barriers / 阅读 / 详情

在向量的加减运算中和方向有关吗?

2023-05-20 02:48:48
共3条回复
西柚不是西游

当然有关,向量的加减法则,又不是简单的把向量的模加起来。

参与加减运算的向量都是包含大小和方向的量,不同的大小和方向,都会影响计算的结果。

S笔记

和方向是有关的。

nicehost

设a=(x,y),b=(x",y")。

加法

向量的加法满足平行四边形法则和三角形法则。

向量的加法

OB+OA=OC。

a+b=(x+x",y+y")。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB.即“共同起点,指向被

向量的减法

减”a=(x,y)b=(x",y") 则a-b=(x-x",y-y").如图:c=a-b 以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向;

向量的数乘

当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。[2]需要注意的是:向量的加减乘除运算满足实数加减乘除运算法则。数量积定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。向量的数量积的坐标表示:a·b=x·x"+y·y"。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。2.向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|与|a|·|b|不等价4.由 |a|=|b| ,不能推出a=b,也不能推出a=-b,但反过来则成立。向量积定义:两个向量a和b的向量积

向量的几何表示

(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x1,y1,z1)则A*B=a b cx1 y1 z1x1 y1 z1向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。

相关推荐

向量的运算的所有公式是什么?

1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。扩展资料:已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
2023-01-14 03:30:242

向量运算法则是什么?

①三角形定则:三角形定则主要是将各个向量依次按照首位顺序相互连接,最后得出的结果为第一个向量的起点指向最后一个向量的重点,这种解法则是被称之为三角形定则。②平行四边形定则:而平行四边形定则则是选择以向量的两个边作为平行四边形,而结果则是作为公共起点的一个对角线,平行四边形定则还能解决向量的减法。其中是将向量平移到公共起点上面,然后以向量的两个边作为平行四边形,最终由减向量的重点指向被减向量的重点,而这个平行四边形定则只是可以用来做两个非零非共线向量的加减。相关定义1、滑动向量沿着直线作用的向量称为滑动向量。2、固定向量作用于一点的向量称为固定向量(亦称胶着向量)。3、位置向量对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。4、方向向量直线l上的向量a以及与向量a共线的向量叫做直线l上的方向向量。
2023-01-14 03:30:271

向量的计算法则

1、向量的加法 向量的加法 向量的加法满足平行四边形法则和三角形法则. 向量的加法OB+OA=OC. a+b=(x+x",y+y"). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 向量的减法 AB-AC=CB.即“共同起点,指向被 向量的减法减” a=(x,y)b=(x",y") 则a-b=(x-x",y-y"). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣. 当λ>0时,λa与a同方向; 向量的数乘 当λ<0时,λa与a反方向; 向量的数乘当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ. 4、向量的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a·b=x·x"+y·y". 向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方. a⊥b 〈=〉a·b=0. |a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2. 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c. 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b. 5、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0. 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0. a垂直b〈=〉a×b=|a||b|. 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); a×(b+c)=a×b+a×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的. 6、三向量的混合积 向量的混合积 定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c, 向量的混合积所得的数叫做三向 量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c 混合积具有下列性质: 1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1) 2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=0 3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb) 4、(a×b)·c=a·(b×c)
2023-01-14 03:30:351

向量及其运算

向量的表示 : 以 M1 为起点、 M2 为终点的有向线段表示的向量记为 M1 M2 , 有时也用一个黑体字母(书写时, 在字母上面加一箭头)来表示(见图1 ), 如 a 或 。 向量的模 : 向量的大小(数学上指有向线段的长度)叫作向量的模,记作|a|, 。 模为1的向量称为 单位向量 ,记作 e。 模为0的向量称为 零向量 ,记作 0。 零向量的方向可以看作是任意的。 向量 a 、 b 的始点重合, 在两向量的所在平面上, 若一个向量逆时针方向转过角度 θ后可与另一个向量正向重合(见图2), 则称θ为 向量 a 、 b 的夹角, 记作(a, b), 即 θ = ( ) = ( ) (0≤ θ ≤π) 如果向量 的始点A与终点B在u轴上的投影分别为A′、B′(见图3), 则u轴上的有向线段A′B′的值A′B′称为向量AB在u轴上的投影, 记作 = A′B′,u轴称为 投影轴 。 定理1 向量 在 u 轴上的投影等于向量的模乘以u轴与向量 的夹角 θ 的余弦,即 cos θ a 可分解为三个分别平行于x轴、y轴和z轴的向量 a 、 a 和 a , 它们称为a在 x 轴、y 轴和 z 轴的三个 分向量 , 显然 a = a + a + a (见图4)。 若用 i 、 j 和 k 分别表示与 x 轴、 y 轴和 z 轴正向一致的三个单位向量, 称它们为 基本单位向量 , 则有 a =( ) i , a = ( ) j , a = ( ) k , 因此 a = a + a + a = ( ) i + ( ) j + ( ) k = & i + & j + & k , 称上式为向量 a 按 基本单位向量的分解式 或 a 的 向量表示式 。 将 、 、 称为向量 a 的 坐标 , 记为 a = ( , , ) , 也称为向量a的 坐标表示式 。 三个 分向量 ( a , a , a ) a = a + a + a 向量表示式 a = & i + & j + & k 坐标表示式 a = ( , , ) 设 a 为任意一个非零向量, 又设 为 a 与三坐标轴正向之间的夹角(0≤α, β, γ <π), 如图5所示, 则 分别为向量 a 的 方向角 。 由于向量坐标就是向量在坐标轴上的投影, 故有 = | a | , = | a | , = | a | , 其中, 称为向量 a 的 方向余弦 , 通常用来表示向量的方向。 由模的定义, 可知向量 a 的模为 | a | = = 或 = = = 由此可得 即任一向量的方向余弦的平方和为 1。 单位向量 定义1 给定向量 a 与 b , 我们将 |a| 与 |b| 及它们的夹角θ的余弦的乘积,称为向量 a 与 b 的 数量积 , 记为 a · b , 即 。 由定义 1 可以推出: (1) ```````````` ( ) (2) a·a= a acos(a,a)= a ; (3) 若 a ≠0, b ≠0, 则a·b=0⇔a⊥b
2023-01-14 03:30:381

