barriers / 阅读 / 详情

急求带式输送机传动装置中的二级圆柱齿轮减速器毕业设计

2023-09-16 20:13:44
共2条回复
clou

  前 言

  机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。

  本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。

  本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。

  最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。

  由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。

  带式输送机概论

  带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。

  输送机发展历史

  中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架

  空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。

  1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。

  输送机的特点

  带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。

  带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。

  带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。

  带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。

  一、 设计任务书

  设计一用于带式运输机上同轴式二级圆柱齿轮减速器

  1. 总体布置简图

  2. 工作情况

  工作平稳、单向运转

  3. 原始数据

  运输机卷筒扭矩(Nu2022m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)

  350 0.85 380 10 1

  4. 设计内容

  (1) 电动机的选择与参数计算

  (2) 斜齿轮传动设计计算

  (3) 轴的设计

  (4) 滚动轴承的选择

  (5) 键和联轴器的选择与校核

  (6) 装配图、零件图的绘制

  (7) 设计计算说明书的编写

  5. 设计任务

  (1) 减速器总装配图1张(0号或1号图纸)

  (2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)

  (3) 设计计算说明书一份

  二、 传动方案的拟定及说明

  为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:

  三. 电动机的选择

  1. 电动机类型选:Y行三相异步电动机

  2. 电动机容量

  (1) 卷筒轴的输出功率

  (2) 电动机的输出功率

  传动装置的总效率

  式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则

  故

  (3) 电动机额定功率

  由第二十章表20-1选取电动机额定功率

  由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为

  可选符合这一范围的同步转速的电动3000 。

  根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:

  电动机型号 额定功率

  电动机转速

  传动装置传动比

  Y100L-2 3 同步 满载 总传动比 V带 减速器

  3000 2880 62.06 2

  三、 计算传动装置总传动比和分配各级传动比

  1. 传动装置总传动比

  2. 分配各级传动比

  取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为

  按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的

  则i

  所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。

  四、计算传动装置的运动和动力参数:

  按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数

  1.各轴转速:

  2.各轴输入功率:

  Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率0.99,卷筒轴输出功率则为输入功率乘卷筒的传动效率0.96,计算结果见下表。

  3. 各轴输入转矩:

  Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率0.99,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率0.96,计算结果见下表。

  综上,传动装置的运动和动力参数计算结果整理于下表:

  轴名 功率

  转矩

  转速

  传动比

  效率

  输入 输出 输入 输出

  电机轴 2.3 7.63 2880 2

  0.96

  I轴 2.21 14.65 1440

  7.13

  0.95

  II轴 2.1 99.29 201. 96

  4.35 0.95

  III轴

  2.0 410.58 46.43

  1.00 0.98

  卷筒轴 1.94 398.34

  第三章 主要零部件的设计计算

  §3.1 展开式二级圆柱齿轮减速器齿轮传动设计

  §3.1.1 高速级齿轮传动设计

  1. 选定齿轮类型、精度等级、材料及齿数

  1)按以上的传动方案,选用直齿圆柱齿轮传动。

  2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。

  3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。

  4)选小齿轮的齿数 ,大齿轮的齿数为 。

  2. 按齿面接触强度设计

  由设计公式进行试算,即

  (1) 确定公式内的各计算数值

  1) 试选载荷系数

  2) 由以上计算得小齿轮的转矩:

  3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。

  计算接触疲劳许用应力,取失效概率为1%,安全系数S=1

  4)计算应力循环次数

  5) 按接触疲劳寿命系数

  (2) 计算:

  1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为

  3) 计算齿宽: 取 ,

  4) 计算分度圆直径与模数、中心距:

  模数: 取第一系列标准值m=1.5

  分度圆直径:

  中心距:

  5) 校核弯曲疲劳强度:

  符合齿形因数 由图6-40得 =4.35, =3.98

  弯曲疲劳需用应力:

  1) 查图6-41得弯曲疲劳强度极限 : ;

  2) 查图6-42取弯曲疲劳寿命系数

  3) 计算弯曲疲劳许用应力.

  取弯曲疲劳安全系数S=1,得

  4) 校核计算:

  <

  <

  故弯曲疲劳强度足够

  确定齿轮传动精度:

  圆周速度:

  对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级

  §3.1.2 低速级齿轮传动设计

  1. 选定齿轮类型、精度等级、材料及齿数

  1)按以上的传动方案,选用直齿圆柱齿轮传动。

  2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。

  3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。

  4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。

  2. 按齿面接触强度设计

  由设计公式进行试算,即

  2) 确定公式内的各计算数值

  1) 试选载荷系数

  2) 由以上计算得小齿轮的转矩

  3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。

  4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1

  5) 查图6-42取弯曲疲劳寿命系数

  按接触疲劳寿命系数

  模数: 由表6-2取第一系列标准模数

  分度圆直径:

  中心距:

  齿宽:

  校核弯曲疲劳强度:

  复合齿形因数 由图6-40得

  6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1

  得

  校核计算: <

  <

  故弯曲疲劳强度足够

  确定齿轮传动精度:

  圆周速度:

  对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级

  对各个轴齿轮相关计算尺寸

  表6-3高速轴齿轮各个参数计算列表

  名称 代号 计算公式

  齿数 Z

  模数

  压力角

  齿高系数

  顶隙系数

  齿距 P

  齿槽宽 e

  齿厚 s

  齿顶高

  齿根高

  齿高 h

  分度圆直径 d

  基圆直径

  齿顶圆直径

  齿根圆直径

  中心距

  表6-3低速轴齿轮各个参数计算列表

  名称 代号 计算公式

  齿数 Z

  模数

  压力角

  齿高系数

  顶隙系数

  齿距 P

  齿槽宽 e

  齿厚 s

  齿顶高

  齿根高

  齿高 h

  分度圆直径 d

  基圆直径

  齿顶圆直径

  齿根圆直径

  中心距

  V带的设计

  1)计算功率

  2)选择带型

  据 和 =2880由图10-12<械设计基础>选取z型带

  3)确定带轮基准直径

  由表10-9确定 <械设计基础>

  1) 验算带速

  因为 故符合要求

  2) 验算带长

  初定中心距

  由表10-6选取相近

  3) 确定中心距

  4) 验算小带轮包角

  故符合要求

  5) 单根V带传递额定功率

  据 和 查图10-9得

  8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得

  10)确定带根数

  查表10-3 查表10-4 <械设计基础>

  11) 单根V带的初拉力

  查表10-5

  12)用的轴上的力

  13带轮的结构和尺寸

  以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽

  §3.3 轴系结构设计

  §3.3.1 高速轴的轴系结构设计

  一、轴的结构尺寸设计

  根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:

  图2

  由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。

  所以,有该轴的最小轴径为:

  考虑到该段开键槽的影响,轴径增大6%,于是有:

  标准化取

  其他各段轴径、长度的设计计算依据和过程见下表:

  表6 高速轴结构尺寸设计

  阶梯轴段 设计计算依据和过程 计算结果

  第1段

  (考虑键槽影响)

  13.6

  16

  60

  第2段

  (由唇形密封圈尺寸确定)

  20(18.88)

  50

  第3段 由轴承尺寸确定

  (轴承预选6004 B1=12)

  20

  23

  第4段

  24(23.6)

  145

  第5段 齿顶圆直径

  齿宽

  33

  38

  第6段

  24

  10

  第7段

  20

  23

  二、轴的受力分析及计算

  轴的受力模型简化(见图3)及受力计算

  L1=92.5 L2=192.5 L3=40

  三、轴承的寿命校核

  鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.

  校核步骤及计算结果见下表:

  表7 轴承寿命校核步骤及计算结果

  计算步骤及内容 计算结果

  6007轴承

  A端 B端

  由手册查出Cr、C0r及e、Y值 Cr=12.5kN

  C0r=8.60kN

  e=0.68

  计算Fs=eFr(7类)、Fr/2Y(3类) FsA=1809.55 FsB=1584.66

  计算比值Fa/Fr FaA /FrA>e FaB /FrB< e

  确定X、Y值 XA= 1,YA = 0, XB =1 YB=0

  查载荷系数fP 1.2

  计算当量载荷

  P=Fp(XFr+YFa) PA=981.039 PB=981.039

  计算轴承寿命

  9425.45h

  小于

  12480h

  由计算结果可见轴承6007合格.

  表8 中间轴结构尺寸设计

  阶梯轴段 设计计算依据和过程 计算结果

  第1段

  由轴承尺寸确定

  (轴承预选6008 )

  33.6

  40

  25

  第2段

  (考虑键槽影响)

  45(44.68)

  77.5

  第3段

  50

  12.5

  第4段

  99

  109

  第5段

  46

  39

  考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数

  所以,有该轴的最小轴径为:

  考虑到该段开键槽的影响,轴径增大6%,于是有:

  标准化取

  其他各段轴径、长度的设计计算依据和过程见下表:

  表10 低速轴结构尺寸设计

  阶梯轴段 设计计算依据和过程 计算结果

  第1段

  (考虑键槽影响)

  (由联轴器宽度尺寸确定)

  52.49

  60(55.64)

  142

  第2段

  (由唇形密封圈尺寸确定)

  64(63.84)

  50

  第3段

  66

  16

  第4段 由轴承尺寸确定

  (轴承预选6014C )

  70

  24

  第5段

  78

  75

  第6段

  20

  88

  20

  第7段

  齿宽+10

  80(79.8)

  119

  §3.3.4 各轴键、键槽的选择及其校核

  因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.

  一、 高速级键的选择及校核:

  带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096

  联结处的材料分别为: 45钢(键) 、40Cr(轴)

  二、中间级键的选择及校核:

  (1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096

  联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)

  此时, 键联结合格.

  三、低速级级键的选择及校核

  (1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096

  联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)

  其中键的强度最低,因此按其许用应力进行校核,查手册其

  该键联结合格

  (2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096

  联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)

  其中键的强度最低,因此按其许用应力进行校核,查手册其

  该键联结合格.

  第四章 减速器箱体及其附件的设计

  §4.1箱体结构设计

  根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=322.5)

  表12 箱体结构尺寸

  名称 符号 设计依据 设计结果

  箱座壁厚 δ 0.025a+3=11 11

  考虑铸造工艺,所有壁厚都不应小于8

  箱盖壁厚 δ1 0.02a+3≥8 9.45

  箱座凸缘厚度 b 1.5δ 16.5

  箱盖凸缘厚度 b1 1.5δ1 14.18

  箱座底凸缘厚度 b2 2.5δ 27.5

  地脚螺栓直径 df 0.036a+12 24(23.61)

  地脚螺栓数目 n 时,n=6

  6

  轴承旁联结螺栓直径 d1 0.75df 18

  箱盖与箱座联接螺栓直径 d 2 (0.5~0.6)df 12

  轴承端盖螺钉直径和数目 d3,n (0.4~0.5)df,n 10,6

  窥视孔盖螺钉直径 d4 (0.3~0.4)df 8

  定位销直径 d (0.7~0.8) d 2 9

  轴承旁凸台半径 R1 c2 16

  凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34

  外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42

  大齿轮顶圆距内壁距离 u22061 >1.2δ 11

  齿轮端面与内壁距离 u22062 >δ 10

  箱盖、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7

  轴承端盖凸缘厚度 t (1~1.2) d3 10

  轴承端盖外径 D2 D+(5~5.5) d3 120

  轴承旁边连接

  螺栓距离

  S

  120

  第五章 运输、安装和使用维护要求

  1、减速器的安装

  (1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。

  (2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。

  (3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。

  (4)减速器安装好后用手转动必须灵活,无卡死现象。

  (5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。

  2、使用维护

  本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率0.85—6660kw,公称输出转矩100—410000N.m,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:

  1.减速器高速轴转速不高于1000r/min;

  2.减速器齿轮圆周速度不高于20m/s;

  3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。

  3、减速器润滑油的更换:

  (1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。

  (2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。

  (3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。

  (4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。

  减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。

  小 结

  转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.

  因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.

  首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.

  但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.

  最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。

  参 考 文 献

  1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,2006

  2 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,2004

  3 <<机械原理>> 申永胜主编 清华大学出版社 ,1999

  4 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,2004

  5 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,2003

  6 <<机械制图>>

左迁

我觉得这个内容很多啊,但是你的具体要求好像又有差异,建议你网上找找

相关推荐

减速器的设计中如何选择确定键的类型尺寸

在设计减速器时,选择键的类型和尺寸是非常重要的。键的作用是将输入轴和输出轴固定在一起,同时允许输出轴转动。因此,键的类型和尺寸必须能够承受轴承受的载荷和扭矩。选择键的类型时,应考虑以下因素:1 轴承载荷和扭矩:键的承载能力必须大于或等于轴承载荷和扭矩。2 工作环境:如果减速器工作在恶劣的环境中,则应选择耐腐蚀、耐磨、耐冲击的键。3 转动惯量:键的质量越小,转动惯量就越小,减速器的响应就越快。选择键的尺寸时,应考虑以下因素:1 轴承载荷和扭矩:键的宽度和厚度应与轴承载荷和扭矩相匹配。2 轴和轴承的精度:键的尺寸应适合轴和轴承的精度。3 温升:如果减速器的温升较高,则应选择较大的键,以减小热应力。
2023-09-06 02:30:132

减速器结构设计中如何考虑装,拆的要求?

