来销售,因此CPU超频方法可以使你在花费很小的情况下提高计算机系统的性能。 在过去,我们超频的方法通常是将CPU的时钟速度加快。如今,许多主板厂商都开始在自己的产品上作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的;而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数。一些主板厂商还推出了傻瓜超频功能,就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率。 对超频而言,冷却装置是非常重要的。如果你在超频以后,可以启动计算机,但在一分钟之内,你的机器死掉了,这通常是你的CPU过热的原因。我们选用的冷却装置通常是散热片、风扇或者是同时安装。你可以在电脑城里面找到这些设备。在选购散热片的时候,你要确信你的CPU和它匹配。散热片的表面必须与CPU的表面完全接触。你可以将散热片与CPU粘在一起,必要的话,在散热片上可以加装一个小风扇。同时,机箱的散热也非常重要。 超频对CPU和主板上的元件是有害的,但在方法得当的情况下,这种损害并不会立刻降临到你的CPU上,只有当你的CPU在较高的温度下运行的时候才会产生。通常,一颗CPU的寿命是10年左右,超频会缩短CPU的寿命 CPU的频率 凡是懂得点电脑的朋友,都应该对‘频率"两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重 要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?请随我来, 让我给您详细说说吧! 所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率 越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异 (如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和DURON, PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率 最高(注意,并非最快)的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。 在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工 艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此,出现了倍频技术,该技术能 够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后 我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今 天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的 CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部 分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz(DURON)、 266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是 100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输, 因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改 变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段 。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。 眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的 DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而INTEL产CPU则不行。 由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯 片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早 期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设 备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即 PCI设备4分频、AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备 工作在33MHz,AGP设备工作在66MHz,才能说该芯片能正式支持该种外频。 最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整 个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产 而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的 66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁 然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就 不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等, 这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定 ,甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危 险,所以请大家慎重超频! 参考资料:room.hbu.edu/personal/yaohome/page8 应为现在论坛上有很多朋友问到关于CPU超频,所以就让小弟谈谈我本人的心得于体会。 一块CPU能够超频到多少是有很多原因的,譬如:CPU本身的质量,不同批号出厂的超频能力都有所不同。并不是有一个标准的答案。其次就要看其他周边硬件,主板对CPU超频有一定的影响。 超频的人有以下3种: 1 是一些刚买机的普通初学玩家,因为别人超他就跟着去超。并不知道超频的利弊,只是麻木的跟风。 2 是一些资金不多或机子不够用,又不想去升级换机的人。在这种情形下就只有去超频来提高机子的性能。 3 就是一些超级玩家又称骨灰级玩家。那些人往往为了兴趣和能够打破超频记录以去超频。他们的超频手法和一般玩家的很不同,他们为了CPU不被烧毁就想尽办法在低温下进行超频。并不是用风冷这么简单,而是用液氮、干冰等技术来达到降温的效果。往往在擦新新记录并用软件记录下来后,CPU和主板就会“报销”,真是即疯狂又浪费啊! 超频的利与弊: 利就是能够免费的获得更高的性能,还能够把CPU的最大潜能发挥出来。能够达到超频者的理想性能。 弊的方面就是减少CPU的使用寿命。CPU工作在非标准外频下还会影响其它硬件的正常使用。如果超得太高不单只系统不稳定,黑屏。甚至连CPU对烧毁掉。 超频的方法: 首先大家要知道:主频=外频*倍频 1 INTEL 的CPU因为在出厂时已经锁定倍频,所以就只有从外频下手。有一部分AMD的CPU可以通过连接L3金桥来降低倍频提高外频。通常的超频手法都是提高外频工作频率就能够达到提高CPU主频的效果。目前主流CPU的标准外频有100、133、166(注意:166已经是很难达到的外频)最好是在标准外频下工作(下文有说明) 2 如果还没有达到你想要的水平,可以提高CPU的电压(注意:每次调高的幅度最好是0.01),虽然通过调高电压可以再次突破CPU的主频,但是这样做会正加CPU的功率使温度升高,减小使用寿命。调得太高会烧毁,记得要适当。 超频要注意的问题: 1 最关键的问题也是最常见的问题—温度。在排除硬件存在质量问题的前提下,温度就是超频的最大“敌人”。很多人为了能够超频成功,在散热方面下了不小的工夫,买一个几百元的风扇、水冷、甚至用液氮和干冰等。如果温度超过CPU的最高界限就会烧毁。 2 在BIOS设置问题报警,一般设置为60度。 3 注意当CPU工作在非标准外频时给PCI、AGP等设备造成不能正常工作(正常工作频率是33Mhz和66Mhz)。这是主板最好有分频或锁定PCI和AGP工作频率的选项。当CPU的外频是100是就3分频、133就4分频、166就5分频。 4就算超频到一定的频率又不死机,这时也不要开心得过早。因为能开机运行几个软件都没事,并不代表你的机器一定稳定。你必须要运行一些《雷神之锤3》之类的大型3D游戏一个小时以上不死机才算成功。 在最后我祝愿所有的超频爱好者超频成功!!!因为我不想见到有更多的CPU壮烈牺牲:)
2023-06-05 13:28:531

怎样超频

小心点通过主板上的跳县可以BIOS也可以
2023-06-05 13:29:012

电脑超频是什么意思啊?怎么解决?