向量运算

原文 第1节:零向量 1.零向量的概念   对于任意向量x,都有x+y=x,则x被称为零向量。例如,3D零向量为[0 0 0]。零向量非常特殊,因为它是唯一大小为零的向量,并且唯一一个没有方向的向量。 第2节:负向量 1.负向量的概念   对于向量x,如果x+(-x)=0,则-x就是负向量。 2.负向量的运算法则   将此法则应用到2D,3D,4D中,则   -[x y] = [-x -y]   -[x y z] = [-x -y -z]   -[w x y z] = [-w -x -y -z] 3.负向量的几何解释   向量为负表示将得到一个和原向量大小相等,方向相反的向量。 第3节:向量的模 1.向量的模的概念   所谓的向量的模就是指向量的大小或者说长度。 2.向量的模的运算法则   在线性代数中,向量的模通常用在向量两边各加两条竖线的方式表示,如||v||,表示向量v的模。向量的模的计算公式如下:   对于2D,3D向量的如下 第4节:标量与向量的运算 1.运算法则   虽然标量与向量不能相加减,但是可以相乘,至于标量与向量的除法可以看做乘以倒数。   对于2D,3D向量的如下 2.几何解释   向量乘以标量或者除以标量,相当于以因子k来缩放向量的长度。 第5节:标准化向量 1.标准化向量的概念   所谓的标准化向量就是单位向量,就是向量的长度为1的向量。有时候也称作为法线。 2.运算法则   对于任意非零向量v,都能计算出一个和v方向相同的单位向量n,这个过程被称作为向量的“标准化”,要标准化向量,将向量除以它的大小(模)即可。 第6节:向量的加法和减法 1.向量的加法和减法的前提   如果两个向量的维数相同,那么他们能够相加减,运算结果的向量的维数和原向量相同。 2.运算法则   向量的加法等于两个向量的分量相加,向量的减法相当于加上一个负向量。 3.几何解释   向量的加法和减法引导出了三角形法则,即将向量的首尾相连就会得到加法的结果,如下 第7节:距离公式 1.距离公式的推导   通过上面的三角形原则,我们可以发现,通过两个向量的加减可以得到第三个向量,我们将这个过程逆置,如果知道了两点的距离,如何求出其距离,我们可以利用向量的减法实现。 2.运算公式   在3D中,已知两点a,b,求两点之间的距离d?我们可以将a,b两点看做向量,然后b-a就是向量d,然后我们再计算向量d的模就是两点间的距离   求出向量d后,再求d的模就是两点的距离 第8节:向量的点乘 1.基本概念   标量可以和向量相乘,向量也可以和向量向量相乘,这就叫点乘,也叫做内积。标量与向量相乘不可以写点,向量与向量相乘必须要写点,向量的点乘优先级高于向量的加减法。注意:向量点乘后的结果是标量 2.运算法则   注意:向量点乘后的结果是标量,不再是向量。   应用到2D,3D中为 a·b = axbx + ayby a·b = axbx + ayby+ azbz 3.几何解释   向量的点乘描述的是两个向量的相似程度,即两个向量之间的夹角的大小   向量的点乘的集合运算法如下,向量的点乘结果与cos函数有关,当两个向量垂直时,向量的点乘结果为0 第9节:向量的投影 1.基本概念   给定两个向量v和n,能将v分解成两个分量,一个是垂直于向量n,一个平行于向量n,平行于向量n的向量我们称为在向量n上的投影。 2.投影的求解   因为向量n平行于投影向量,所以可以求出向量n的单位向量再乘以投影的模,就可以得到投影向量,如下   我们接下来求投影的模即可,我们可以根据三角函数的余弦公式来求出投影的模   代入投影的模就可以求出投影向量 3.垂直向量的求解   根据三角形法则,可以轻易求出垂直的向量 第10节:向量的叉乘 1.基本概念   两个向量的叉乘得到是向量,且这个向量垂直于原来的两个向量。向量的叉乘只可以运用在3D向量中。 2.数学运算公式 3.几何运算公式   向量叉乘的结果向量的长度与两个向量的夹角有关,且成正弦函数关系,如果向量a和b是平行关系,则叉乘的结果为0,因为sin0为0 4.向量叉乘方向的判断   向量的叉乘是通过右手定则来判断结果向量的方向的。伸出右手,四指弯曲符合向量叉乘的顺序,那么大拇指就是叉乘后结果向量的方向。如下图axb,右手四指弯曲方向从a到b,大拇指方向向上就是叉乘结果向量的方向。
2023-01-14 03:30:411