从螺栓把合,到轴承间隙调整,都要具体来做,先拆卸减速器两边四颗固定螺栓,取下轴承盖、轴承外圈及调整螺母(三者均要分清左右,以免错装),然后拆卸盆齿固定螺栓,最后拆卸差速器固定螺栓,取出十字轴、行星齿、半轴齿及衬垫。减速器,即用于降低转速、传递动力、增大转矩的独立传动部件。减速器在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。扩展资料:减速机在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,是一种相对精密的机械。使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式减速器、分流式减速器和同轴式减速器。参考资料来源:百度百科-减速机
2023-09-06 02:30:211

2、请简述,在减速器的设计过程中,有哪些因素影响了设计进度?

在减速器的设计过程中,影响了设计进度的因素包括:1. 设计要求的不确定性,包括转矩、速度比、减速比、安装空间和使用环境等因素,都会影响设计的方向和难度。2. 设计阶段中的不同专业间的协调,如机械、电气、液压等多个专业领域的协作配合,不同领域的知识、技能和经验不同,很多时候需要协商权衡。3. 设计所使用的材料的选择和品质的保证。不同材料的性能和特征不同,材料的选择直接影响了后期减速器的使用寿命和质量。4. 设计过程中所使用的软件和工具的适用性和实用性,需要选择合适的工具和软件,以提高工作效率和质量。5. 设计过程中的认知和能力,包括对专业知识和设计流程的了解和应用,以及对质量标准和安全法规的遵守,这也影响设计的进度和准确性。
2023-09-06 02:30:371

减速器的设计步骤?

第一步 选择原动机第二步 分配传动比 计算各轴的转速,力矩第三步 齿轮传动设计与计算第四步 轴的设计与计算第五步 联轴器的选择与设计第六步 轴承的选择与校核第七步 润滑方式选择第八步 其它附件如端盖 油标 等各种附件的选择第九步 减速器箱体的设计
2023-09-06 02:30:471

减速器的那些附件有何作用啊,请前辈指点。如何选择及设计其结构尺寸

减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成。其作用如下:首先齿轮和轴可以作为一个整体,主要是为了承受径向载荷和减速器大的轴向载荷的情况。而箱体可以单独作为一个整体,它是减速器的基础零件,具有稳定整个支架的作用。最后减速器的润滑油也非常重要,这是减速器正常工作的关键。减速器的选择及其结构尺寸的构造应遵循这几点原则:1、减速器使用系数越大,减速器使用寿命越长。2、减速器选择时,应使[使用系数fa]控制在u20021.2-1.3u2002之间最合理,电机和减速器使用效率最佳,寿命更长。3、传动比i=四级电机转速/减速器输出转速。4、对于[恒功率]减速器而言,其减速机输出轴要比同规格电机的[恒扭矩]减速器输出轴细。扩展资料减速器的润滑保养:1、在投入运转之前,在减速机中装入建议的型号和数值的润滑脂。减速机采用润滑油润滑。对于竖直安装的减速机,鉴于润滑油可能不能保证最上面的轴承的可靠润滑,因此采用另外的润滑措施。2、在运行以前,在减速机中注入适量的润滑油。减速机通常装备有注油孔和放油塞。因而在订购减速机的时候必须指定安装位置。3、工作油温不能超过80℃。4、终生润滑的组合减速机在制造厂注满合成油,除此之外,减速机供货时通常是不带润滑油的,并带有注油塞和放油塞。根据订货时指定的安装位置设置油位塞的位置以保证正确注油,减速机注油量应该根据不同安装方式来确定。如果传输功率超过减速机的热容量,必须提供外置冷却装置。参考资料来源:百度百科-减速器
2023-09-06 02:30:571

减速器课程设计大齿轮选高速还是低速

1、扭矩不同。高速级的扭矩最小,中低速级齿轮的扭矩最大。2、承载能力不同中低速级齿轮的模数小,表示轮齿也比较小,承载能力也就比较小。高速齿轮的模数大。表示轮齿也比较大。其承载能力也就大。3、精度不同。小模数的轮齿不能承受大的荷载,精度较小,随着减速级别的增高,中低速级齿轮的模数要尽量选得大一些,才能承受巨大的载荷。高速齿轮精度高,因为低的精度不仅会造成过大的噪声还会产生较严重的疲劳破坏现象,至于材料与热处理就要看它的载荷状况。
2023-09-06 02:31:064

减速器设计挡油环宽度怎么确定

减速器设计挡油环宽度一般用在要有油,又不能太多油,要把多余的油挡回去,不让外流外漏的地方,安在旋转的轴上与轴同步转动,因为减速器设计挡油环宽度不是标准件,所以通过以上的各个条件确定。减速器设计挡油环的原因减速器中的挡油环尺寸都不一样,有1毫米的,也有10毫米的,轴上一定要用齿轮,不用齿轮咋传递动力,减速器中也有不是齿轮的,离心力,挡油环利用旋转产生的离心力将油甩回回油方向,脂润滑,挡油环主要是用在齿轮箱内,因大齿轮采用浸油润滑,通过大齿轮激溅作用使与小齿轮啮合得到润滑。标准件结构,尺寸,画法,标记等各个方面已经完全标准化,并由专业厂生产的常用的零部件,如螺纹件,键,销,滚动轴承等等,广义包括标准化的紧固件,连结件,传动件,密封件,液压元件,气动元件,轴承,弹簧等机械零件。
2023-09-06 02:31:151

机械设计,一级齿轮减速器?

他们的名字叫做轴端挡板,就是为了固定轴,专让轴端不发生转动,或者是固定里面霄字用的只是一个名字而已,起不到什么实际的作用
2023-09-06 02:31:322

主减速器设计!!!

[目录] 一. 主减速器结构方案分析 二.主减速器主、从动锥齿轮的支承方案 三.主减速器锥齿轮主要参数选择 四 .主减速器锥齿轮强度计算 五、主减速器锥齿轮轴承的载荷计算 六、锥齿轮的材料 [原文] 一. 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速器形式不同而不同。 主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。 1 螺旋锥齿轮传动 螺旋锥齿轮传动(图5—3a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。 2 双曲面齿轮传动 双曲面齿轮传动(图5—3b)的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。由于偏移距正的存在,使主动齿轮螺旋角 大于从动齿轮螺旋角 。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比......
2023-09-06 02:31:531

减速器课程设计急求帮忙!!!!!

一分给都没,哪有减速器
2023-09-06 02:32:023

减速器箱体结构设计中应考虑哪些问题

不清楚LZ的用途,所以发表一点拙见,1、体积;2、润滑油沉积池;3、加油口;4、排油口;5、齿轮啮合间隙;6、轴承的选用。。。。
2023-09-06 02:32:102

机械设计,一级减速器的设计

1:轴承应放在3号轴段上,2:油封选择为普通骨架双唇油封,3:轴承选择:减速机内的轴承原则上不选脂润滑,应选用喷油、甩油润滑, 直齿传动时选深沟球轴承,斜齿轮传动的选推力轴承。
2023-09-06 02:32:221

设计一级圆柱齿轮减速器,齿轮与轴的配合为什么是H7/r6?

齿轮孔与轴之间的具体的公差配合,不是固定模式的(固定种类)。一般是根据传动功率的大小;轴的转速、扭矩大小;装配难易程度等,选定的,当然,要首先满足使用要求。一般,传动功率小的,可以选取H7/m6、H7/p6,传动功率大的,可以选取H7/r6甚至H7/s6。过盈配合的“好处”,是可以在轴、孔之间有“预紧”,接触刚性高,耐冲击,适用于高载荷。过盈配合的缺点,装配、拆卸难,需专门工艺、工具,容易拉伤轴、孔表面,有的拆卸后不能再用。究竟如何来确定齿轮孔与轴的公差配合?一般采用类比法,参考同类型、同功率等,有可比性的、使用良好的产品,参考选用。在实际生产中,要对设计定型后的产品进行试验的,满足试验标准的就可以设计定型,否则,通过试验找出问题所在,改变设计(或者材料、工艺等),直到产品合格。其实,归根结底,“在设计减速器时是先根据使用要求的轴、孔的最大、最小间隙或者最大、最小过盈来确定H7/r6,还是先通过其他路途,选定H7/r6?”——都是“类比”与“经验”,只能作为设计参考(预设计),只有通过试验、使用,才能最终确定。
2023-09-06 02:32:336

二级斜齿圆柱齿轮减速器的课程设计的说明书

已经发送完毕~~
2023-09-06 02:33:082

机械设计一级减速器 v=1.192m/s 动载系数是多少

v=1.192m/s 属八级精度 齿轮 动载系数 Kv=1.10
2023-09-06 02:34:022

减速器-链传动的设计计算

传动设计工具 :www.zhizaoyun.com/tools/tg/cdsj.html
2023-09-06 02:34:132

蜗轮蜗杆减速器的二级传动设计

减速器的要求的最理想的。参考的
2023-09-06 02:34:212

帮忙给个机械设计基础的课程设计(减速器的设计)。

一.电动机的选择:1.选择电动机的类型:2.电动机功率选择:折算到电动机的功率为:3.确定电动机型号:二、确定传动装置的总传动比和分配传动比1.减速器的总传动比为:2、分配传动装置传动比:按手册 表1,取开式圆柱齿轮传动比 因为 ,所以闭式圆锥齿轮的传动比 .三.运动参数及动力参数计算:1.计算各轴的转速:I轴转速: 2.各轴的输入功率电机轴: I轴上齿轮的输入功率: II轴输入功率: III轴输入功率: 3.各轴的转矩电动机的输出转矩:四、传动零件的设计计算1.皮带轮传动的设计计算:2、齿轮传动的设计计算:五、轴的设计计算及校核:六. 轴承的选择及计算七.键的选择和计算八.联轴器的选择九.减数器的润滑方式和密封类型的选择
2023-09-06 02:34:301

二级减速器如何设计

三. 原始数据鼓轮的扭矩T(N•m):850鼓轮的直径D(mm):350运输带速度V(m/s):0.7带速允许偏差(%):5使用年限(年):5工作制度(班/日):2四. 设计内容1. 电动机的选择与运动参数计算;2. 斜齿轮传动设计计算3. 轴的设计4. 滚动轴承的选择5. 键和连轴器的选择与校核;6. 装配图、零件图的绘制7. 设计计算说明书的编写五. 设计任务1. 减速器总装配图一张2. 齿轮、轴零件图各一张3. 设计说明书一份六. 设计进度1、 第一阶段:总体计算和传动件参数计算2、 第二阶段:轴与轴系零件的设计3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
2023-09-06 02:34:411

二级直齿轮传动减速器设计

都忘了 我对不起我的老师
2023-09-06 02:34:512

机械设计,减速器设计

减速器地脚螺栓之间的距离可以根据结构,灵活运用,有个数参考,在合适的位置就可以。
2023-09-06 02:35:141

一级齿轮减速箱的壁厚,如何设计,说的详细点,谢谢

欢迎来淘宝:金星机械设计。这里提供专业的减速器设计!壁厚要看什么部位的,一般的是8-12就行了,然后有的地方是靠将强劲来保证强度的!
2023-09-06 02:35:253

求二级减速器毕业设计说明摘要

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它是由齿轮、轴、轴承及箱体组成的减速装置,用于原动机和工作机或执行机构之间,起匹配转速和传递扭矩的作用。齿轮减速器的特点是效率高、寿命长、维护方便,因此应用广泛。本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的拟定选择V带和同轴式二级圆柱齿轮减速器为传动装置,然后进行减速器和v带的设计计算(电动机的选择、V带设计、齿轮传动设计、轴的结构设计、选择并验算联轴器、键的选择和校核和轴承的润滑、大齿轮加工工艺编制等内容)运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维零件图绘制和装配图的绘制。关键词:齿轮啮合 轴传动 传动比 传动效率
2023-09-06 02:35:361

机械设计,一级减速器设计,想问一下图中三条线分别代表什么?是什么意思?怎么确定箱体的尺寸,急求!