超出本身所限制的速度 cpu超频后自然会更快 但散热不好就会烧掉 希望我的回答能令你满意 谢谢!!
2023-06-05 13:29:114

台式电脑如何超频?

别超的好 如真要超可在开机时不停按Del键进入BIOS进入 改CPU就行了 具体我忘了哪一项 兄弟自己找找看吧 呵呵
2023-06-05 13:29:4111

什么是主控

主控即cpu,CPU是Central Processing Unit的缩写,即中央处理器。CPU发展至今,其中所集成的电子元件也越来越多,上万个晶体管构成了CPU的内部结构。那么这上百万个晶体管是如何工作的呢?看上去似乎很深奥,但归纳起来,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。CPU的工作原理就象一个工厂对产品的加工过程:进入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器)中,最后等着拿到市场上去卖(交由应用程序使用)。 CPU是整个微机系统的核心,它往往是各种档次微机的代名词,CPU的性能大致上反映出微机的性能,因此它的性能指标十分重要。CPU主要的性能指标有: 1.主频,倍频,外频:主频是CPU的时钟频率(CPU Clock Speed)即系统总线的工作频率。一般说来,主频越高,CPU的速度越快。由于内部结构不同,并非所有的时钟频率相同的CPU的性能都一样。外频即系统总线的工作频率;倍频则是指CPU外频与主频相差的倍数。三者关系是:主频=外频x倍频。 2.内存总线速度(Memory-Bus Speed): 指CPU与二级(L2)高速缓存和内存之间的通信速度。 3.扩展总线速度(Expansion-Bus Speed): 指安装在微机系统上的局部总线如VESA或PCI总线接口卡的工作速度。 4.工作电压(Supply Voltage): 指CPU正常工作所需的电压。早期CPU的工作电压一般为5V,随着CPU主频的提高,CPU工作电压有逐步下降的趋势,以解决发热过高的问题。 5.地址总线宽度:地址总线宽度决定了CPU可以访问的物理地址空间,对于486以上的微机系统,地址线的宽度为32位,最多可以直接访问4096 MB的物理空间。 6.数据总线宽度:数据总线宽度决定了CPU与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。 7.内置协处理器:含有内置协处理器的CPU,可以加快特定类型的数值计算,某些需要进行复杂计算的软件系统,如高版本的AUTO CAD就需要协处理器支持。 8.超标量:是指在一个时钟周期内CPU可以执行一条以上的指令。Pentium级以上CPU均具有超标量结构;而486以下的CPU属于低标量结构,即在这类CPU内执行一条指令至少需要一个或一个以上的时钟周期。 9.L1高速缓存即一级高速缓存:内置高速缓存可以提高CPU的运行效率,这也正是486DLC比386DX-40快的原因。内置的L1高速缓存的容量和结构对CPU的性能影响较大,这也正是一些公司力争加大L1级高速缓冲存储器容量的原因。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。 10.采用回写(Write Back)结构的高速缓存:它对读和写操作均有效,速度较快。而采用写通(Write-through)结构的高速缓存,仅对读操作有效。 CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。 从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为"CPU的指令集"。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集。 CPU重要参数介绍: 1)前端总线:英文名称叫Front Side Bus,一般简写为FSB。前端总线是CPU跟外界沟通的唯一通道,处理器必须通过它才能获得数据,也只能通过它来将运算结果传送出其他对应设备。前端总线的速度越快,CPU的数据传输就越迅速。前端总线的速度主要是用前端总线的频率来衡量,前端总线的频率有两个概念:一就是总线的物理工作频率(即我们所说的外频),二就是有效工作频率(即我们所说的FSB频率),它直接决定了前端总线的数据传输速度。由于INTEL跟AMD采用了不同的技术,所以他们之间FSB频率跟外频的关系式也就不同了:现时的INTEL处理器的两者的关系是:FSB频率=外频X4;而AMD的就是:FSB频率=外频X2。