向量的计算公式

向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量
2023-01-14 03:30:441

向量是什么?向量怎么运算?

怎么说呢,向量就是这样的一种量,既有大小,又有方向 一般用一条有方向的线段,即有向线段表示,有向线段的长度表示向量的大小 有向线段的方向表示向量的方向 向量的大小叫做向量的模,一般用一个绝对值号表示,比如|a| 模为1的向量叫做单位向量,模为0的向量角做零向量,零向量的方向是任意的 我们涉及的都是自由向量 向量的运算有加减法、数乘、数量积、向量积、混合积等 向量可以用坐标表示. 反正一两句也说不明白,如有问题,可探讨.
2023-01-14 03:30:501

向量的加减法运算公式

向量的加减法运算公式:A+B=(X1+X2,Y1-Y2)。向量的加减法运算公式:A+B=(X1+X2,Y1-Y2)。加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号“+”。进行加法时以加号将各项连接起来。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
2023-01-14 03:31:001

向量的数量积运算公式什么?

向量的数量积运算公式(几何定义):a*b=|a||b|cosθ。其中,a、b表示向量,θ表示向量a、b共起点时的夹角,很明显向量的数量积表示数,不是向量。该定义只对二维和三维空间有效,这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。向量的分解首先,由平面向量基本定理可知,平面中的任意向量都可表示成两个不共线向量的线性组合,也可以理解为任意向量都可以分解成两个不共线的向量。垂直是一种特殊的不共线的位置关系,我们认为垂直的两个方向之间是互相不影响的。因此我们经常选择互相垂直的两个单位向量作为基本向量,可以将任意一个向量表示成这两个向量的线性组合,这就是坐标表示平面向量的由来。因此我们经常会把向量在两个互相垂直的方向上进行分解。假设平面中有两个向量F、L,可将向量F分解成与向量L垂直的分量和与向量L共线的分量。有这么一种情况,当向量F在与向量L垂直方向的分量上不会对向量L产生作用,而在与向量L共线方向的分量才会对向量L产生作用。例如力和位移是两个向量,力在与位移共线的方向上才会做功,与位移垂直的方向上不会做功,而且做的功为共线两个向量大小的乘积。为了表示这种向量之间的互相作用,才有了向量数量积的定义,数量积的计算结果为一个向量与另一个向量在其方向分量的大小的乘积。
2023-01-14 03:31:021

向量的基本运算

解题思路索引:1单位向量:模值为单位“1”向量。2证基底即证两个向量相互垂直,即向量点积为零。3共线的话就是两个算式向量的叉积为零,计算k即可。具体解法:(1)1*m-2*n=12*m+5*n=11所以3(1,2)+(-2,5)=(1,11)即3a+b=c(2)因为第一个问已经证明了a、b两个向量可以是一组基地,那么,就以a、b向量为基底构成一个坐标系,那么ka+b和4a+(k+1)b就可以表示为在以a、b为基底的坐标系中的两个向量(k,1)和(4,k+1)。那么要使着两个向量共线,则需要(k,1)×(4,k+1)=0即:4k+k(k+1)+4+(k+1)=0,求解,可得k=-1或k=-5。
2023-01-14 03:31:092

向量的加法运算

1、向量的加法:满足平行四边形法则和三角形法则,即2、向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”,例如:a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。3、向量的乘法:实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。4、向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。扩展资料:一、向量加法的运算律:1、交换律:a+b=b+a;2、结合律:(a+b)+c=a+(b+c)。3、加减变换律:a+(-b)=a-b4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。二、向量的数乘规律:1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。
2023-01-14 03:31:121

关于向量点乘运算

2023-01-14 03:31:153

数学中向量的许多公式,运算规则

a=(x,y),b=(x",y"). 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x",y+y"). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a•b=x•x"+y•y". 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方. a⊥b 〈=〉a•b=0. |a•b|≤|a|•|b|. 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2. 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c. 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b. 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0. 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0. a‖b〈=〉a×b=0. 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的. 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号. 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣. ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号. 定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比. 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ).(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是 xy"-x"y=0. 零向量0平行于任何向量. [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0. a⊥b的充要条件是 xx"+yy"=0. 零向量0垂直于任何向量.
2023-01-14 03:31:461

高中向量公式是什么?