一级减速器设计原创一份 什么时候交呢.
2023-09-06 02:35:483

减速器轴承端盖的设计

机械设计经验丰富的人员会根据:空间位置,材料材质的选择,轴向应力的判断,设计一个合理的宽度。对于没有设计经验的初学者,可以参考机械设计手册,借鉴其中案例设计适合自己项目的尺寸。
2023-09-06 02:36:002

二级齿轮减速器设计中,传动比一般是前大后小。如果是前小后大,会有什么影响?

二级齿轮减速器设计中,传动比一般是前大后小。因为输入轴转速高、扭矩小,所以作用在齿上的力就小,齿轮可以选择的模数就小些。而到了输出轴,转速下降、扭矩增大,所以作用在齿上的力就大,齿轮选择的模数就必须大些。所以,这是使减速器体积、重量最小的传动比的分配方案。如果是前小后大,第二级传动会因为模数的增大,使得减速器整体的尺寸、重量随着一起增大了。
2023-09-06 02:36:101

设计一级齿轮减速器,已知装齿轮两个轴的直径,怎么确定这个减速器的中心距。有估计中心距的公式吗?

可以去找这样一家店,减速器设计室,很不错的店
2023-09-06 02:36:223

一级减速器轴的设计过程中,各轴段长度尺寸如何确定

机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录 设计任务书……………………………………………………1 传动方案的拟定及说明………………………………………4 电动机的选择…………………………………………………4 计算传动装置的运动和动力参数……………………………5 传动件的设计计算……………………………………………5 轴的设计计算…………………………………………………8 滚动轴承的选择及计算………………………………………14 键联接的选择及校核计算……………………………………16 连轴器的选择…………………………………………………16 减速器附件的选择……………………………………………17 润滑与密封……………………………………………………18 设计小结………………………………………………………18 参考资料目录…………………………………………………18 机械设计课程设计任务书 题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器 一. 总体布置简图 1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二. 工作情况: 载荷平稳、单向旋转 三. 原始数据 鼓轮的扭矩T(Nu2022m):850 鼓轮的直径D(mm):350 运输带速度V(m/s):0.7 带速允许偏差(%):5 使用年限(年):5 工作制度(班/日):2 四. 设计内容 1. 电动机的选择与运动参数计算; 2. 斜齿轮传动设计计算 3. 轴的设计 4. 滚动轴承的选择 5. 键和连轴器的选择与校核; 6. 装配图、零件图的绘制 7. 设计计算说明书的编写 五. 设计任务 1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书一份 六. 设计进度 1、 第一阶段:总体计算和传动件参数计算 2、 第二阶段:轴与轴系零件的设计 3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制 4、 第四阶段:装配图、零件图的绘制及计算说明书的编写 传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。 电动机的选择 1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。 2.电动机容量的选择 1) 工作机所需功率Pw Pw=3.4kW 2) 电动机的输出功率 Pd=Pw/η η= =0.904 Pd=3.76kW 3.电动机转速的选择 nd=(i1"u2022i2"…in")nw 初选为同步转速为1000r/min的电动机 4.电动机型号的确定 由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求 计算传动装置的运动和动力参数 传动装置的总传动比及其分配 1.计算总传动比 由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为: i=nm/nw nw=38.4 i=25.14 2.合理分配各级传动比 由于减速箱是同轴式布置,所以i1=i2。 因为i=25.14,取i=25,i1=i2=5 速度偏差为0.5%<5%,所以可行。 各轴转速、输入功率、输入转矩 项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮 转速(r/min) 960 960 192 38.4 38.4 功率(kW) 4 3.96 3.84 3.72 3.57 转矩(Nu2022m) 39.8 39.4 191 925.2 888.4 传动比 1 1 5 5 1 效率 1 0.99 0.97 0.97 0.97 传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。 2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62 (5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8 N2=N1/5=6.64×107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95×600MPa=570MPa [σH]2==0.98×550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85 (2) 计算圆周速度 v= = =0.68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1×67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25×3.39mm=7.63mm b/h=67.85/7.63=8.89 (4) 计算纵向重合度εβ εβ= =0.318×1×tan14 =1.59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同, 故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。故载荷系数 K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05 (6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm (7) 计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1) 确定计算参数 (1) 计算载荷系数 K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88 (3) 计算当量齿数 z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47 (4) 查取齿型系数 由表10-5查得YFa1=2.724;Yfa2=2.172 (5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798 (6) 计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa (7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。 2) 设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1) 计算中心距 z1 =32.9,取z1=33 z2=165 a =255.07mm a圆整后取255mm 2) 按圆整后的中心距修正螺旋角 β=arcos =13 55"50” 3) 计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4) 计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5) 结构设计 以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。 轴的设计计算 拟定输入轴齿轮为右旋 II轴: 1.初步确定轴的最小直径 d≥ = =34.2mm 2.求作用在齿轮上的受力 Ft1= =899N Fr1=Ft =337N Fa1=Fttanβ=223N; Ft2=4494N Fr2=1685N Fa2=1115N 3.轴的结构设计 1) 拟定轴上零件的装配方案 i. I-II段轴用于安装轴承30307,故取直径为35mm。 ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。 iii. III-IV段为小齿轮,外径90mm。 iv. IV-V段分隔两齿轮,直径为55mm。 v. V-VI段安装大齿轮,直径为40mm。 vi. VI-VIII段安装套筒和轴承,直径为35mm。 2) 根据轴向定位的要求确定轴的各段直径和长度 1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。 2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。 3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。 4. IV-V段用于隔开两个齿轮,长度为120mm。 5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。 6. VI-VIII长度为44mm。 4. 求轴上的载荷 66 207.5 63.5 Fr1=1418.5N Fr2=603.5N 查得轴承30307的Y值为1.6 Fd1=443N Fd2=189N 因为两个齿轮旋向都是左旋。 故:Fa1=638N Fa2=189N 5.精确校核轴的疲劳强度 1) 判断危险截面 由于截面IV处受的载荷较大,直径较小,所以判断为危险截面 2) 截面IV右侧的 截面上的转切应力为 由于轴选用40cr,调质处理,所以 ([2]P355表15-1) a) 综合系数的计算 由 , 经直线插入,知道因轴肩而形成的理论应力集中为 , , ([2]P38附表3-2经直线插入) 轴的材料敏感系数为 , , ([2]P37附图3-1) 故有效应力集中系数为 查得尺寸系数为 ,扭转尺寸系数为 , ([2]P37附图3-2)([2]P39附图3-3) 轴采用磨削加工,表面质量系数为 , ([2]P40附图3-4) 轴表面未经强化处理,即 ,则综合系数值为 b) 碳钢系数的确定 碳钢的特性系数取为 , c) 安全系数的计算 轴的疲劳安全系数为 故轴的选用安全。 I轴: 1.作用在齿轮上的力 FH1=FH2=337/2=168.5 Fv1=Fv2=889/2=444.5 2.初步确定轴的最小直径 3.轴的结构设计 1) 确定轴上零件的装配方案 2)根据轴向定位的要求确定轴的各段直径和长度 d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。 e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。 f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。 g) 该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。 h) 为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。 i) 轴肩固定轴承,直径为42mm。 j) 该段轴要安装轴承,直径定为35mm。 2) 各段长度的确定 各段长度的确定从左到右分述如下: a) 该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。 b) 该段为轴环,宽度不小于7mm,定为11mm。 c) 该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。 d) 该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。 e) 该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。 f) 该段由联轴器孔长决定为42mm 4.按弯扭合成应力校核轴的强度 W=62748N.mm T=39400N.mm 45钢的强度极限为 ,又由于轴受的载荷为脉动的,所以 。 III轴 1.作用在齿轮上的力 FH1=FH2=4494/2=2247N Fv1=Fv2=1685/2=842.5N 2.初步确定轴的最小直径 3.轴的结构设计 1) 轴上零件的装配方案 2) 据轴向定位的要求确定轴的各段直径和长度 I-II II-IV IV-V V-VI VI-VII VII-VIII 直径 60 70 75 87 79 70 长度 105 113.75 83 9 9.5 33.25 5.求轴上的载荷 Mm=316767N.mm T=925200N.mm 6. 弯扭校合 滚动轴承的选择及计算 I轴: 1.求两轴承受到的径向载荷 5、 轴承30206的校核 1) 径向力 2) 派生力 3) 轴向力 由于 , 所以轴向力为 , 4) 当量载荷 由于 , , 所以 , , , 。 由于为一般载荷,所以载荷系数为 ,故当量载荷为 5) 轴承寿命的校核 II轴: 6、 轴承30307的校核 1) 径向力 2) 派生力 , 3) 轴向力 由于 , 所以轴向力为 , 4) 当量载荷 由于 , , 所以 , , , 。 由于为一般载荷,所以载荷系数为 ,故当量载荷为 5) 轴承寿命的校核 III轴: 7、 轴承32214的校核 1) 径向力 2) 派生力 3) 轴向力 由于 , 所以轴向力为 , 4) 当量载荷 由于 , , 所以 , , , 。 由于为一般载荷,所以载荷系数为 ,故当量载荷为 5) 轴承寿命的校核 键连接的选择及校核计算 代号 直径 (mm) 工作长度 (mm) 工作高度 (mm) 转矩 (Nu2022m) 极限应力 (MPa) 高速轴 8×7×60(单头) 25 35 3.5 39.8 26.0 12×8×80(单头) 40 68 4 39.8 7.32 中间轴 12×8×70(单头) 40 58 4 191 41.2 低速轴 20×12×80(单头) 75 60 6 925.2 68.5 18×11×110(单头) 60 107 5.5 925.2 52.4 由于键采用静联接,冲击轻微,所以许用挤压应力为 ,所以上述键皆安全。 连轴器的选择 由于弹性联轴器的诸多优点,所以考虑选用它。 二、高速轴用联轴器的设计计算 由于装置用于运输机,原动机为电动机,所以工作情况系数为 , 计算转矩为 所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84) 其主要参数如下: 材料HT200 公称转矩 轴孔直径 , 轴孔长 , 装配尺寸 半联轴器厚 ([1]P163表17-3)(GB4323-84 三、第二个联轴器的设计计算 由于装置用于运输机,原动机为电动机,所以工作情况系数为 , 计算转矩为 所以选用弹性柱销联轴器TL10(GB4323-84) 其主要参数如下: 材料HT200 公称转矩 轴孔直径 轴孔长 , 装配尺寸 半联轴器厚 ([1]P163表17-3)(GB4323-84 减速器附件的选择 通气器 由于在室内使用,选通气器(一次过滤),采用M18×1.5 油面指示器 选用游标尺M16 起吊装置 采用箱盖吊耳、箱座吊耳 放油螺塞 选用外六角油塞及垫片M16×1.5 润滑与密封 一、齿轮的润滑 采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。 二、滚动轴承的润滑 由于轴承周向速度为,所以宜开设油沟、飞溅润滑。 三、润滑油的选择 齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。 四、密封方法的选取 选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。 密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。 轴承盖结构尺寸按用其定位的轴承的外径决定。 设计小结 由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的设备。
2023-09-06 02:36:571

设计一级圆柱齿轮减速器,齿轮与轴的配合为什么是H7/r6?

齿轮孔与轴之间的具体的公差配合,不是固定模式的(固定种类)。一般是根据传动功率的大小;轴的转速、扭矩大小;装配难易程度等,选定的,当然,要首先满足使用要求。一般,传动功率小的,可以选取H7/m6、H7/p6,传动功率大的,可以选取H7/r6甚至H7/s6。过盈配合的“好处”,是可以在轴、孔之间有“预紧”,接触刚性高,耐冲击,适用于高载荷。过盈配合的缺点,装配、拆卸难,需专门工艺、工具,容易拉伤轴、孔表面,有的拆卸后不能再用。究竟如何来确定齿轮孔与轴的公差配合?一般采用类比法,参考同类型、同功率等,有可比性的、使用良好的产品,参考选用。在实际生产中,要对设计定型后的产品进行试验的,满足试验标准的就可以设计定型,否则,通过试验找出问题所在,改变设计(或者材料、工艺等),直到产品合格。其实,归根结底,“在设计减速器时是先根据使用要求的轴、孔的最大、最小间隙或者最大、最小过盈来确定H7/r6,还是先通过其他路途,选定H7/r6?”——都是“类比”与“经验”,只能作为设计参考(预设计),只有通过试验、使用,才能最终确定。
2023-09-06 02:38:083

求一份带式运输机上的单级圆柱齿轮减速器设计说明书

你去问老板
2023-09-06 02:38:201

急需一级斜齿圆柱齿轮减速器课程设计.带式运输机传动装置。拉力F=1500, 速度V=1.1,卷直径为220mm.