举个例子:P4 2.8C的FSB频率是800MHZ,由那公式可以知道该型号的外频是200MHZ了;又如BARTON核心的Athlon XP2500+ ,它的外频是166MHZ,根据公式,我们知道它的FSB频率就是333MHZ了!目前的Pentium 4处理器已经有了800MHZ的前端总线频率,而AMD处理器的最高FSB频率为400MHZ,这一点Intel处理器还是比较有优势的。 2)二级缓存:也就是L2 Cache,我们平时简称L2。主要功能是作为后备数据和指令的存储。L2的容量的大小对处理器的性能影响很大,尤其是商业性能方面。L2因为需要占用大量的晶体管,是CPU晶体管总数中占得最多的一个部分,高容量的L2成本相当高!所以INTEL和AMD都是以L2容量的差异来作为高端和低端产品的分界标准!现在市面上的CPU的L2有低至64K,也有高达1024K的,当然它们之间的价格也有十分大的差异。 3)制造工艺:我们经常说的0.18微米、0.13微米制程,就是指制造工艺。制造工艺直接关系到CPU的电气性能。而0.18微米、0.13微米这个尺度就是指的是CPU核心中线路的宽度。线宽越小,CPU的功耗和发热量就越低,并可以工作在更高的频率上了。所以0.18微米的CPU能够达到的最高频率比0.13微米CPU能够达到的最高频率低,同时发热量更大都是这个道理。现在主流的CPU基本都是采用0.13微米这种成熟的制造工艺,最新推出的CPU已经已经发展到0.09微米了,随着技术的成熟,不久的将来肯定是0.09微米制造工艺的天下了。 4)流水线:流水线也是一个比较重要的概念。CPU的流水线指的就是处理器内核中运算器的设计。这好比我们现实生活中工厂的生产流水线。处理器的流水线的结构就是把一个复杂的运算分解成很多个简单的基本运算,然后由专门设计好的单元完成运算。CPU流水线长度越长,运算工作就越简单,处理器的工作频率就越高,不过CPU的效能就越差,所以说流水线长度并不是越长越好的。由于CPU的流水线长度很大程度上决定了CPU所能达到的最高频率,所以现在INTEL为了提高CPU的频率,而设计了超长的流水线设计。Willamette和Northwood核心的流水线长度是20工位,而如今上市不久的Prescott核心的P4则达到了让人咋舌的30(如果算上前端处理,那就是31)工位。而现在AMD的Clawhammer K8,流水线长度仅为11工位,当然处理器能上到的最高频率也会比P4相对低一点,所以现在市面上高端的AMD系列处理器的频率一般在2G左右,跟P4的3G左右还是有一定的距离,但是处理效率并不低。 5)超线程技术(Hyper-Threading,简写为HT):这是Intel针对Pentium4指令效能比较低这个问题而开发的。超线程是一种同步多线程执行技术,采用此技术的CPU内部集成了两个逻辑处理器单元,相当于两个处理器实体,可以同时处理两个独立的线程。通俗一点说就是能把一个CPU虚拟成两个,相当于两个CPU同时运作,超线程实际上就是让单个CPU能作为两个CPU使用,从而达到了加快运算速度的目的。 主流CPU基本参数 了解完上面几个基本的概念后,我们接着介绍一下CPU的基本参数。 而目前PC台式机市场上主要有INTEL跟AMD两大CPU制造厂商,两家厂商各有特色,中、低、端的产品线都很齐全,下面我们一起来了解一下目前主流的CPU。 一、主流CPU产品之AMD篇 一提起AMD的CPU,许多DIYer的脑海中就会联想到低廉的价格、强劲的性能和极佳的超频潜力。目前市场上AMD所生产的处理器主要有面向高端的AMD Athlon 64、主流的AMD Athlon XP以及面向低端的Duron处理器。AMD的命名大部分采用PR值,只有Duron系列是采用实际频率来命名的,这一点大家要分清楚。 1、Appelbred核心的Duron 规格 核心代号 接口类型 制造工艺 主频 外频 倍频 前端总线 二级缓存 电压 Duron 1.4G Appelbred Socket A 0.13微米 1.4G 133MHZ 10.5 266MHZ 64K 1.5v Duron 1.6G Appelbred Socket A 0.13微米 1.6G 133MHZ 12 266MHZ 64K 1.5v Duron 1.8G Appelbred Socket A 0.13微米 1.8G 133MHZ 13.5 266MHZ 64K 1.5v 简单点评:这是AMD在2003年中出人意料地推出的新毒龙系列处理器,跟以前的老毒龙比,规格变化不大,L1还是128K,L2也是64K,区别主要是前端总线从老毒龙的200MHZ提升到266MHZ!