1、向量的加法向量加法的运算律:交换律:a+b=b+a。结合律:(a+b)+c=a+(b+c)。2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0。0的反向量为0。AB-AC=CB。即“共同起点,指向被减”。a=(x,y)b=(x",y")则a-b=(x-x",y-y")。向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
2023-01-14 03:32:011

向量a×向量b怎么运算

1、叉乘。向量A×向量B=(x1y2i,x2y2j)。向量向量方向符合右手法则。|向量A×向量B|=|向量A||向量B|sin。2、点乘。设向量A=(x1,y1),向量B=(x2,y2)。向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2(数值u为向量A、向量B之间夹角)。
2023-01-14 03:32:072

向量的公式有哪些?

楼主:设a=(x,y),b=(x",y").1、向量的加法  向量的加法满足平行四边形法则和三角形法则.  AB+BC=AC.  a+b=(x+x",y+y").  a+0=0+a=a.  向量加法的运算律:  交换律:a+b=b+a;  结合律:(a+b)+c=a+(b+c).2、向量的减法  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0  AB-AC=CB.即“共同起点,指向被减”  a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").4、数乘向量  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.  当λ>0时,λa与a同方向;  当λ<0时,λa与a反方向;  当λ=0时,λa=0,方向任意.  当a=0时,对于任意实数λ,都有λa=0.  注:按定义知,如果λa=0,那么λ=0或a=0.  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.  数与向量的乘法满足下面的运算律  结合律:(λa)·b=λ(a·b)=(a·λb).  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.  数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π].  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.  向量的数量积的坐标表示:a·b=x·x"+y·y".  向量的数量积的运算率  a·b=b·a(交换率);  (a+b)·c=a·c+b·c(分配率);  向量的数量积的性质  a·a=|a|的平方.  a⊥b 〈=〉a·b=0.  |a·b|≤|a|·|b|.  向量的数量积与实数运算的主要不同点  1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.  2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.  3、|a·b|≠|a|·|b|  4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.  向量的向量积性质:  ∣a×b∣是以a和b为边的平行四边形面积.  a×a=0.  a∥b〈=〉a×b=0.  向量的向量积运算律  a×b=-b×a;  (λa)×b=λ(a×b)=a×(λb);  (a+b)×c=a×c+b×c.  注:向量没有除法,“向量AB/向量CD”是没有意义的.祝您步步高升
2023-01-14 03:32:273

两个向量相乘怎么算?

如果向量是用坐标表示的,则可用行列式计算。(注意:向量a×向量b=-向量b×向量a):两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向。扩展资料:代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
2023-01-14 03:32:302

向量的基本运算公式是什么?

向量的基本运算公式是:向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
2023-01-14 03:33:191

向量的运算的所有公式有哪些?

01 向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 向量的数量积的运算律 a·b=b·a(交换律) (λa)·b=λ(a·b)(关于数乘法的结合律) (a+b)·c=a·c+b·c(分配律) 向量的数量积的性质 a·a=|a|的平方。 a⊥b〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的向量积运算律 a×b=-b×a (λa)×b=λ(a×b)=a×(λb) a×(b+c)=a×b+a×c. (a+b)×c=a×c+b×c.
2023-01-14 03:33:261

向量的运算的所有公式有哪些?

      01      向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。      在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。      数与向量的乘法满足下面的运算律      结合律:(λa)·b=λ(a·b)=(a·λb)。      向量对于数的分配律(第一分配律):(λ+μ)a=λa+μ数对于向量的分配律(第二分配律):λ(a+b)=λa+λ数乘向量的消去律:1 如果实数λ≠0且λa=λb,那么a=b。2 如果a≠0且λa=μa,那么λ=μ。      向量的数量积的运算律      a·b=b·a(交换律)      (λa)·b=λ(a·b)(关于数乘法的结合律)      (a+b)·c=a·c+b·c(分配律)      向量的数量积的性质      a·a=|a|的平方。      a⊥b〈=〉a·b=0。      |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)      向量的向量积运算律      a×b=-b×a      (λa)×b=λ(a×b)=a×(λb)      a×(b+c)=a×b+a××c=a×c+b×c.
2023-01-14 03:33:291

向量的加减法是怎样运算?

向量的运算的所有公式是:1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
2023-01-14 03:33:441

向量的公式有哪些呢?