需要帮忙做么
2023-09-06 02:38:312

一级直齿圆柱齿轮减速器设计

同意一楼,应该按指导书做吧,我们也做过这样的课程设计
2023-09-06 02:38:447

二级直齿圆柱齿轮减速器课程设计 有的借看看咯~~

邮箱?
2023-09-06 02:39:042

哪位好心人能给我发一份二级圆柱齿轮减速器的课程设计,有说明书装备图零件图 邮箱:765966687@qq.com

机械设计课程设计说明书学院:西安交通大学机械学院专业:机械设计制造及其自动化班级:机设0602姓名:XXX教师:XXX目 录一、设计数据及要求 21.工作机有效功率 22.查各零件传动效率值 23.电动机输出功率 34.工作机转速 35.选择电动机 36.理论总传动比 37.传动比分配 38.各轴转速 49.各轴输入功率: 410.电机输出转矩: 411.各轴的转矩 412.误差 5三、选择齿轮材料,热处理方式和精度等级 5四、齿轮传动校核计算 5(一)、高速级 5(二)、低速级 9五、初算轴径 13六、校核轴及键的强度和轴承寿命: 14(一)、中间轴 14(二)、输入轴 20(三)、输出轴 24七、选择联轴器 28八、润滑方式 28九、减速器附件: 29十一 、参考文献 29一、设计数据及要求 F=2500N d=260mm v=1.0m/s 机器年产量:大批; 机器工作环境:清洁;机器载荷特性:平稳; 机器的最短工作年限:五年二班;二、 确定各轴功率、转矩及电机型号1.工作机有效功率 2.查各零件传动效率值联轴器(弹性) ,轴承 ,齿轮 滚筒 故: 3.电动机输出功率 4.工作机转速 电动机转速的可选范围: 取10005.选择电动机选电动机型号为Y132S—6,同步转速1000r/min,满载转速960r/min,额定功率3Kw 电动机外形尺寸 中心高H 外形尺寸 底脚安装尺寸 底脚螺栓直径 K 轴伸尺寸D×E 建联接部分尺寸F×CD132 216×140 12 38×80 10×86.理论总传动比 7.传动比分配 故 , 8.各轴转速9.各轴输入功率:10.电机输出转矩: 11.各轴的转矩12.误差 带式传动装置的运动和动力参数 轴 名 功率 P/Kw 转矩 T/Nmm 转速 n/r/min 传动比 i 效率 η/%电 机 轴 2.940 29246.875 960 1 99Ⅰ 轴 2.9106 28954.406 960 4.263 96Ⅱ 轴 2.7950 118949.432 225.40 3.066 96Ⅲ 轴 2.6840 348963.911 73.46 Ⅳ 轴 2.6306 345474.272 73.46 1 98三、选择齿轮材料,热处理方式和精度等级考虑到齿轮所传递的功率不大,故小齿轮选用45#钢,表面淬火,齿面硬度为40~55HRC,齿轮均为硬齿面,闭式。选用8级精度。四、齿轮传动校核计算(一)、高速级 1.传动主要尺寸因为齿轮传动形式为闭式硬齿面,故决定按齿根弯曲疲劳强度设计齿轮传动主要参数和尺寸。由参考文献[1]P138公式8.13可得: 式中各参数为:(1)小齿轮传递的转矩: (2)初选 =19, 则 式中: ——大齿轮数; ——高速级齿轮传动比。(3)由参考文献[1] P144表8.6,选取齿宽系数 。(4)初取螺旋角 。由参考文献[1]P133公式8.1可计算齿轮传动端面重合度: 由参考文献[1] P140图8.21取重合度系数 =0.72 由式8.2得 由图8.26查得螺旋角系数 (5)初取齿轮载荷系数 =1.3。(6)齿形系数 和应力修正系数 :齿轮当量齿数为 , 由参考文献[1] P130图8.19查得齿形系数 =2.79, =2.20 由参考文献[1] P130图8.20查得应力修正系数 =1.56, =1.78(7)许用弯曲应力可由参考文献[1] P147公式8.29算得: 由参考文献[1] P146图8.28(h)可得两齿轮的弯曲疲劳极限应力分别为: 和 。 由参考文献[1] P147表8.7,取安全系数 =1.25。 小齿轮1和大齿轮2的应力循环次数分别为: 式中: ——齿轮转一周,同一侧齿面啮合次数; ——齿轮工作时间。 由参考文献[1] P147图8.30查得弯曲强度寿命系数为: 故许用弯曲应力为 = 所以 初算齿轮法面模数 2 .计算传动尺寸(1)计算载荷系数 由参考文献[1] P130表8.3查得使用 由参考文献[1] P131图8.7查得动载系数 ; 由参考文献[1] P132图8.11查得齿向载荷分布系数 ; 由参考文献[1] P133表8.4查得齿间载荷分配系数 ,则 (2)对 进行修正,并圆整为标准模数 由参考文献[1] P124按表8.1,圆整为 (3)计算传动尺寸。中心距 圆整为105mm修正螺旋角 小齿轮分度圆直径 大齿轮分度圆直径 圆整b=20mm 取 , 式中: ——小齿轮齿厚; ——大齿轮齿厚。3.校核齿面接触疲劳强度由参考文献[1] P135公式8.7 式中各参数:(1)齿数比 。 (2)由参考文献[1] P136表8.5查得弹性系数 。 (3)由参考文献[1] P136图8.14查得节点区域系数 。 (4)由参考文献[1] P136图8.15查得重合度系数 (5)由参考文献[1]P142图8.24查得螺旋角系数 (5)由参考文献[1] P145公式8.26 计算许用接触应力 式中: ——接触疲劳极限,由参考文献[1] P146图8.28()分别查得 , ; ——寿命系数,由参考文献[1] P147图8.29查得 , ; ——安全系数,由参考文献[1] P147表8.7查得 。故 满足齿面接触疲劳强度。(二)、低速级1.传动主要尺寸因为齿轮传动形式为闭式硬齿面,故决定按齿根弯曲疲劳强度设计齿轮传动主要参数和尺寸。由参考文献[1]P138公式8.13可得: 式中各参数为:(1)小齿轮传递的转矩: (2)初选 =23, 则 式中: ——大齿轮数; ——低速级齿轮传动比。(3)由参考文献[1] P144表8.6,选取齿宽系数 (4)初取螺旋角 。由参考文献[1]P133公式8.1可计算齿轮传动端面重合度: 由参考文献[1] P140图8.21取重合度系数 =0.71 由式8.2得 由图8.26查得螺旋角系数 (5)初取齿轮载荷系数 =1.3。(6)齿形系数 和应力修正系数 :齿轮当量齿数为 , 由参考文献[1] P130图8.19查得齿形系数 =2.65, =2.28 由参考文献[1] P130图8.20查得应力修正系数 =1.57, =1.76(7)许用弯曲应力可由参考文献[1] P147公式8.29算得: 由参考文献[1] P146图8.28(h)可得两齿轮的弯曲疲劳极限应力分别为: 和 。 由参考文献[1] P147表8.7,取安全系数 =1.25。 小齿轮3和大齿轮4的应力循环次数分别为: 式中: ——齿轮转一周,同一侧齿面啮合次数; ——齿轮工作时间。 由参考文献[1] P147图8.30查得弯曲强度寿命系数为: 故许用弯曲应力为 = 所以 初算齿轮法面模数 2 .计算传动尺寸(1)计算载荷系数 由参考文献[1] P130表8.3查得使用 由参考文献[1] P131图8.7查得动载系数 ; 由参考文献[1] P132图8.11查得齿向载荷分布系数 ; 由参考文献[1] P133表8.4查得齿间载荷分配系数 ,则 (2)对 进行修正,并圆整为标准模数 由参考文献[1] P124按表8.1,圆整为 (3)计算传动尺寸。中心距 圆整为145mm修正螺旋角 小齿轮分度圆直径 大齿轮分度圆直径 圆整b=35mm 取 , 式中: ——小齿轮齿厚; ——大齿轮齿厚。3.校核齿面接触疲劳强度由参考文献[1] P135公式8.7 式中各参数: (1)齿数比 。 (2)由参考文献[1] P136表8.5查得弹性系数 。 (3)由参考文献[1] P136图8.14查得节点区域系数 。 (4)由参考文献[1] P136图8.15查得重合度系数 (5)由参考文献[1]P142图8.24查得螺旋角系数 (5)由参考文献[1] P145公式8.26 计算许用接触应力 式中: ——接触疲劳极限,由参考文献[1] P146图8.28()分别查得 , ; ——寿命系数,由参考文献[1] P147图8.29查得 , ; ——安全系数,由参考文献[1] P147表8.7查得 。故 满足齿面接触疲劳强度。五、初算轴径由参考文献[1]P193公式10.2可得:齿轮轴的最小直径: 。考虑到键对轴强度的削弱及联轴器对轴径的要求,最后取 。中间轴的最小直径: 。考虑到键对轴强度的削弱及轴承寿命的要求,最后取 输出轴的最小直径: 。考虑到键对轴强度的削弱及联轴器对轴径的要求,最后取 。式中: ——由许用扭转应力确定的系数,由参考文献[1]P193表10.2,取 六、校核轴及键的强度和轴承寿命:(一)、中间轴 1.齿轮2(高速级从动轮)的受力计算:由参考文献[1]P140公式8.16可知式中: ——齿轮所受的圆周力,N; ——齿轮所受的径向力,N; ——齿轮所受的轴向力,N; 2.齿轮3(低速级主动轮)的受力计算: 由参考文献[1]P140公式8.16可知式中: ——齿轮所受的圆周力,N; ——齿轮所受的径向力,N; ——齿轮所受的轴向力,N;3.齿轮的轴向力平移至轴上所产生的弯矩为: 4.轴向外部轴向力合力为: 5.计算轴承支反力: 竖直方向,轴承1 轴承2 水平方向,轴承1 ,与所设方向相反。 轴承2 ,与所设方向相反。 轴承1的总支撑反力: 轴承2的总支撑反力: 6.计算危险截面弯矩 a-a剖面左侧,竖直方向 水平方向 b-b剖面右侧,竖直方向 水平方向 a-a剖面右侧合成弯矩为 b-b剖面左侧合成弯矩为 故a-a剖面右侧为危险截面。