而制造工艺也从0.18微米换成0.13微米,总体性能提升不少!新毒龙还继承了Barton核心Athlon XP的SSE指令集,动态分支余取和感温二极管等技术。另外,它还跟前辈Morgan核心的老毒龙一样,超频性能强劲。默认电压是1.5V,功耗最大不过57W,所以发热量十分低,可以说是现在市面上发热量最小的处理器了。笔者有朋友甚至在新毒龙上面只加了一个散热器就可以使其正常工作。早期出的那些的还可以有机会改造成L2为256K的Athlon XP。新毒龙的最大特点是价格十分便宜,如今的Duron1.4G跟Duron1.6G的市场价格都在300以下。价格低、超频性能好、功耗低、发热量不高加上还有可能改造成Athlon XP的特点,该系列绝对是低端的超值首选! 3、如何区分Thoroughbred-AO/BO核心跟BARTON核心的Athlon XP? 它们的差别从外观就可以区别出来,Thoroughbred-AO/BO核心的CPU核心部分相对短一点,而BARTON核心的CPU核心面部分相对细长一些。 4、现在市面上存在不少Remark的AMD的CPU,应该怎么样分辨呢? 由于AMD AthlonXP的防伪工作做得不好,留给了部分JS Remark的机会。大部份的AthlonXP都是没有锁频的,而且倍频定义、电压及相关的设定都是由CPU表面的L1-L12的铜桥连接组合决定,可是这些铜桥外露于CPU的表面,JS可以简单地修改以上铜桥的连接组合达至Remark效果。此外,AthlonXP的处理器只是由一片黑色的胶面印上白色的字组成,JS只需磨走这片黑色胶面再重新印上新的型号就完成了Remark的工作。现在比较常见的是用Throton核心的2000+改成Barton核心的2500+以及用Duron改成Athlon XP。改的基本原理是通过修改L2把屏蔽的二级缓存打开,再把标签换了。所以我们在分辨是否是Remark的时候主要观察CPU金桥上面(特别注意L2)是否有给改过的痕迹,如果有切割点,只要仔细对比一下其它部位的原厂切割,一般都能发现问题,还有就是看看CPU上面的标签,是否有不对劲的地方。不过近来市面上出现了一批白板的CPU,使到区分真假就更困难了,所谓一般不太懂硬件的消费者,为了安全起见,还是建议选择三年保修的盒装 AthlonXP吧。 5、如何区分Pentium4 A系列跟B系列? Pentium4 A系列跟B系列主要是外频不同,A系列是100MHZ外频,所以前端总线是400MHZ,而B系列是133MHZ外频,其前端总线就是533MHZ,所以他们之间的性能还是有一定的差别的。区分两种型号,可以根据CPU的外观以及用软件鉴别:外观方面,INTEL在Pentium4系列处理器上面的刻了明确的标识,很容易看出来。第一行自左至右依次为CPU主频、二级缓存容量、前端总线以及核心电压,所以我们区分这两种CPU主要看的是前端总线。如果看到CPU表面有"533"的标识,那么该型号的前端总线是533MHZ,那就是Pentium4 B系列的CPU,如果表面标识是"400"的话,则其前端总线就是400MHZ,那就是Pentium4 A系列的CPU。在软件方面看,因为INTEL的CPU都是锁了倍频的,所以一般用软件就可以可靠地鉴别出是什么型号的CPU了。一般用WCPUID这个软件就可以了,主要是查看一下CPU前端总线(FSB),如果是533MHZ的话,那就是Pentium4 B系列的CPU,如果是400MHZ的话,就是Pentium4 A系列的CPU。 6、CPU的频率越高,该处理器的性能就越好? 可能很多消费者都有这样的误区:频率越高, CPU性能当然越好。这个观点是很片面的,决定处理器性能的唯一标准应该是运算能力水平,比如说每秒钟可以执行多少条指令、可以做多少次浮点运算等等,而这些指标跟处理器的内部设计和频率高低都有关系,但绝对不是高频率就必然高性能。在不同体系的CPU系列简单以频率来比较是没说服力的,比如说在实际应用当中,不少频率比较低的AthlonXP处理器的性能却比高频的Pentium4要好。而在同一体系的处理器当中,频率越高,CPU性能越好这个观点还是正确的,比如同是Pentium4 C系列的CPU比较,当然频率越高,性能就越好了。 7、INTEL的CPU比AMD的CPU要稳定? 这也是一个长期存在消费者当中的一个误区,单从CPU来说,无论是INTEL还是AMD的CPU,只要是正货、在默认频率下工作,基本不存在稳定性的问题。