向量的运算的所有公式是:1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
2023-01-14 03:33:501

向量的运算法则

有加法、减法、数乘、数量积、向量积等法则。向量的加法满足平行四边形法则和三角形法则;向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。 它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
2023-01-14 03:33:561

向量及其运算

向量的表示 : 以 为起点、 为终点的有向线段表示的向量记为 , 有时也用一个黑体字母(书写时, 在字母上面加一箭头)来表示(见图1 ), 如 a 或 。 向量的模 : 向量的大小(数学上指有向线段的长度)叫作向量的模,记作|a|, 。 模为1的向量称为 单位向量 ,记作 e。 模为0的向量称为 零向量 ,记作 0。 零向量的方向可以看作是任意的。 向量 a 、 b 的始点重合, 在两向量的所在平面上, 若一个向量逆时针方向转过角度 θ后可与另一个向量正向重合(见图2), 则称θ为 向量 a 、 b 的夹角, 记作(a, b), 即 θ = ( ) = ( ) (0≤ θ ≤π) 如果向量 的始点A与终点B在u轴上的投影分别为A′、B′(见图3), 则u轴上的有向线段A′B′的值A′B′称为向量AB在u轴上的投影, 记作 = A′B′,u轴称为 投影轴 。 定理1 向量 在 u 轴上的投影等于向量的模乘以u轴与向量 的夹角 θ 的余弦,即 cos θ a 可分解为三个分别平行于x轴、y轴和z轴的向量 a 、 a 和 a , 它们称为a在 x 轴、y 轴和 z 轴的三个 分向量 , 显然 a = a + a + a (见图4)。 若用 i 、 j 和 k 分别表示与 x 轴、 y 轴和 z 轴正向一致的三个单位向量, 称它们为 基本单位向量 , 则有 a =( ) i , a = ( ) j , a = ( ) k , 因此 a = a + a + a = ( ) i + ( ) j + ( ) k = & i + & j + & k , 称上式为向量 a 按 基本单位向量的分解式 或 a 的 向量表示式 。 将 、 、 称为向量 a 的 坐标 , 记为 a = ( , , ) , 也称为向量a的 坐标表示式 。 三个 分向量 ( a , a , a ) a = a + a + a 向量表示式 a = & i + & j + & k 坐标表示式 a = ( , , ) 设 a 为任意一个非零向量, 又设 为 a 与三坐标轴正向之间的夹角(0≤α, β, γ <π), 如图5所示, 则 分别为向量 a 的 方向角 。 由于向量坐标就是向量在坐标轴上的投影, 故有 = | a | , = | a | , = | a | , 其中, 称为向量 a 的 方向余弦 , 通常用来表示向量的方向。 由模的定义, 可知向量 a 的模为 | a | = = 或 = = = 由此可得 即任一向量的方向余弦的平方和为 1。 单位向量 定义1 给定向量 a 与 b , 我们将 |a| 与 |b| 及它们的夹角θ的余弦的乘积,称为向量 a 与 b 的 数量积 , 记为 a · b , 即 。 (1) ```````````` ( ) (2) (3) 若 , , 则 。 (1) 交换律: (2) 分配律: (3) (其中 λ 是数) 若 , 则 = 0 定义2 若由向量 与 所确定的一个向量 满足下列条件(见图5): (1) 的方向既垂直于 又垂直于 , 的指向按右手规则从 转向 来确定; (2) 的模 ,则称向量 为向量 与 的向量积(或称 外积、 叉积 ), 记为 (1) 反交换律: (2) 分配律: (3) 结合律: (其中 λ 是实数) 注意 第二项为(-1) 由此可得: 若 , 则 即 (亦即a=λb, λ为实数)
2023-01-14 03:33:591

向量的加减乘除运算法则是什么

设a=(x,y),b=(x",y")。加法向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被向量的减法减”a=(x,y)b=(x",y")则a-b=(x-x",y-y").如图:c=a-b以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。[2]需要注意的是:向量的加减乘除运算满足实数加减乘除运算法则。数量积定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b/|a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。向量的数量积的坐标表示:a·b=x·x"+y·y"。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。2.向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|与|a|·|b|不等价4.由|a|=|b|,不能推出a=b,也不能推出a=-b,但反过来则成立。向量积定义:两个向量a和b的向量积向量的几何表示(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x1,y1,z1)则A*B=abcx1y1z1x1y1z1向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。
2023-01-14 03:34:021

向量怎么计算!

你好向量怎么计算!解:设a=(x,y),b=(x",y")。1、向量的加法a+b=(x+x",y+y")。2、向量的减法a=(x,y)b=(x",y")则a-b=(x-x",y-y")3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。有什么不懂请追问,我会为您详细解答,望采纳,谢谢!
2023-01-14 03:34:171

求两个向量和的运算,叫做向量的什么

求两个向量和的运算,叫做向量的(加法)。
2023-01-14 03:34:244

向量a×向量b怎么运算?