7.计算应力 初定齿轮2的轴径为 =38mm,轴毂长度为10mm,连接键由参考文献[2]P135表11.28选择 =10×8,t=5mm, =25mm。齿轮3轴径为 =40mm,连接键由P135表11.28选择 =12×8,t=5mm, =32mm,毂槽深度 =3.3mm。由 ,故齿轮3可与轴分离。又a-a剖面右侧(齿轮3处)危险,故:抗弯剖面模量 抗扭剖面模量 弯曲应力 扭剪应力 8.计算安全系数对调质处理的45#钢,由参考文献[1]P192表10.1知:抗拉强度极限 =650MPa弯曲疲劳极限 =300MPa扭转疲劳极限 =155MPa由表10.1注②查得材料等效系数: 轴磨削加工时的表面质量系数由参考文献[1]P207附图10.1查得 绝对尺寸系数由附图10.1查得: 键槽应力集中系数由附表10.4查得: (插值法)由参考文献[1]P201公式10.5,10.6得,安全系数查P202表10.5得许用安全系数[S]=1.5~1.8,显然S>[S],故危险截面是安全的9.校核键连接的强度 齿轮2处键连接的挤压应力 齿轮3处键连接的挤压应力 由于键,轴,齿轮的材料都为45号钢,由参考文献[1]查得 ,显然键连接的强度足够!10.计算轴承寿命 由参考文献[2]P138表12.2查7207C轴承得轴承基本额定动负荷 =23.5KN,基本额定静负荷 =17.5KN 轴承1的内部轴向力为: 轴承2的内部轴向力为: 故轴承1的轴向力 ,轴承2的轴向力 由 由参考文献[1]P220表11.12可查得: 又 取 故 取 根据轴承的工作条件,查参考文献[1]P218~219表11.9,11.10得温度系数 ,载荷系数 ,寿命系数 。由P218公式11.1c得轴承1的寿命 已知工作年限为5年2班,故轴承预期寿命 ,故轴承寿命满足要求(二)、输入轴 1.计算齿轮上的作用力 由作用力与反作用力的关系可得,齿轮轴1所受的力与齿轮2所受的力大小相等,方向相反。即:轴向力 ,径向力 ,圆周力 2.平移轴向力所产生的弯矩为: 3.计算轴承支撑反力 竖直方向,轴承1 轴承2 水平方向,轴承1 , 轴承2 , 轴承1的总支撑反力: 轴承2的总支撑反力: 4.计算危险截面弯矩 a-a剖面左侧,竖直方向 水平方向 其合成弯矩为 a-a剖面右侧,竖直方向 水平方向 其合成弯矩为 危险截面在a-a剖面左侧。5.计算截面应力 由参考文献[1]P205附表10.1知:抗弯剖面模量 抗扭剖面模量 弯曲应力 扭剪应力 6.计算安全系数对调质处理的45#钢,由参考文献[1]P192表10.1知:抗拉强度极限 =650MPa弯曲疲劳极限 =300MPa扭转疲劳极限 =155MPa由表10.1注②查得材料等效系数: 轴磨削加工时的表面质量系数由参考文献[1]P207附图10.1查得 绝对尺寸系数由附图10.1查得: 由参考文献[1]P201公式10.5,10.6得,安全系数查P202表10.5得许用安全系数[S]=1.5~1.8,显然S>[S],故危险截面是安全的7.校核键连接的强度 联轴器处连接键由参考文献[2]P135表11.28选择 =8×7,t=4mm, =40mm。轴径为 =25mm 联轴器处键连接的挤压应力 由于键,轴的材料都为45号钢,由参考文献[1]查得 ,显然键连接的强度足够!8.计算轴承寿命 由参考文献[2]P138表12.2查7206C轴承得轴承基本额定动负荷 =17.8KN,基本额定静负荷 =12.8KN 轴承1的内部轴向力为: 轴承2的内部轴向力为: 由于 故轴承1的轴向力 ,轴承2的轴向力 由 由参考文献[1]P220表11.12可查得: 又 取 故 取 根据轴承的工作条件,查参考文献[1]P218~219表11.9,11.10得温度系数 ,载荷系数 ,寿命系数 。由P218公式11.1c得轴承2的寿命 已知工作年限为5年2班,故轴承预期寿命 ,故轴承寿命满足要求(三)、输出轴 1.计算齿轮上的作用力 由作用力与反作用力的关系可得,齿轮4所受的力与齿轮3所受的力大小相等,方向相反。即:轴向力 ,径向力 ,圆周力 2.平移轴向力所产生的弯矩为: 3.计算轴承支撑反力 竖直方向,轴承1 轴承2 水平方向,轴承1 , 轴承2 , 轴承1的总支撑反力: 轴承2的总支撑反力: 4.计算危险截面弯矩 a-a剖面左侧,竖直方向 水平方向 其合成弯矩为 a-a剖面右侧,竖直方向 水平方向 其合成弯矩为 危险截面在a-a剖面左侧。5.计算截面应力 初定齿轮4的轴径为 =44mm,连接键由参考文献[2]P135表11.28选择 =12×8,t=5mm, =28mm。 由参考文献[1]P205附表10.1知:抗弯剖面模量 抗扭剖面模量弯曲应力 扭剪应力 6.计算安全系数对调质处理的45#钢,由参考文献[1]P192表10.1知:抗拉强度极限 =650MPa弯曲疲劳极限 =300MPa扭转疲劳极限 =155MPa由表10.1注②查得材料等效系数: 轴磨削加工时的表面质量系数由参考文献[1]P207附图10.1查得 绝对尺寸系数由附图10.1查得: 键槽应力集中系数由附表10.4查得: (插值法)由参考文献[1]P201公式10.5,10.6得,安全系数查P202表10.5得许用安全系数[S]=1.5~1.8,显然S>[S],故危险截面是安全的7.校核键连接的强度 联轴器处连接键由参考文献[2]P135表11.28选择 =10×8,t=5mm, =70mm。轴径为 =35mm联轴器处键连接的挤压应力 齿轮选用双键连接,180度对称分布。 齿轮处键连接的挤压应力 由于键,轴的材料都为45号钢,由参考文献[1]查得 ,显然键连接的强度足够!8.计算轴承寿命 由参考文献[2]P138表12.2查7208C轴承得轴承基本额定动负荷 =26.8KN,基本额定静负荷 =20.5KN 轴承1的内部轴向力为: 轴承2的内部轴向力为: 由于 轴承1的轴向力 故轴承2的轴向力 由 由参考文献[1]P220表11.12可查得: 又 取 故 取 根据轴承的工作条件,查参考文献[1]P218~219表11.9,11.10得温度系数 ,载荷系数 ,寿命系数 。由P218公式11.1c得轴承2的寿命 已知工作年限为5年2班,故轴承预期寿命 ,故轴承寿命满足要求七、选择联轴器由于电动机的输出轴径(d=38mm)的限制,故由参考文献[2]P127表13-1选择联轴器为HL1型弹性柱销联轴器联,孔径取25mm。由于输出轴上的转矩大,所选联轴器的额定转矩大,故选HL3型,孔径取35mm。八、润滑方式由于所设计的减速器齿轮圆周速度较小,低于2m/s,故齿轮的润滑方式选用油润滑,轴承的润滑方式选用脂润滑。考虑到减速器的工作载荷不是太大,故润滑油选用中负荷工业齿轮油(GB5903——1986),牌号选68号。润滑油在油池中的深度保持在68——80mm之间。轴承的润滑脂选用合成锂基润滑脂(SY1413——1980)。牌号为ZL——2H。由于轴承选用了脂润滑,故要防止齿轮的润滑油进入轴承将润滑脂稀释,也要防止润滑脂流如油池中将润滑油污染。所以要轴承与集体内壁之间设置挡油环。九、减速器附件:1.窥视孔及窥视孔盖:由于受集体内壁间距的限制,窥视孔的大小选择为长90mm,宽60mm。盖板尺寸选择为长120mm,宽90mm。盖板周围分布6个M6×16的全螺纹螺栓。由于要防止污物进入机体和润滑油飞溅出来,因此盖板下应加防渗漏的垫片。考虑到溅油量不大,故选用石棉橡胶纸材质的纸封油圈即可。考虑到盖板的铸造加工工艺性,故选择带有凸台的铸铁盖板。2.通气器:为防止由于机体密封而引起的机体内气压增大,导致润滑油从缝隙及密封处向外渗漏,使密封失灵。故在窥视孔盖凸台上加安通气装置。由于减速器工作在情节的室内环境中,故选用结构简单的通气螺塞即可,其规格为M22×1.5。3.放油孔及放油螺塞:为了能在换油时将油池中的污油排出,清理油池,应在机座底部油池最低处开设放油孔。为了能达到迅速放油地效果,选择放油螺塞规格为M20×1.5。考虑到其位于油池最底部,要求密封效果好,故密封圈选用材质为工业用革的皮封油圈。4.油面指示器:为了能随时监测油池中的油面高度,以确定齿轮是否处于正常的润滑状态,故需设置油面指示器。在本减速器中选用杆式油标尺,放置于机座侧壁,油标尺型号选择为M12。5.吊耳和吊钩:为了方便装拆与搬运,在机盖上设置吊耳,在机座上设置吊钩。吊耳用于打开机盖,而吊钩用于搬运整个减速器。考虑到起吊用的钢丝直径,吊耳和吊钩的直径都取20mm。6.定位销:本减速器机体为剖分式,为了保证轴承座孔的加工和装配精度,在机盖和机座用螺栓联接后,在镗孔之前,在机盖与机座的连接凸缘上应装配定位销。定位销采用圆锥销,安置在机体纵向两侧的联接凸缘得结合面上,呈非对称布置。圆锥销型号选用GB117-86 A6×35。7.起盖螺钉:在机盖与机座联接凸缘的结合面上,为了提高密封性能,常涂有水玻璃或密封胶。因此联接结合较紧,不易分开。为了便于拆下机盖,在机盖地凸缘上设置一个起盖螺栓。取其规格为M10×22。其中螺纹长度为16mm,在端部有一个6mm长的圆柱。十一 、参考文献1 陈铁鸣主编.机械设计.第4版.哈尔滨,哈尔滨工业大学出版社,20062 王连明,宋宝玉主编.机械设计课程设计.第2版.哈尔滨,哈尔滨工业大学出版社,20053 陈铁鸣, 王连明主编.机械设计作业指导.哈尔滨,哈尔滨工业大学出版社,20034徐灏主编.机械设计手册(第二版).北京:机械工业出版社,20045陈铁鸣主编.新编机械设计课程设计图册.北京:高等教育出版社,20036王知行,刘廷荣主编..机械原理..北京:高等教育出版社,2005
2023-09-06 02:39:121