造成电脑不稳定的主要是各方面配件的搭配问题,比如散热器、电源、内存、主板之类都有影响,相反电脑不稳定跟CPU的关系实在太少了。造成这个误区的主要原因是以前的AMD的老毒龙系列CPU的发热量比较大,如果配的散热器不好,温度一高,很容易造成死机。只要是散热器比较好的话,基本不再存在这个问题了。加上现在由于制造工艺的发展,AMD的CPU的发热量控制的比较好,相比于高频的Pentium4系列来说,总体还要好一些。 8、散装与盒装的区别 散装和盒装CPU并没有本质的区别,在质量上是一样的。从理论上说,盒装和散装产品在性能、稳定性以及可超频潜力方面不存在任何差距,主要差别在质保时间的长短以及是否带散热器。一般而言,盒装CPU的保修期要长一些(通常为三年),而且附带有一只质量较好的散热风扇,而散装CPU一般的质保时间是一年,不带散热器。 9、有关Intel盒装CPU的问题 AMD散装的CPU存在假货问题,而Intel的CPU却在盒装上出现假盒装的问题。跟AMD的不同,它的假并不是CPU假,而是盒装CPU所带的散热器是假的,质量跟正品的散热器有一定的差距。现在市场上大部分intel盒装产品都是假冒的。尤其是那种只有一年保修的Intel盒装CPU,可以说里面的散热器全部是假货,大家在购买的时候就要注意一下。所以对于Intel的CPU,笔者反而推荐用散装的。要是用盒装的话,最好就是要挑三年保修那种盒装产品。 简单点评: 这款Prescott核心的处理器出人意料地采用了P4 A系列差不多的命名,让很多人分辨不清。不过跟P4 A系列的参数有很大不同,133MHZ的外频,跟P4 B系列一样,不同的是采用了0.09微米的制造工艺,而且二级缓存增大到1024K,是P4 A/B系列的两倍。虽然采用了更先进的技术,但性能跟P4 B系列相当,没很明显的提高,不过价格并不贵,而且超频能力不错,性价比还可以。 规格 核心代号 接口类型 制造工艺 主频 外频 倍频 前端总线 二级缓存 超线程技术 电压 Pentium4 2.8E Prescott Socket 478 0.09微米 2.8G 200MHZ 14 800MHZ 1024k 支持 1.5v Pentium4 3.0E Prescott Socket 478 0.09微米 3.0G 200MHZ 15 800MHZ 1024k 支持 1.525v Pentium4 3.2E Prescott Socket 478 0.09微米 3.2G 200MHZ 16 800MHZ 1024k 支持 1.525v 简单点评:Prescott核心的P4 E系列跟P4 C系列差不多,还是采用Socket 478的接口类型,一样是200MHZ外频、800MHZ的FSB。采用了更先进的0.09微米的制造工艺,核心面积由Northwood核心的131平方毫米降低到112平方毫米,体积大为减少。 L2也增加到1024K。 还采用了第二代超线程、SSE3等等新技术。但由于缓存的响应时间被延长,这导致了Prescott宝贵的1024K L2缓存没能发挥出预想中的巨大作用,所以整体性能跟P4 C系列差不多,甚至有所不如,不过价格也不算贵,跟P4 C系列基本持平。这款处理器最大的缺点就是功耗比较大,发热量恐怖,一定要注意散热。唯一比较突出的是超频能力比同频率的P4 C系列的要好,如果在散热做好的前提下,超频潜力很大。 了解了现在市面上主流的CPU后,我们在选购的时候还有一些细节需要了解,下面将会逐一介绍。 选购时注意的问题 1、究竟是选择AMD还是INTEL的处理器呢? 这个问题可能是很多装机朋友最头疼的问题之一,如果看完上面的主流CPU的介绍后,应该有一点眉目了。这里再深入说一下:在浮点运算能力来看,INTEL的处理器一般只有两个浮点执行单元,而AMD的处理器一般设计了三个并行的浮点执行单元,所以在同档次的处理器当中,AMD处理器的浮点运算能力比INTEL的处理器的要好一些。浮点运算能力强,对于游戏应用、三维处理应用方面比较有优势。另外,多媒体指令方面,INTEL开发了SSE指令集,到现在已经发展到SSE3了,而AMD也开发了相应的,跟SSE兼容的增强3D NOW!指令集。相比之下,INTEL的处理器比AMD的在多媒体指令方面稍胜一筹,而且有不少软件都针对SSE进行了优化,因此在多媒体软件及平面处理软件中,相比同档次AMD处理器,INTEL的CPU显得更有优势。另外,选择什么样的CPU,价格更是比较关键的因素,在性能上,同档次的INTEL处理器整体来说可能比AMD的处理器要有优势一点,不过在价格方面,AMD的处理器绝对占优。