向量A乘以向量B 的结果有以下三种:1、向量a 乘以 向量b = (向量a得模长) 乘以 (向量b的模长) 乘以 cosα [α为2个向量的夹角]2、向量a(x1,y1) 向量b(x2,y2)3、向量a 乘以 向量b =(x1*x2,y1*y2)注意:所有的乘法运算均为点乘。扩展资料三角形定则解决向量加法的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。平行四边形定则平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。
2023-01-14 03:34:262

向量乘积运算法则

你好,很高兴为你解答:向量乘积的公式是a·b=|a||b|cosθ。在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指代表向量的方向,线段长度代表向量的大小。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
2023-01-14 03:34:391

向量求值计算

分别求出向量AB,AC,BC的坐标来根据相等求出D坐标。例,设D坐标为(a,b),向量AB=(1,2),CD=(a-3,b-4),因为是平行四边形,所以向量AB=CD,所以a-3=1,b-4=2得D坐标。另两种情况是向量AC=BD和BC=AD求出
2023-01-14 03:34:452

向量的坐标表示及其运算的公式

首先你后面那个说的是对的。然后用这个结论就可以得到前面的答案。假设A(x1,y1),B(x2,y2).那么OA向量就是(x1,y1),OB向量就是(x2,y2).因为AB=OB-OA,所以AB向量是(x2-x1,y2-y1)用文字描述就是向量坐标=末点的坐标-起始点的坐标
2023-01-14 03:34:482

向量叉乘的运算规则是什么?

二维向量叉乘公式a(x1,y1),b(x2,y2),则a×b=(x1y2-x2y1),不需要证明的就是定义的运算。三维叉乘是行列式运算,也是叉积的定义,把第三维看做0代入就行了。代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
2023-01-14 03:35:021

向量计算公式

向量的加法满足平行四边形法则和三角形法则.向量的加法OB+OA=OC.a+b=(x+x",y+y").a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0向量的减法AB-AC=CB.即“共同起点,指向被向量的减法减”a=(x,y)b=(x",y")则a-b=(x-x",y-y").3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.当λ>0时,λa与a同方向;向量的数乘当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.4、向量的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x"+y·y".向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b〈=〉a·b=0.|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c.3、|a·b|≠|a|·|b|4、由|a|=|b|,推不出a=b或a=-b.5、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a垂直b〈=〉a×b=|a||b|.向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);a×(b+c)=a×b+a×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.
2023-01-14 03:35:071

平面向量的所有公式

向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等。 下面介绍运算性质时,将统一作如下规定:任取平面上两点A(x1,y1),B(x2,y2),C(x3,y3)。 加法 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。 用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差 三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。 四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。 对于零向量和任意向量a,有:0+a=a+0=a。 向量的加法满足所有的加法运算定律,如:交换律、结合律。 减法 AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。 -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。 数乘 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。 用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1) 设λ、μ是实数,那么满足如下运算性质: (λμ)a= λ(μa) (λ + μ)a= λa+ μa λ(a±b) = λa± λb (-λ)a=-(λa) = λ(-a) |λa|=|λ||a| 数量积 已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
2023-01-14 03:35:141

向量相除怎么计算的?

两向量模的乘积再乘以它们夹角的余弦值模即长度向量的夹角:两个箭头之间那个角(<180°那个)
2023-01-14 03:35:172

向量的计算公式

向量的计算公式:OB+OA=OC。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。矢量(vector)是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。在计算机中,矢量图可以无限放大永不变形。
2023-01-14 03:35:191

平面向量 的所有公式

设a=(x,y),b=(x",y").1、向量的加法 向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x",y+y").a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.
2023-01-14 03:35:334

向量的加减乘除

解析: 向量只要加法、减法、乘法、没有除法!不像四则运算一样,有加减乘除! 其中两个向量相加、相减后还是向量, 两个向量相乘后是一个数,就不是一个向量了! 如果明白,并且解决了你的问题,
2023-01-14 03:35:361

平面向量的运算性质

向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等。下面介绍运算性质时,将统一作如下规定:任取平面上两点A(x1,y1),B(x2,y2),C(x3,y3)。 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。对于零向量和任意向量a,有:0+a=a+0=a。向量的加法满足所有的加法运算定律,如:交换律、结合律。(本段文字资料整理自 ,图片为原始资料) AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量。-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)设λ、μ是实数,那么满足如下运算性质: (λμ)a= λ(μa) (λ + μ)a= λa+ μa λ(a±b) = λa± λb (-λ)a=-(λa) = λ(-a) |λa|=|λ||a| 已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2数量积具有以下性质: a·a=|a|2≥0 a·b=b·a k(a·b)=(ka)b=a(kb) a·(b+c)=a·b+a·c a·b=0<=>a⊥b a=kb<=>a//b e1·e2=|e1||e2|cosθ 向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,则∠AOB=θ 叫做向量a与b的夹角,记作<a,b>。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。若a、b不共线,a×b是一个向量,其模是|a×b|=|a||b|sin<a,b>,a×b的方向为垂直于a和b,且a、b和a×b按次序构成右手系。若a、b共线,则a×b=0。若a=(x1,y1,0),b=(x2,y2,0),则有:向量积具有如下性质: a×a=0 a‖b<=>a×b=0 a×b=-b×a (λa)×b=λ(a×b)=a×(λb) (a+b)×c=a×c+b×c 给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c混合积具有下列性质: 三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1) 上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0 (abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)
2023-01-14 03:35:391

有关向量的简单运算?