减速器结构设计中如何考虑装、拆的要求?

从实践出发,假如你是工人,具体的负责减速器的安装和拆卸。 从螺栓把合,到轴承间隙调整,都要具体来做,要考虑的事情,可是有很多啊。仔细想想吧,不少呢。
2023-09-06 02:39:223

一级直齿轮减速器课程设计的说明书怎么写啊

你没样本吗?我有的哦。我当年设计的是二级,不过差不多。
2023-09-06 02:39:563

二级直齿展开式圆柱齿轮减速器课程设计的课程设计及实验报告书

跟我做的差不多,这个不懂就请教同学嘛
2023-09-06 02:40:073

带式运输机用展开式二级圆柱齿轮减速器课程设计CAD格式零件图装配图以及WORD格式说明书 急!!!!

单级斜齿圆柱减速器设计说明书院(系) 机械与汽车工程学院 专 业 班 级 学 号 姓 名 专业教研室、研究所负责人 指导教师 年 月 日XXXXXXX 大 学课 程 设 计 ( 论 文 ) 任 务 书兹发给 车辆工程 班学生 课程设计(论文)任务书,内容如下: 1. 设计题目:V带——单级斜齿圆柱减速器2. 应完成的项目:(1) 减速器的总装配图一张(A1) (2) 齿轮零件图 一张(A3) (3) 轴零件图一张(A3) (4) 设计说明书一份 3. 本设计(论文)任务书于2008 年 月 日发出,应于2008 年 月 日前完成,然后进行答辩。专业教研室、研究所负责人 审核 年 月 日指导教师 签发 年 月 日程设计(论文)评语:课程设计(论文)总评成绩:课程设计(论文)答辩负责人签字:年 月 日目 录一. 传动方案的确定―――――――――――――――5二. 原始数据――――――――――――――――――5三. 确定电动机的型号――――――――――――――5四. 确定传动装置的总传动比及分配――――――――6五. 传动零件的设计计算―――――――――――――7六. 减速器铸造箱体的主要结构尺寸设计――――――13七. 轴的设计――――――――――――――――――14八. 滚动轴承的选择和计算――――――――――――19九. 键联接的选择和强度校核―――――――――――22十. 联轴器的选择和计算―――――――――――――22十一. 减速器的润滑―――――――――――――――22十二. 参考文献―――――――――――――――――2计算过程及计算说明一、传动方案拟定二、原始数据: 带拉力:F=5700N, 带速度:v=2.28m/s, 滚筒直径:D=455mm 运输带的效率: 工作时载荷有轻微冲击;室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差 4%,要求齿轮使用寿命为10年,二班工作制;轴承使用寿命不小于15000小时。三、电动机选择(1) 选择电动机类型: 选用Y系列三相异步电动机(2) 选择电动机功率::运输机主轴上所需要的功率: 传动装置的总效率: , , , , 分别是:V带传动,齿轮传动(闭式,精度等级为8),圆锥滚子轴承(滚子轴承一对),联轴器(刚性联轴器),运输带的效率。查《课程设计》表2-3,取: 所以: 电动机所需功率: ,查《课程设计》表16-1 取电动机Y200L1-6的额定功率 (3)选择电动机的转速取V带传动比范围(表2-2) ≤2~4;单级齿轮减速器传动比 =3~6 滚筒的转速: 电动机的合理同步转速: 查表16-1得电动机得型号和主要数据如下(同步转速符合)电动机型号 额定功率(kW) 同步转速(r/min) 满载转速nm(r/min) 堵载转矩额定转矩 最大转矩额定转矩Y200L1-6 18.5 1000 970 1.8 2.0查表16-2得电动机得安装及有关尺寸中心高 H 外形尺寸底脚安装尺寸地脚螺栓孔直径轴伸尺寸 键公称尺寸200 775×(0.5×400+310) ×310 318×305 19 55×110 16×五、计算总传动比及分配各级的传动比传动装置得总传动比 : 取V带传动比: ;单级圆柱齿轮减速器传动比: (1) 计算各轴得输入功率电动机轴: 轴Ⅰ(减速器高速轴): 轴Ⅱ(减速器低速轴): (2) 计算各轴得转速 电动机轴: 轴Ⅰ : 轴Ⅱ : (3)计算各轴得转矩电动机轴 轴Ⅰ : 轴Ⅱ : 上述数据制表如下:参数轴名 输入功率( )转速( )输入转矩( )传动比效率电动机轴 15.136 970 182.14 1.6893 0.95轴Ⅰ(减速器高速轴) 14.379 574.20 239.15 6 0.97轴Ⅱ(减速器低速轴) 13.669 95.70 1364.07 五、传动零件的设计计算1. 普通V带传动得设计计算① 确定计算功率 则: ,式中,工作情况系数取 =1.3② 根据计算功率 与小带轮的转速 ,查《机械设计基础》图10-10,选择SPA型窄V带。③ 确定带轮的基准直径 取小带轮直径: ,大带轮直径 : 根据国标:GB/T 13575.1-1992 取大带轮的直径 ④ 验证带速: 在 之间。故带的速度合适。⑤确定V带的基准直径和传动中心距 初选传动中心距范围为: ,初定 V带的基准长度: 查《机械设计》表2.3,选取带的基准直径长度 实际中心距: ⑥ 验算主动轮的最小包角 故主动轮上的包角合适。⑦ 计算V带的根数z ,由 , ,查《机械设计》表2.5a,得 ,由 ,查表2.5c,得额定功率的增量: ,查表2.8,得 ,查表2.9,得 , 取 根。⑧ 计算V带的合适初拉力 查《机械设计》表2.2,取 得 ⑨ 计算作用在轴上的载荷 :⑩ 带轮的结构设计 (单位)mm 带轮尺寸 小带轮槽型 C基准宽度 11基准线上槽深 2.75基准线下槽深 11.0槽间距 15.0 0.3槽边距 9轮缘厚 10外径 内径 40带轮宽度 带轮结构 腹板式 V带轮采用铸铁HT150或HT200制造,其允许的最大圆周速度为25m/s.2. 齿轮传动设计计算(1)择齿轮类型,材料,精度,及参数① 选用斜齿圆柱齿轮传动(外啮合); ② 选择齿轮材料:由课本附表1.1选大、小齿轮的材料均为45钢,并经调质后表面淬火,齿面硬度为HRC1=HRC2=45; ③ 选取齿轮为7级的精度(GB 10095-88);④ 初选螺旋角 ⑤ 选 小齿轮的齿数 ;大齿轮的齿数 (2)按齿面接触疲劳强度设计由设计计算公式进行试算,即 A. 确定公式内各个计算数值① 试选载荷系数Kt=1.5② 小齿轮传递的转矩: ③ 由《机械设计》表12.5得齿宽系数 (对硬齿面齿轮, 取值偏下极限)④ 由《机械设计》表12.4弹性影响系数 ⑤ 节点区域系数 所以,得到 =2.4758⑥ 端面重合度= = 代入上式可得: ⑦ 接触疲劳强度极限σHlim1=σHlim2=1000Mpa (图12.6)⑧ 应力循环次数N1=60 nⅠjLh=60x574.20x1x(2x8x300x10)=16.5x108N2= N1/i2=16.5x108/6=2.75x108⑨ 接触疲劳寿命系数 根据图12.4⑩ 接触疲劳许用应力 取 =0.91 1000/1.2Mpa=758.33 MPa=0.96 1000/1.2Mpa=800 Mpa因为 =779.165MPa<1.23 =984MPa, 故取 =779.165 MpaB. 计算① 试算小齿轮分度圆② 计算圆周速度: = ③ 计算齿宽: = 1 57.24 = 57.24 mm④ 齿宽与齿高之比: /(2.25 ) ⑤ 计算载荷系数K根据v=2.28m/s,7级精度,由附图12.1查得动载系数 =1.07由附表12.2查得 ; 由附表12.1查得 .25参考课本附表12.3中6级精度公式,估计 <1.34,对称1.313取 =1.313 由附图12.2查得径向载荷分布系数 =1.26载荷系数 ⑥ 按实际的载荷系数修正分度圆直径 = ⑦ 计算模数 3、按齿根弯曲疲劳强度设计 A. 确定公式中的各参数① 载荷系数K: 则 ② 齿形系数 和应力校正系数 当量齿数 = =21.6252,= =112.2453③ 螺旋角影响系数 轴面重合度 = =0.9385 取 =1得 =0.9374④ 许用弯曲应力 查课本附图6.5得 ,取 =1.4,则=0.86 500/1.4Mpa=307 Mpa=0.88 500/1.4Mpa=314 Mpa⑤ 确定 =2.73 1.57/307=0.01396=2.17 1.80/314=0.01244以 代入公式计算B. 计算模数mn 比较两种强度计算结果,确定 4、几何尺寸的计算 ① 中心距 =3 (21+126)/ (2cos80)=223mm取中心距 ② 修正螺旋角: ③ 分度圆直径: ④ 齿宽 ,取B2=65 mm,B1=70 mm⑤ 齿轮传动的几何尺寸,制表如下:(详细见零件图)名称 代号 计算公式 结果 小齿轮 大齿轮中心距 223 mm传动比 6法面模数 设计和校核得出 3端面模数 3.034法面压力角 螺旋角 一般为 齿顶高 3mm齿根高 3.75mm全齿高 6.75mm顶隙 c 0.75mm齿数 Z 21 126分度圆直径 64.188mm 382.262 mm齿顶圆直径 70.188 mm 388.262mm齿根圆直径 57.188 mm 375.262 mm齿轮宽 b 70mm 65mm螺旋角方向 左旋 右旋六、减速器铸造箱体的主要结构尺寸设计查《设计基础》表3-1经验公式,及结果列于下表。名称 代号 尺寸计算 结果(mm)底座壁厚 8箱盖壁厚 8底座上部凸圆厚度 12箱盖凸圆厚度 12底座下部凸圆厚度 20底座加强筋厚度 e 8底盖加强筋厚度 7地脚螺栓直径 d 或表3.416地脚螺栓数目 n 表3--4 6轴承座联接螺栓直径 0.75d 12箱座与箱盖联接螺栓直径 (0.5—0.6)d 8轴承盖固定螺钉直径 (0.4—0.5)d 8视孔盖固定螺钉直径 (0.3—0.4)d 5轴承盖螺钉分布圆直径 155/140轴承座凸缘端面直径 185/170螺栓孔凸缘的配置尺寸 表3--2 22,18,30地脚螺栓孔凸缘配置尺寸 表3--3 25,23,45箱体内壁与齿轮距离 12箱体内壁与齿轮端面距离 10底座深度 H 244外箱壁至轴承端面距离 45七、轴的设计计算 1. 高速轴的设计① 选择轴的材料:选取45号钢,调质,HBS=230② 初步估算轴的最小直径 根据教材公式,取 =110,则: =32.182mm因为与V带联接处有一键槽,所以直径应增大5% ③ 轴的结构设计: 考虑带轮的机构要求和轴的刚度,取装带轮处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为: 两轴承支点间的距离: ,式中: ―――――小齿轮齿宽, ―――――― 箱体内壁与小齿轮端面的间隙, ――――――― 箱体内壁与轴承端面的距离, ――――― 轴承宽度,选取30310圆锥滚子轴承,查表13-1,得到 得到: 带轮对称线到轴承支点的距离 式中: ------------轴承盖高度, t ――――轴承盖的凸缘厚度, ,故, ―――――螺栓头端面至带轮端面的距离, ―――――轴承盖M8螺栓头的高度,查表可得 mm――――带轮宽度, 得到: 2.按弯扭合成应力校核轴的强度。 ①计算作用在轴上的力 小齿轮受力分析 圆周力: 径向力: 轴向力: ②计算支反力 水平面: 垂直面: 所以: ③ 作弯矩图 水平面弯矩: 垂直面弯矩: 合成弯矩: ④ 作转矩图 (见P22页) T1=239.15Nm当扭转剪力为脉动循环应变力时,取系数 , 则: ⑤ 按弯扭合成应力校核轴的强度 轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。 由弯矩图可以知道,A剖面的计算弯矩最大 ,该处的计算应力为:D 剖面的轴径最小,该处的计算应力为:(安全)⑥ 轴的结构图见零件图所示2.低速轴的设计(1).选择轴的材料:选择45号钢,调质,HBS=230(2). 初步估算轴的最小直径:取A=110, 两个键,所以 mm考虑联轴器的机构要求和轴的刚度,取装联轴器处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为: 选30214 轴承 T=26.25(3).轴的结构设计,初定轴径及轴向尺寸:考虑 ---螺栓头端面至带轮端面的距离, k ----轴承盖M12螺栓头的高度,查表可得k=7.5mm ,选用6个L---轴联轴器长度,L=125mm得到: (4).按弯曲合成应力校核轴的强度①计算作用的轴上的力齿轮受力分析:圆周力: N径向力: 轴向力: ③ 计算支反力: 水平面: 垂直面: ,, ③ 作弯矩图 水平面弯矩: 垂直面弯矩: 合成弯矩: ④ 作转矩图 T2=1364.07Nm当扭转剪力为脉动循环应变力时,取系数 , 则: ⑤ 按弯扭合成应力校核轴的强度
2023-09-06 02:40:171

急求两级圆柱齿轮减速器的设计说明书?

一、前言 (一) 设计目的: 通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。 (二) 传动方案的分析 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。 减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。 二、传动系统的参数设计 原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。 工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。 工作环境:室内灰尘较大,环境最高温度35°。 动力来源:电力,三相交流380/220伏。 1 、电动机选择 (1)、电动机类型的选择: Y系列三相异步电动机 (2)、电动机功率选择: ①传动装置的总效率: =0.98×0.99 ×0.96×0.99×0.96 ②工作机所需的输入功率: 因为 F=0.2 KN=0.2 KN= 1908N =FV/1000η =1908×2/1000×0.96 =3.975KW ③电动机的输出功率: =3.975/0.87=4.488KW 使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。 ⑶、确定电动机转速: 计算滚筒工作转速: =(60×v)/(2π×D/2) =(60×2)/(2π×0.2) =96r/min 由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I" =3~6。取V带传动比I" =2~4,则总传动比理时范围为I" =6~24。故电动机转速的可选范围为n" =(6~24)×96=576~2304r/min ⑷、确定电动机型号 根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。 其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。 2 、计算总传动比及分配各级的传动比 (1)、总传动比:i =1440/96=15 (2)、分配各级传动比: 根据指导书,取齿轮i =5(单级减速器i=3~6合理) =15/5=3 3 、运动参数及动力参数计算 ⑴、计算各轴转速(r/min) =960r/min =1440/3=480(r/min) =480/5=96(r/min) ⑵计算各轴的功率(KW) 电动机的额定功率Pm=5.5KW 所以 P =5.5×0.98×0.99=4.354KW =4.354×0.99×0.96 =4.138KW =4.138×0.99×0.99=4.056KW ⑶计算各轴扭矩(N61mm) TI=9550×PI/nI=9550×4.354/480=86.63N61m =9550×4.138/96 =411.645N61m =9550×4.056/96 =403.486N61m 三、传动零件的设计计算 (一)齿轮传动的设计计算 (1)选择齿轮材料及精度等级 考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm (2)确定有关参数和系数如下: 传动比i 取小齿轮齿数Z =20。则大齿轮齿数: =5×20=100 ,所以取Z 实际传动比 i =101/20=5.05 传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用 齿数比: u=i 取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°; 则 h *m=3,h )m=3.75 h=(2 h )m=6.75,c= c 分度圆直径:d =×20mm=60mm d =3×101mm=303mm 由指导书取 φ 齿宽: b=φ =0.9×60mm=54mm =60mm , b 齿顶圆直径:d )=66, d 齿根圆直径:d )=52.5, d )=295.5 基圆直径: d cos =56.38, d cos =284.73 (3)计算齿轮传动的中心矩a: a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm (二)轴的设计计算 1 、输入轴的设计计算 ⑴、按扭矩初算轴径 选用45#调质,硬度217~255HBS 根据指导书并查表,取c=110 所以 d≥110 (4.354/480) 1/3mm=22.941mm d=22.941×(1+5%)mm=24.08mm ∴选d=25mm ⑵、轴的结构设计 ①轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定 ②确定轴各段直径和长度 Ⅰ段:d =25mm , L =(1.5~3)d ,所以长度取L ∵h=2c c=1.5mm +2h=25+2×2×1.5=31mm 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L =(2+20+55)=77mm III段直径: 初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm. =d=35mm,L =T=18.25mm,取L Ⅳ段直径: 由手册得:c=1.5 h=2c=2×1.5=3mm 此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm 因此将Ⅳ段设计成阶梯形,左段直径为41mm +2h=35+2×3=41mm 长度与右面的套筒相同,即L Ⅴ段直径:d =50mm. ,长度L =60mm 取L 由上述轴各段长度可算得轴支承跨距L=80mm Ⅵ段直径:d =41mm, L Ⅶ段直径:d =35mm, L <L3,取L 2 、输出轴的设计计算 ⑴、按扭矩初算轴径 选用45#调质钢,硬度(217~255HBS) 根据课本P235页式(10-2),表(10-2)取c=110 =110× (2.168/76.4) =38.57mm 考虑有键槽,将直径增大5%,则 d=38.57×(1+5%)mm=40.4985mm ∴取d=42mm ⑵、轴的结构设计 ①轴的零件定位,固定和装配 单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。 ②确定轴的各段直径和长度 初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。 则 d =42mm L = 50mm L = 55mm L = 60mm L = 68mm L =55mm L 四、滚动轴承的选择 1 、计算输入轴承 选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm. 2 、计算输出轴承 选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm 五、键联接的选择 1 、输出轴与带轮联接采用平键联接 键的类型及其尺寸选择: 带轮传动要求带轮与轴的对中性好,故选择C型平键联接。 根据轴径d =42mm ,L =65mm 查手册得,选用C型平键,得: 卷扬机 装配图中22号零件选用GB1096-79系列的键12×56 则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56 2 、输出轴与齿轮联接用平键联接 =60mm,L 查手册得,选用C型平键,得: 装配图中 赫格隆36号零件选用GB1096-79系列的键18×45 则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45 3 、输入轴与带轮联接采用平键联接 =25mm L 查手册 选A型平键,得: 装配图中29号零件选用GB1096-79系列的键8×50 则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50 4 、输出轴与齿轮联接用平键联接 =50mm L 查手册 选A型平键,得: 装配图中26号零件选用GB1096-79系列的键14×49 则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49 六、箱体、箱盖主要尺寸计算 箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下: 七、轴承端盖 主要尺寸计算 轴承端盖:HT150 d3=8 n=6 b=10 八、减速器的 减速器的附件的设计 1 、挡圈 :GB886-86 查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58 2 、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D 3 、角螺塞 M18 × 1.5 :JB/ZQ4450-86 九、 设计参考资料目录 1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6 2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11
2023-09-06 02:40:281