打个比方:INTEL的P4 2.4B的价格大概是1200左右,而性能差不多的AMD的BARTON 2500+售价不过是600左右,想比之下,AMD的CPU的性价比更高。 最终是选择AMD还是INTE的CPU呢?由上面可以了解到,AMD的CPU在三维制作、游戏应用、视频处理等方面相比同档次的INTEL的处理器有优势,而INTEL的CPU则在商业应用、多媒体应用、平面设计方面有优势。除了用途方面,更要综合考虑到性价比这个问题。这样大家根据实际用途、资金预算可以按需选择到最合适自己的CPU。 2、怎么样分辨Thoroughbred-AO核心跟Thoroughbred-BO核心的Athlon XP? Thoroughbred-AO核心跟Thoroughbred-BO核心的Athlon XP的外观是一模一样的,所有的技术参数都差不多,在不超频的前提下,同型号的性能也没有区别。他们的差别主要在超频性能和发热量方面,Thoroughbred-BO核心的Athlon XP的超频性能强很多,而且发热量更低,所以很多电脑爱好者都会选择Thoroughbred-BO核心的Athlon XP。具体如何区分呢?在同是正品的情况下,外观很难看出区别,只能根据CPU上面的编号来区别:它们编号的差别主要在CPU上那个写着型号的标签最后一行第5个字母,如果那个字母是"A"的话,说明是TH-AO核心。如果那个字母是"B"的话,那就是TH-BO核心了。 3、如何区分Thoroughbred-AO/BO核心跟BARTON核心的Athlon XP? 它们的差别从外观就可以区别出来,Thoroughbred-AO/BO核心的CPU核心部分相对短一点,而BARTON核心的CPU核心面部分相对细长一些。 4、现在市面上存在不少Remark的AMD的CPU,应该怎么样分辨呢? 由于AMD AthlonXP的防伪工作做得不好,留给了部分JS Remark的机会。大部份的AthlonXP都是没有锁频的,而且倍频定义、电压及相关的设定都是由CPU表面的L1-L12的铜桥连接组合决定,可是这些铜桥外露于CPU的表面,JS可以简单地修改以上铜桥的连接组合达至Remark效果。此外,AthlonXP的处理器只是由一片黑色的胶面印上白色的字组成,JS只需磨走这片黑色胶面再重新印上新的型号就完成了Remark的工作。现在比较常见的是用Throton核心的2000+改成Barton核心的2500+以及用Duron改成Athlon XP。改的基本原理是通过修改L2把屏蔽的二级缓存打开,再把标签换了。所以我们在分辨是否是Remark的时候主要观察CPU金桥上面(特别注意L2)是否有给改过的痕迹,如果有切割点,只要仔细对比一下其它部位的原厂切割,一般都能发现问题,还有就是看看CPU上面的标签,是否有不对劲的地方。不过近来市面上出现了一批白板的CPU,使到区分真假就更困难了,所谓一般不太懂硬件的消费者,为了安全起见,还是建议选择三年保修的盒装 AthlonXP吧。 5、如何区分Pentium4 A系列跟B系列? Pentium4 A系列跟B系列主要是外频不同,A系列是100MHZ外频,所以前端总线是400MHZ,而B系列是133MHZ外频,其前端总线就是533MHZ,所以他们之间的性能还是有一定的差别的。区分两种型号,可以根据CPU的外观以及用软件鉴别:外观方面,INTEL在Pentium4系列处理器上面的刻了明确的标识,很容易看出来。第一行自左至右依次为CPU主频、二级缓存容量、前端总线以及核心电压,所以我们区分这两种CPU主要看的是前端总线。如果看到CPU表面有"533"的标识,那么该型号的前端总线是533MHZ,那就是Pentium4 B系列的CPU,如果表面标识是"400"的话,则其前端总线就是400MHZ,那就是Pentium4 A系列的CPU。在软件方面看,因为INTEL的CPU都是锁了倍频的,所以一般用软件就可以可靠地鉴别出是什么型号的CPU了。一般用WCPUID这个软件就可以了,主要是查看一下CPU前端总线(FSB),如果是533MHZ的话,那就是Pentium4 B系列的CPU,如果是400MHZ的话,就是Pentium4 A系列的CPU。 6、CPU的频率越高,该处理器的性能就越好? 可能很多消费者都有这样的误区:频率越高, CPU性能当然越好。这个观点是很片面的,决定处理器性能的唯一标准应该是运算能力水平,比如说每秒钟可以执行多少条指令、可以做多少次浮点运算等等,而这些指标跟处理器的内部设计和频率高低都有关系,但绝对不是高频率就必然高性能。在不同体系的CPU系列简单以频率来比较是没说服力的,比如说在实际
2023-06-05 13:30:071