(a+b)x(b+c).(c+a)=ax(b+c).(c+a) + bx(b+c).(c+a)=axb.(c+a)+axc .(c+a) + bxb .(c+a)+bxc .(c+a)=axb .c + axb.a + axc.c + axc.a + bxb.c + bxb.a + bxc.c +bxc.a=axb.c + 0 + 0 + 0 + 0 + 0 + 0 + bxc.a=2axb.c = 2* 2 =4
2023-01-14 03:35:452

知道向量 A ,和向量B的投影,怎样求向量B

向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。向量的几何表示具有方向的线段叫做有向线段,以a为起点,b为终点的有向线段记作ab。(ab是印刷体,书写体是上面加个→)有向线段ab的长度叫做向量的模,记作|ab|。有向线段包含3个因素:起点、方向、长度。长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。相等向量与共线向量长度相等且方向相同的向量叫做相等向量。两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。向量的运算加法运算ab+bc=ac,这种计算法则叫做向量加法的三角形法则。已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法满足所有的加法运算定律。减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λ+μ)a=λa+μa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作ab,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。ab的几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。
2023-01-14 03:36:333

向量的运算

由向量的平行四边形法则:2C=AC+AD……12D=AB+AC4D=2AB+2AC……22式-1式得4D-2C=2AB+AC-AD又AC=AB+AD所以4D-2C=3ABAB=(4D-2C)/3(大写代表向量)
2023-01-14 03:36:362

向量叉乘如何计算

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。|向量c|=|向量a×向量b|=|a||b|sin<a,b>向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a×向量b=|ijk||a1b1c1||a2b2c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
2023-01-14 03:36:396

向量的加减乘除怎么算

向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx"+yy"。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律); 向量的数量积的性质 aa=|a|的平方。 a⊥b 〈=〉ab=0。 |ab|≤|a||b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。 2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。
2023-01-14 03:36:441

向量的线性运算是什么?

运算如下:所谓的向量的线性运算是:向量之间的加减法和数乘运算,统称为向量的线性运算。这里必须注意的是,在向量的线性运算过程之中,规定先计算数乘向量,再按从左往右的顺序进行运算,若有括号,先算括号内各项。向量线性运算的规律:向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。主要满足以下规律:交换律:α+β=β+α。结合律:(α+β)+γ=α+(β+γ)。数量加法的分配律:(λ+μ)α=λα+μα。向量加法的分配律:γ(α+β)=γα+γβ。
2023-01-14 03:36:501

向量的问题?

不好写箭头,我写 AB就表示 由A指向B的向量EB = EA + AB = (1/2)DA+AB=(1/2)(DB+BA)+AB=(1/2)DB+(1/2)AB=(1/2)(1/2)CB+(1/2)AB=(1/4)CB+(1/2)AB=(1/4)(CA+AB)+(1/2)AB=(3/4)AB-(1/4)AC选A
2023-01-14 03:37:084

什么是向量的线性运算公式,代数规则?

向量的运算的所有公式是:1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
2023-01-14 03:37:431

向量是什么意思 向量运算法则

向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC。a+b=(x+x,y+y)。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。 扩展资料   向量是什么意思   在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。   向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。   如果给定向量的`起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。   在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。   几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。   因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
2023-01-14 03:37:491