设计题目 设计一带式运输机上的二级减速器(设计第一级.第二级减速均采用斜齿圆柱齿轮传动)

计算过程及计算说明一、传动方案拟定第三组:设计单级圆柱齿轮减速器和一级带传动(1) 工作条件:使用年限8年,工作为二班工作制,载荷平稳,环境清洁。(2) 原始数据:滚筒圆周力F=1000N;带速V=2.0m/s;滚筒直径D=500mm;滚筒长度L=500mm。二、电动机选择1、电动机类型的选择: Y系列三相异步电动机2、电动机功率选择:(1)传动装置的总功率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.982×0.97×0.99×0.96=0.85(2)电机所需的工作功率:P工作=FV/1000η总=1000×2/1000×0.8412=2.4KW3、确定电动机转速:计算滚筒工作转速:n筒=60×1000V/πD=60×1000×2.0/π×50=76.43r/min按手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I"a=3~6。取V带传动比I"1=2~4,则总传动比理时范围为I"a=6~24。故电动机转速的可选范围为n"d=I"a×n筒=(6~24)×76.43=459~1834r/min符合这一范围的同步转速有750、1000、和1500r/min。根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案:如指导书P15页第一表。综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。其主要性能:额定功率:3KW,满载转速960r/min,额定转矩2.0。质量63kg。三、计算总传动比及分配各级的伟动比1、总传动比:i总=n电动/n筒=960/76.4=12.572、分配各级伟动比(1) 据指导书P7表1,取齿轮i齿轮=6(单级减速器i=3~6合理)(2) ∵i总=i齿轮×I带∴i带=i总/i齿轮=12.57/6=2.095四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=n电机=960r/minnII=nI/i带=960/2.095=458.2(r/min)nIII=nII/i齿轮=458.2/6=76.4(r/min)2、 计算各轴的功率(KW)PI=P工作=2.4KWPII=PI×η带=2.4×0.96=2.304KWPIII=PII×η轴承×η齿轮=2.304×0.98×0.96=2.168KW3、 计算各轴扭矩(Nu2022mm)TI=9.55×106PI/nI=9.55×106×2.4/960=23875Nu2022mmTII=9.55×106PII/nII=9.55×106×2.304/458.2=48020.9Nu2022mmTIII=9.55×106PIII/nIII=9.55×106×2.168/76.4=271000Nu2022mm五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本P83表5-9得:kA=1.2PC=KAP=1.2×3=3.9KW由课本P82图5-10得:选用A型V带(2) 确定带轮基准直径,并验算带速由课本图5-10得,推荐的小带轮基准直径为75~100mm则取dd1=100mm>dmin=75dd2=n1/n2u2022dd1=960/458.2×100=209.5mm由课本P74表5-4,取dd2=200mm实际从动轮转速n2"=n1dd1/dd2=960×100/200=480r/min转速误差为:n2-n2"/n2=458.2-480/458.2=-0.048<0.05(允许)带速V:V=πdd1n1/60×1000=π×100×960/60×1000=5.03m/s在5~25m/s范围内,带速合适。(3) 确定带长和中心矩根据课本P84式(5-14)得0. 7(dd1+dd2)≤a0≤2(dd1+dd2)0. 7(100+200)≤a0≤2×(100+200)所以有:210mm≤a0≤600mm由课本P84式(5-15)得:L0=2a0+1.57(dd1+dd2)+(dd2-dd1)/4a0=2×500+1.57(100+200)+(200-100)2/4×500=1476mm根据课本P71表(5-2)取Ld=1400mm根据课本P84式(5-16)得:a≈a0+Ld-L0/2=500+1400-1476/2=500-38=462mm(4)验算小带轮包角α1=1800-dd2-dd1/a×57.30=1800-200-100/462×57.30=1800-12.40=167.60>1200(适用)(5)确定带的根数根据课本P78表(5-5)P1=0.95KW根据课本P79表(5-6)△P1=0.11KW根据课本P81表(5-7)Kα=0.96根据课本P81表(5-8)KL=0.96由课本P83式(5-12)得Z=PC/P"=PC/(P1+△P1)KαKL=3.9/(0.95+0.11) ×0.96×0.96=3.99(6)计算轴上压力由课本P70表5-1查得q=0.1kg/m,由式(5-18)单根V带的初拉力:F0=500PC/ZV(2.5/Kα-1)+qV2=[500×3.9/4×5.03×(2.5/0.96-1)+0.1×5.032]N=158.01N则作用在轴承的压力FQ,由课本P87式(5-19)FQ=2ZF0sinα1/2=2×4×158.01sin167.6/2=1256.7N2、齿轮传动的设计计算(1)选择齿轮材料及精度等级考虑减速器传递功率不在,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本P139表6-12选7级精度。齿面精糙度Ra≤1.6~3.2μm(2)按齿面接触疲劳强度设计由d1≥76.43(kT1(u+1)/φdu[σH]2)1/3由式(6-15)确定有关参数如下:传动比i齿=6取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1=6×20=120实际传动比I0=120/2=60传动比误差:i-i0/I=6-6/6=0%<2.5% 可用齿数比:u=i0=6由课本P138表6-10取φd=0.9(3)转矩T1T1=9.55×106×P/n1=9.55×106×2.4/458.2=50021.8Nu2022mm(4)载荷系数k由课本P128表6-7取k=1(5)许用接触应力[σH][σH]= σHlimZNT/SH由课本P134图6-33查得:σHlimZ1=570Mpa σHlimZ2=350Mpa由课本P133式6-52计算应力循环次数NLNL1=60n1rth=60×458.2×1×(16×365×8)=1.28×109NL2=NL1/i=1.28×109/6=2.14×108由课本P135图6-34查得接触疲劳的寿命系数:ZNT1=0.92 ZNT2=0.98通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0[σH]1=σHlim1ZNT1/SH=570×0.92/1.0Mpa=524.4Mpa[σH]2=σHlim2ZNT2/SH=350×0.98/1.0Mpa=343Mpa故得:d1≥76.43(kT1(u+1)/φdu[σH]2)1/3=76.43[1×50021.8×(6+1)/0.9×6×3432]1/3mm=48.97mm模数:m=d1/Z1=48.97/20=2.45mm根据课本P107表6-1取标准模数:m=2.5mm(6)校核齿根弯曲疲劳强度根据课本P132(6-48)式σF=(2kT1/bm2Z1)YFaYSa≤[σH]确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×120mm=300mm齿宽:b=φdd1=0.9×50mm=45mm取b=45mm b1=50mm(7)齿形系数YFa和应力修正系数YSa根据齿数Z1=20,Z2=120由表6-9相得YFa1=2.80 YSa1=1.55YFa2=2.14 YSa2=1.83(8)许用弯曲应力[σF]根据课本P136(6-53)式:[σF]= σFlim YSTYNT/SF由课本图6-35C查得:σFlim1=290Mpa σFlim2 =210Mpa由图6-36查得:YNT1=0.88 YNT2=0.9试验齿轮的应力修正系数YST=2按一般可靠度选取安全系数SF=1.25计算两轮的许用弯曲应力[σF]1=σFlim1 YSTYNT1/SF=290×2×0.88/1.25Mpa=408.32Mpa[σF]2=σFlim2 YSTYNT2/SF =210×2×0.9/1.25Mpa=302.4Mpa将求得的各参数代入式(6-49)σF1=(2kT1/bm2Z1)YFa1YSa1=(2×1×50021.8/45×2.52×20) ×2.80×1.55Mpa=77.2Mpa< [σF]1σF2=(2kT1/bm2Z2)YFa1YSa1=(2×1×50021.8/45×2.52×120) ×2.14×1.83Mpa=11.6Mpa< [σF]2故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=m/2(Z1+Z2)=2.5/2(20+120)=175mm(10)计算齿轮的圆周速度VV=πd1n1/60×1000=3.14×50×458.2/60×1000=1.2m/s六、轴的设计计算输入轴的设计计算1、按扭矩初算轴径选用45#调质,硬度217~255HBS根据课本P235(10-2)式,并查表10-2,取c=115d≥115 (2.304/458.2)1/3mm=19.7mm考虑有键槽,将直径增大5%,则d=19.7×(1+5%)mm=20.69∴选d=22mm2、轴的结构设计(1)轴上零件的定位,固定和装配单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定(2)确定轴各段直径和长度工段:d1=22mm 长度取L1=50mm∵h=2c c=1.5mmII段:d2=d1+2h=22+2×2×1.5=28mm∴d2=28mm初选用7206c型角接触球轴承,其内径为30mm,宽度为16mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+16+55)=93mmIII段直径d3=35mmL3=L1-L=50-2=48mmⅣ段直径d4=45mm由手册得:c=1.5 h=2c=2×1.5=3mmd4=d3+2h=35+2×3=41mm长度与右面的套筒相同,即L4=20mm但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm因此将Ⅳ段设计成阶梯形,左段直径为36mmⅤ段直径d5=30mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=100mm(3)按弯矩复合强度计算①求分度圆直径:已知d1=50mm②求转矩:已知T2=50021.8Nu2022mm③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=50021.8/50=1000.436N④求径向力Fr根据课本P127(6-35)式得Fr=Ftu2022tanα=1000.436×tan200=364.1N⑤因为该轴两轴承对称,所以:LA=LB=50mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=182.05NFAZ=FBZ=Ft/2=500.2N由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=182.05×50=9.1Nu2022m(3)绘制水平面弯矩图(如图c) 截面C在水平面上弯矩为:MC2=FAZL/2=500.2×50=25Nu2022m(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=(9.12+252)1/2=26.6Nu2022m(5)绘制扭矩图(如图e)转矩:T=9.55×(P2/n2)×106=48Nu2022m(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[26.62+(1×48)2]1/2=54.88Nu2022m(7)校核危险截面C的强度由式(6-3)σe=Mec/0.1d33=99.6/0.1×413=14.5MPa< [σ-1]b=60MPa∴该轴强度足够。输出轴的设计计算1、按扭矩初算轴径选用45#调质钢,硬度(217~255HBS)根据课本P235页式(10-2),表(10-2)取c=115d≥c(P3/n3)1/3=115(2.168/76.4)1/3=35.08mm取d=35mm2、轴的结构设计(1)轴的零件定位,固定和装配单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。(2)确定轴的各段直径和长度初选7207c型角接球轴承,其内径为35mm,宽度为17mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。(3)按弯扭复合强度计算①求分度圆直径:已知d2=300mm②求转矩:已知T3=271Nu2022m③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×271×103/300=1806.7N④求径向力Fr根据课本P127(6-35)式得Fr=Ftu2022tanα=1806.7×0.36379=657.2N⑤∵两轴承对称∴LA=LB=49mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=657.2/2=328.6NFAZ=FBZ=Ft/2=1806.7/2=903.35N(2)由两边对称,书籍截C的弯矩也对称截面C在垂直面弯矩为MC1=FAYL/2=328.6×49=16.1Nu2022m(3)截面C在水平面弯矩为MC2=FAZL/2=903.35×49=44.26Nu2022m(4)计算合成弯矩MC=(MC12+MC22)1/2=(16.12+44.262)1/2=47.1Nu2022m(5)计算当量弯矩:根据课本P235得α=1Mec=[MC2+(αT)2]1/2=[47.12+(1×271)2]1/2=275.06Nu2022m(6)校核危险截面C的强度由式(10-3)σe=Mec/(0.1d)=275.06/(0.1×453)=1.36Mpa<[σ-1]b=60Mpa∴此轴强度足够七、滚动轴承的选择及校核计算根据根据条件,轴承预计寿命16×365×8=48720小时1、计算输入轴承(1)已知nⅡ=458.2r/min两轴承径向反力:FR1=FR2=500.2N初先两轴承为角接触球轴承7206AC型根据课本P265(11-12)得轴承内部轴向力FS=0.63FR 则FS1=FS2=0.63FR1=315.1N(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=315.1N FA2=FS2=315.1N(3)求系数x、yFA1/FR1=315.1N/500.2N=0.63FA2/FR2=315.1N/500.2N=0.63根据课本P263表(11-8)得e=0.68FA1/FR1<e x1=1 FA2/FR2<e x2=1y1=0 y2=0(4)计算当量载荷P1、P2根据课本P263表(11-9)取f P=1.5根据课本P262(11-6)式得P1=fP(x1FR1+y1FA1)=1.5×(1×500.2+0)=750.3NP2=fp(x2FR1+y2FA2)=1.5×(1×500.2+0)=750.3N(5)轴承寿命计算∵P1=P2 故取P=750.3N∵角接触球轴承ε=3根据手册得7206AC型的Cr=23000N由课本P264(11-10c)式得LH=16670/n(ftCr/P)ε=16670/458.2×(1×23000/750.3)3=1047500h>48720h∴预期寿命足够2、计算输出轴承(1)已知nⅢ=76.4r/minFa=0 FR=FAZ=903.35N试选7207AC型角接触球轴承根据课本P265表(11-12)得FS=0.063FR,则FS1=FS2=0.63FR=0.63×903.35=569.1N(2)计算轴向载荷FA1、FA2∵FS1+Fa=FS2 Fa=0∴任意用一端为压紧端,1为压紧端,2为放松端两轴承轴向载荷:FA1=FA2=FS1=569.1N(3)求系数x、yFA1/FR1=569.1/903.35=0.63FA2/FR2=569.1/930.35=0.63根据课本P263表(11-8)得:e=0.68∵FA1/FR1<e ∴x1=1y1=0∵FA2/FR2<e ∴x2=1y2=0(4)计算当量动载荷P1、P2根据表(11-9)取fP=1.5根据式(11-6)得P1=fP(x1FR1+y1FA1)=1.5×(1×903.35)=1355NP2=fP(x2FR2+y2FA2)=1.5×(1×903.35)=1355N(5)计算轴承寿命LH∵P1=P2 故P=1355 ε=3根据手册P71 7207AC型轴承Cr=30500N根据课本P264 表(11-10)得:ft=1根据课本P264 (11-10c)式得Lh=16670/n(ftCr/P) ε=16670/76.4×(1×30500/1355)3=2488378.6h>48720h∴此轴承合格八、键联接的选择及校核计算轴径d1=22mm,L1=50mm查手册得,选用C型平键,得:键A 8×7 GB1096-79 l=L1-b=50-8=42mmT2=48Nu2022m h=7mm根据课本P243(10-5)式得σp=4T2/dhl=4×48000/22×7×42=29.68Mpa<[σR](110Mpa)2、输入轴与齿轮联接采用平键联接轴径d3=35mm L3=48mm T=271Nu2022m查手册P51 选A型平键键10×8 GB1096-79l=L3-b=48-10=38mm h=8mmσp=4T/dhl=4×271000/35×8×38=101.87Mpa<[σp](110Mpa)3、输出轴与齿轮2联接用平键联接轴径d2=51mm L2=50mm T=61.5Nm查手册P51 选用A型平键键16×10 GB1096-79l=L2-b=50-16=34mm h=10mm据课本P243式(10-5)得σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]
2023-09-06 02:40:421