超频是什么意思啊????

严格意义上的超频是一个广泛的概念,它是指任何提高计算机某一部件工作频率而使之在非标准频率下工作从而提高该部件工作性能的行为,其中包括CPU超频、主板超频、内存超频、显示卡超频和硬盘超频等等很多部分。 通常所说的CPU超频仅仅是提高CPU的工作频率而采用的一种方法。一般来说,CPU制造商都会为了保证产品质量而预留一点频率余地,例如实际能达到2GHz的P4CPU可能只标称成1.8GHz来销售,因此CPU超频方法可以使你在花费很小的情况下提高计算机系统的性能。 在过去,我们超频的方法通常是将CPU的时钟速度加快。如今,许多主板厂商都开始在自己的产品上作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的;而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数。一些主板厂商还推出了傻瓜超频功能,就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率。 对超频而言,冷却装置是非常重要的。如果你在超频以后,可以启动计算机,但在一分钟之内,你的机器死掉了,这通常是你的CPU过热的原因。我们选用的冷却装置通常是散热片、风扇或者是同时安装。你可以在电脑城里面找到这些设备。在选购散热片的时候,你要确信你的CPU和它匹配。散热片的表面必须与CPU的表面完全接触。你可以将散热片与CPU粘在一起,必要的话,在散热片上可以加装一个小风扇。同时,机箱的散热也非常重要。 超频对CPU和主板上的元件是有害的,但在方法得当的情况下,这种损害并不会立刻降临到你的CPU上,只有当你的CPU在较高的温度下运行的时候才会产生。通常,一颗CPU的寿命是10年左右,超频会缩短CPU的寿命 CPU的频率 凡是懂得点电脑的朋友,都应该对‘频率"两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重 要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?请随我来, 让我给您详细说说吧! 所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率 越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异 (如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和DURON, PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率 最高(注意,并非最快)的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。 在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工 艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此,出现了倍频技术,该技术能 够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后 我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今 天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的 CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部 分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz(DURON)、 266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是 100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输, 因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改 变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段 。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。 眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的 DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而INTEL产CPU则不行。 由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯 片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早 期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设 备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即 PCI设备4分频、AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备 工作在33MHz,AGP设备工作在66MHz,才能说该芯片能正式支持该种外频。 最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整 个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产 而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的 66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁 然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就 不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等, 这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定 ,甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危 险,所以请大家慎重超频! 参考资料:http://netroom.hbu.edu.cn/personal/yaohome/page8.htm 应为现在论坛上有很多朋友问到关于CPU超频,所以就让小弟谈谈我本人的心得于体会。 一块CPU能够超频到多少是有很多原因的,譬如:CPU本身的质量,不同批号出厂的超频能力都有所不同。并不是有一个标准的答案。其次就要看其他周边硬件,主板对CPU超频有一定的影响。 超频的人有以下3种: 1 是一些刚买机的普通初学玩家,因为别人超他就跟着去超。并不知道超频的利弊,只是麻木的跟风。 2 是一些资金不多或机子不够用,又不想去升级换机的人。在这种情形下就只有去超频来提高机子的性能。 3 就是一些超级玩家又称骨灰级玩家。那些人往往为了兴趣和能够打破超频记录以去超频。他们的超频手法和一般玩家的很不同,他们为了CPU不被烧毁就想尽办法在低温下进行超频。并不是用风冷这么简单,而是用液氮、干冰等技术来达到降温的效果。往往在擦新新记录并用软件记录下来后,CPU和主板就会“报销”,真是即疯狂又浪费啊! 超频的利与弊: 利就是能够免费的获得更高的性能,还能够把CPU的最大潜能发挥出来。能够达到超频者的理想性能。 弊的方面就是减少CPU的使用寿命。CPU工作在非标准外频下还会影响其它硬件的正常使用。如果超得太高不单只系统不稳定,黑屏。甚至连CPU对烧毁掉。 超频的方法: 首先大家要知道:主频=外频*倍频 1 INTEL 的CPU因为在出厂时已经锁定倍频,所以就只有从外频下手。有一部分AMD的CPU可以通过连接L3金桥来降低倍频提高外频。通常的超频手法都是提高外频工作频率就能够达到提高CPU主频的效果。目前主流CPU的标准外频有100、133、166(注意:166已经是很难达到的外频)最好是在标准外频下工作(下文有说明) 2 如果还没有达到你想要的水平,可以提高CPU的电压(注意:每次调高的幅度最好是0.01),虽然通过调高电压可以再次突破CPU的主频,但是这样做会正加CPU的功率使温度升高,减小使用寿命。调得太高会烧毁,记得要适当。 超频要注意的问题: 1 最关键的问题也是最常见的问题—温度。在排除硬件存在质量问题的前提下,温度就是超频的最大“敌人”。很多人为了能够超频成功,在散热方面下了不小的工夫,买一个几百元的风扇、水冷、甚至用液氮和干冰等。如果温度超过CPU的最高界限就会烧毁。 2 在BIOS设置问题报警,一般设置为60度。 3 注意当CPU工作在非标准外频时给PCI、AGP等设备造成不能正常工作(正常工作频率是33Mhz和66Mhz)。这是主板最好有分频或锁定PCI和AGP工作频率的选项。当CPU的外频是100是就3分频、133就4分频、166就5分频。 4就算超频到一定的频率又不死机,这时也不要开心得过早。因为能开机运行几个软件都没事,并不代表你的机器一定稳定。你必须要运行一些《雷神之锤3》之类的大型3D游戏一个小时以上不死机才算成功。 在最后我祝愿所有的超频爱好者超频成功!!!因为我不想见到有更多的CPU壮烈牺牲:)
2023-06-05 13:30:141