向量的运算法则

平形四边形法则或三角形法则
2023-01-14 03:37:574

有关向量的知识

定义  数学中,既有大小又有方向的量叫做向量(与矢量不同,没有起点终点)(英文:vector)   注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。   ("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。   在C++中,也有向量。  向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强 向量度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.   从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.   向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.   但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.   三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。编辑本段表示  1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示 向量表示,手写用在a、b、c…等字母上加一箭头表示。   2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。 向量的几何表示这种具有方向和长度的线段叫做有向线段。)   3、坐标表示:   1) 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。   2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z) 向量的坐标表示,使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, z)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, z),也就是点P的坐标。向量OP称为点P的位置向量。   3) 当然,对于空间多维向量,可以通过类推得到,此略.编辑本段向量简介  在数学中,通常用点表示位置,用射线表示方向。在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向。向量的表示常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。向量也可用字母a、b、c等表示,或用表示 向量机器模型向量的有向线段的起点和终点字母表示。向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。   平行向量与相等向量   方向相同或相反的非零向量叫做平行向量。向量a、b、c平行,记作a∥b∥c。0向量长度为零,是起点与终点重合的向量,其方向不确定,数学上规定0与任一向量平行。   长度相等且方向相同的向量叫做相等向量。向量a与b相等,记作a=b。零向量与零向量相等。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。   向量空间的同构   在域F上的两个向量空间V与V" ,如果存在一个双射φ:V→V"并且φ(αu+bv)=αφ(u)+bφ(v),a,b∈F,u,v∈V.这样V与V" 便是同构。   向量线性映射   给两个向量空间V和W在同一个F场,设定由V到W的线性变换或“线性映射” . 这些由V到W的映射都有共同点就是它们保持总和及标量商数。这个集合包含所有由V到W的线性映像,以 L(V,W) 来描述,也是一个F场里的向量空间。当V及W被确定后,线性映射可以用矩阵来表达。同构是一对一的一张线性映射.如果在V 和W之间存在同构, 我们称这两个空间为同构;他们根本上是然后相同的。一个在F场的向量空间加上线性映像就可以构成一个范畴,即阿贝尔范畴。   概念化及额外结构   研究向量空间一般会涉及一些额外结构。额外结构如下:   一个实数或复数向量空间加上长度概念。就是范数称为赋范向量空间。   一个实数或复数向量空间加上长度和角度的概念,称为内积空间。   一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。   一个向量空间加上双线性算子(定义为向量乘法)是个域代数。   子空间及基   一个向量空间V的一个非空子集合W在加法及标量乘法中表现密闭性,被称为V的线性子空间。给出一个向量集合B,那么包含它的最小子空间就称为它的扩张,记作span(B)。给出一个向量集合B,若它的扩张就是向量空间V, 则称B为V的生成集。一个向量空间V最大的线性独立子集,称为这个空间的基。若V=0,唯一的基是空集。对非零向量空间 V,基是 V 最小的生成集。如果一个向量空间 V 拥有一个元素个数有限的生成集,那么就称V是一个有限维空间。向量空间的所有基拥有相同基数,称为该空间的维度。例如,实数向量空间:R0,R1,R2,R3。。。,R∞,。。。中,Rn 的维度就是n。空间内的每个向量都有唯一的方法表达成基中元素的线性组合。把基中元素排列,向量便可以座标系统来呈现。编辑本段向量的模和数量  向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。   注:   1、向量的模是非负实数,是可以比较大小的。   2、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。例如,“向量AB>向量CD”是没有意义的。编辑本段各种向量单位向量  长度为单位1的向量,叫做单位向量.与向量a同向或反向,且长度为单位1的向量,叫 单位向量做a方向上的单位向量,记作a0,a0=a/|a|。零向量  长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。相等向量  长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.   规定:所有的零向量都相等.   当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。自由向量  始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代 向量表原来的向量。   在自由向量的意义下,相等的向量都看作是同一个向量。   数学中只研究自由向量。滑动向量  沿着直线作用的向量称为滑动向量。固定向量  作用于一点的向量称为固定向量(亦称胶着向量)。    向量位置向量  对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。方向向量  直线l上的向量a以及与向量a共线的向量叫做直线l上的方向向量相反向量  与a长度相等、方向相反的向量叫做a的相反向量,记作-a。有 -(-a)=a;   零向量的相反向量仍是零向量。平行向量  方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b.   零向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定:零向量与任一向量平行.   平行于同一直线的一组向量是共线向量。若a=(x,y)b=(m,n)。   a//b=>a·b=xn-ym=0共面向量  平行于同一平面的三个(或多于三个)向量叫做共面向量。   空间中的向量有且只有以下两种位置关系:⑴共面;⑵不共面。   只有三个或三个以上向量才谈共面不共面。法向量  直线l⊥α,取直线l的方向向量a,则向量a叫做 法向量平面α的法向量。编辑本段向量的运算  设a=(x,y),b=(x",y")。1、向量的加法  向量的加法满足平行四边形法则和三角形法则。 向量的加法OB+OA=OC。   a+b=(x+x",y+y")。   a+0=0+a=a。   向量加法的运算律:   交换律:a+b=b+a;   结合律:(a+b)+c=a+(b+c)。2、向量的减法  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0   AB-AC=CB. 即“共同起点,指向被 向量的减法减”   a=(x,y)b=(x",y") 则a-b=(x-x",y-y").3、数乘向量  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。   当λ>0时,λa与a同方向;   当λ<0时,λa与a反方向; 向量的数乘当λ=0时,λa=0,方向任意。   当a=0时,对于任意实数λ,都有λa=0。   注:按定义知,如果λa=0,那么λ=0或a=0。   实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。   当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;   当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。   数与向量的乘法满足下面的运算律   结合律:(λa)·b=λ(a·b)=(a·λb)。   向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.   数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.   数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。4、向量的数量积  定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π   定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。   向量的数量积的坐标表示:a·b=x·x"+y·y"。   向量的数量积的运算律   a·b=b·a(交换律);   (λa)·b=λ(a·b)(关于数乘法的结合律);   (a+b)·c=a·c+b·c(分配律);   向量的数量积的性质   a·a=|a|的平方。   a⊥b 〈=〉a·b=0。   |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)   向量的数量积与实数运算的主要不同点   1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。   2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。   3、|a·b|≠|a|·|b|   4、由 |a|=|b| ,推不出 a=b或a=-b。5、向量的向量积  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。   向量的向量积性质:   ∣a×b∣是以a和b为边的平行四边形面积。   a×a=0。   a垂直b〈=〉a×b=|a||b|。   向量的向量积运算律   a×b=-b×a;   (λa)×b=λ(a×b)=a×(λb);   a×(b+c)=a×b+a×c.   注:向量没有除法,“向量AB/向量CD”是没有意义的。
2023-01-14 03:38:001