CPU超频会有什么后果

别超太多就可以,c的cpu一般很能超频,后果超频失败有可能烧掉,另一个就是寿命会减短我给你的忠告就是cpu的电压不要乱加
2023-06-05 13:30:224

什么是CPU的最高频率????

同意第一条,补充:不代表CPU可以达到的频率! ̄
2023-06-05 13:30:383

怎么才能超频?怎么做?

严格意义上的超频是一个广泛的概念,它是指任何提高计算机某一部件工作频率而使之在非标准频率下工作从而提高该部件工作性能的行为,其中包括CPU超频、主板超频、内存超频、显示卡超频和硬盘超频等等很多部分。 通常所说的CPU超频仅仅是提高CPU的工作频率而采用的一种方法。一般来说,CPU制造商都会为了保证产品质量而预留一点频率余地,例如实际能达到2GHz的P4CPU可能只标称成1.8GHz来销售,因此CPU超频方法可以使你在花费很小的情况下提高计算机系统的性能。 在过去,我们超频的方法通常是将CPU的时钟速度加快。如今,许多主板厂商都开始在自己的产品上作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的;而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数。一些主板厂商还推出了傻瓜超频功能,就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率。 对超频而言,冷却装置是非常重要的。如果你在超频以后,可以启动计算机,但在一分钟之内,你的机器死掉了,这通常是你的CPU过热的原因。我们选用的冷却装置通常是散热片、风扇或者是同时安装。你可以在电脑城里面找到这些设备。在选购散热片的时候,你要确信你的CPU和它匹配。散热片的表面必须与CPU的表面完全接触。你可以将散热片与CPU粘在一起,必要的话,在散热片上可以加装一个小风扇。同时,机箱的散热也非常重要。 超频对CPU和主板上的元件是有害的,但在方法得当的情况下,这种损害并不会立刻降临到你的CPU上,只有当你的CPU在较高的温度下运行的时候才会产生。通常,一颗CPU的寿命是10年左右,超频会缩短CPU的寿命 CPU的频率 凡是懂得点电脑的朋友,都应该对‘频率"两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重 要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?请随我来, 让我给您详细说说吧! 所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率 越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异 (如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和DURON, PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率 最高(注意,并非最快)的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。 在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工 艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此,出现了倍频技术,该技术能 够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后 我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今 天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的 CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部 分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz(DURON)、 266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是 100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输, 因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改 变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段 。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。 眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的 DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而INTEL产CPU则不行。 由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯 片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早 期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设 备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即 PCI设备4分频、AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备 工作在33MHz,AGP设备工作在66MHz,才能说该芯片能正式支持该种外频。 最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整 个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产 而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的 66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁 然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就 不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等, 这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定 ,甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危 险,所以请大家慎重超频! 参考资料: http://netroom.hbu.edu.cn/personal/yaohome/page8.htm 应为现在论坛上有很多朋友问到关于CPU超频,所以就让小弟谈谈我本人的心得于体会。 一块CPU能够超频到多少是有很多原因的,譬如:CPU本身的质量,不同批号出厂的超频能力都有所不同。并不是有一个标准的答案。其次就要看其他周边硬件,主板对CPU超频有一定的影响。 超频的人有以下3种: 1 是一些刚买机的普通初学玩家,因为别人超他就跟着去超。并不知道超频的利弊,只是麻木的跟风。 2 是一些资金不多或机子不够用,又不想去升级换机的人。在这种情形下就只有去超频来提高机子的性能。 3 就是一些超级玩家又称骨灰级玩家。那些人往往为了兴趣和能够打破超频记录以去超频。他们的超频手法和一般玩家的很不同,他们为了CPU不被烧毁就想尽办法在低温下进行超频。并不是用风冷这么简单,而是用液氮、干冰等技术来达到降温的效果。往往在擦新新记录并用软件记录下来后,CPU和主板就会“报销”,真是即疯狂又浪费啊! 超频的利与弊: 利就是能够免费的获得更高的性能,还能够把CPU的最大潜能发挥出来。能够达到超频者的理想性能。 弊的方面就是减少CPU的使用寿命。CPU工作在非标准外频下还会影响其它硬件的正常使用。如果超得太高不单只系统不稳定,黑屏。甚至连CPU对烧毁掉。 超频的方法: 首先大家要知道:主频=外频*倍频 1 INTEL 的CPU因为在出厂时已经锁定倍频,所以就只有从外频下手。有一部分AMD的CPU可以通过连接L3金桥来降低倍频提高外频。通常的超频手法都是提高外频工作频率就能够达到提高CPU主频的效果。目前主流CPU的标准外频有100、133、166(注意:166已经是很难达到的外频)最好是在标准外频下工作(下文有说明) 2 如果还没有达到你想要的水平,可以提高CPU的电压(注意:每次调高的幅度最好是0.01),虽然通过调高电压可以再次突破CPU的主频,但是这样做会正加CPU的功率使温度升高,减小使用寿命。调得太高会烧毁,记得要适当。 超频要注意的问题: 1 最关键的问题也是最常见的问题—温度。在排除硬件存在质量问题的前提下,温度就是超频的最大“敌人”。很多人为了能够超频成功,在散热方面下了不小的工夫,买一个几百元的风扇、水冷、甚至用液氮和干冰等。如果温度超过CPU的最高界限就会烧毁。 2 在BIOS设置问题报警,一般设置为60度。 3 注意当CPU工作在非标准外频时给PCI、AGP等设备造成不能正常工作(正常工作频率是33Mhz和66Mhz)。这是主板最好有分频或锁定PCI和AGP工作频率的选项。当CPU的外频是100是就3分频、133就4分频、166就5分频。 4就算超频到一定的频率又不死机,这时也不要开心得过早。因为能开机运行几个软件都没事,并不代表你的机器一定稳定。你必须要运行一些《雷神之锤3》之类的大型3D游戏一个小时以上不死机才算成功。
2023-06-05 13:30:461

谁能帮我只出AMD CPU 的型号的中英文名字啊~要相对应的

CPU AMD Athlon64 X2 3800+ AM2(90纳米/65W盒
2023-06-05 13:30:532

cpu核心频率是什么

核心频率( core frequency)指的是电子元器件核心部件的工作频率。针对不同的电子元器件,有不同的核心频率。处理器的核心频率是指处理器工作频率,也就是CPU的主频。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。
2023-06-05 13:31:022

cpu超频是怎么回事?为何要超频?怎样去超频?对cpu有损坏吗?

能否超频看cpu;能超多少看主板;能超多久看风扇.
2023-06-05 13:31:184