减速器外形尺寸设计中a是什么?怎样确定?比如σ=0.025a+3≥8,急需,万分谢谢!!!

vjma的,拉
2023-09-06 02:41:075

一级减速器和二级减速器哪个难设计

二级减速器难设计。1、一级行星减速机指的是拥有一套(行星轮、太阳轮、内齿圈组成一套)的减速机。2、二级行星减速机指的是拥有两套(行星轮、太阳轮、内齿圈组成一套)的减速机。
2023-09-06 02:41:281

求 齿轮减速器传动设计说明书装配图,零件图 做课程设计,满意答复追加50分。

谢谢 留个qq
2023-09-06 02:41:382

直齿圆柱齿轮一级减速器 毕业设计

怎么跟我们的一样 有好的共享一下
2023-09-06 02:41:515

设计带式输送机减速器的高速级直齿圆柱齿轮转动,已知转动功率 p1=12kw,小齿轮转速n1=960r/min,

设计带式输送机减速器的高速级直齿圆柱齿轮转办法知道更多办
2023-09-06 02:42:092

二级减速器齿轮设计中 高速齿轮设计中 计算结果为1.84 模数取什么。

给你做个参考 一、前言 (一) 设计目的: 通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。 (二) 传动方案的分析 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。 减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。 二、传动系统的参数设计 原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。 工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。 工作环境:室内灰尘较大,环境最高温度35°。 动力来源:电力,三相交流380/220伏。 1 、电动机选择 (1)、电动机类型的选择: Y系列三相异步电动机 (2)、电动机功率选择: ①传动装置的总效率: =0.98×0.99 ×0.96×0.99×0.96 ②工作机所需的输入功率: 因为 F=0.2 KN=0.2 KN= 1908N =FV/1000η =1908×2/1000×0.96 =3.975KW ③电动机的输出功率: =3.975/0.87=4.488KW 使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。 ⑶、确定电动机转速: 计算滚筒工作转速: =(60×v)/(2π×D/2) =(60×2)/(2π×0.2) =96r/min 由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I" =3~6。取V带传动比I" =2~4,则总传动比理时范围为I" =6~24。故电动机转速的可选范围为n" =(6~24)×96=576~2304r/min ⑷、确定电动机型号 根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。 其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。 2 、计算总传动比及分配各级的传动比 (1)、总传动比:i =1440/96=15 (2)、分配各级传动比: 根据指导书,取齿轮i =5(单级减速器i=3~6合理) =15/5=3 3 、运动参数及动力参数计算 ⑴、计算各轴转速(r/min) =960r/min =1440/3=480(r/min) =480/5=96(r/min) ⑵计算各轴的功率(KW) 电动机的额定功率Pm=5.5KW 所以 P =5.5×0.98×0.99=4.354KW =4.354×0.99×0.96 =4.138KW =4.138×0.99×0.99=4.056KW ⑶计算各轴扭矩(Nmm) TI=9550×PI/nI=9550×4.354/480=86.63Nm =9550×4.138/96 =411.645Nm =9550×4.056/96 =403.486Nm 三、传动零件的设计计算 (一)齿轮传动的设计计算 (1)选择齿轮材料及精度等级 考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm (2)确定有关参数和系数如下: 传动比i 取小齿轮齿数Z =20。则大齿轮齿数: =5×20=100 ,所以取Z 实际传动比 i =101/20=5.05 传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用 齿数比: u=i 取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°; 则 h *m=3,h )m=3.75 h=(2 h )m=6.75,c= c 分度圆直径:d =×20mm=60mm d =3×101mm=303mm 由指导书取 φ 齿宽: b=φ =0.9×60mm=54mm =60mm , b 齿顶圆直径:d )=66, d 齿根圆直径:d )=52.5, d )=295.5 基圆直径: d cos =56.38, d cos =284.73 (3)计算齿轮传动的中心矩a: a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm (二)轴的设计计算 1 、输入轴的设计计算 ⑴、按扭矩初算轴径 选用45#调质,硬度217~255HBS 根据指导书并查表,取c=110 所以 d≥110 (4.354/480) 1/3mm=22.941mm d=22.941×(1+5%)mm=24.08mm ∴选d=25mm ⑵、轴的结构设计 ①轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定 ②确定轴各段直径和长度 Ⅰ段:d =25mm , L =(1.5~3)d ,所以长度取L ∵h=2c c=1.5mm +2h=25+2×2×1.5=31mm 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L =(2+20+55)=77mm III段直径: 初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm. =d=35mm,L =T=18.25mm,取L Ⅳ段直径: 由手册得:c=1.5 h=2c=2×1.5=3mm 此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm 因此将Ⅳ段设计成阶梯形,左段直径为41mm +2h=35+2×3=41mm 长度与右面的套筒相同,即L Ⅴ段直径:d =50mm. ,长度L =60mm 取L 由上述轴各段长度可算得轴支承跨距L=80mm Ⅵ段直径:d =41mm, L Ⅶ段直径:d =35mm, L <L3,取L 2 、输出轴的设计计算 ⑴、按扭矩初算轴径 选用45#调质钢,硬度(217~255HBS) 根据课本P235页式(10-2),表(10-2)取c=110 =110× (2.168/76.4) =38.57mm 考虑有键槽,将直径增大5%,则 d=38.57×(1+5%)mm=40.4985mm ∴取d=42mm ⑵、轴的结构设计 ①轴的零件定位,固定和装配 单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。 ②确定轴的各段直径和长度 初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。 则 d =42mm L = 50mm L = 55mm L = 60mm L = 68mm L =55mm L 四、滚动轴承的选择 1 、计算输入轴承 选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm. 2 、计算输出轴承 选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm 五、键联接的选择 1 、输出轴与带轮联接采用平键联接 键的类型及其尺寸选择: 带轮传动要求带轮与轴的对中性好,故选择C型平键联接。 根据轴径d =42mm ,L =65mm 查手册得,选用C型平键,得: 卷扬机 装配图中22号零件选用GB1096-79系列的键12×56 则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56 2 、输出轴与齿轮联接用平键联接 =60mm,L 查手册得,选用C型平键,得: 装配图中 赫格隆36号零件选用GB1096-79系列的键18×45 则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45 3 、输入轴与带轮联接采用平键联接 =25mm L 查手册 选A型平键,得: 装配图中29号零件选用GB1096-79系列的键8×50 则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50 4 、输出轴与齿轮联接用平键联接 =50mm L 查手册 选A型平键,得: 装配图中26号零件选用GB1096-79系列的键14×49 则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49 六、箱体、箱盖主要尺寸计算 箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下: 七、轴承端盖 主要尺寸计算 轴承端盖:HT150 d3=8 n=6 b=10 八、减速器的 减速器的附件的设计 1 、挡圈 :GB886-86 查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58 2 、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D 3 、角螺塞 M18 × 1.5 :JB/ZQ4450-86 九、 设计参考资料目录 1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6 2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11
2023-09-06 02:42:271

一级圆柱齿路减速器课程设计

发了,查收,是模板。。数据不同,,改改就行,,,490351611
2023-09-06 02:42:482

行星减速器设计的步骤是什么

根据输入输出的功率及转速计算需要的模数,设计系统的齿形角,齿高系数及顶隙系数,各轮的齿数,初定中心距并计算相应参数,如果结果符合设计者的要求就可以设计各零件,按行星系统的要求进行各种校核,如都通过了就可以试生产了。
2023-09-06 02:43:071

设计一个一级圆柱直齿轮减速器

我最近打算把减速器设计电算化,刚开始,现在刚把带传动设计部分做完,或许你能用得上。是一个安卓应用,肯定比手算方便多了。http://www.mumayi.com/android-490535.html?1389523992
2023-09-06 02:43:182

急求减速器轴设计结果?

小齿轮轴的设计:初步设计轴上各段的直径大小(小齿轮共分五段)第一段dmin>=C*(P/N)^(1/3)采用45钢,取其C值115,其传递的功率P=3.75kw, 其转速N=320计算所得dmin= 26.1211mm此处有键槽,故扩大5%,得到27.4272mm按照标准直径系列选取28mm第二段此段直径最小值为33mm又因为此处有密封元件,查密封元件的相关资料,得知此处直径可取35mm第三段此段的直径最小值为42mm查找轴承的相关资料,得知此处的直径可取45mm采用深沟球轴承,宽度系列为2(即宽系列)则此轴承代号为62xx,外径尺寸=85mm,宽度=19mm.第四段此段直径最小值为52mm可按标准直径系列,取56mm第五段此处安装轴承,与第三段尺寸相同,故为45mm初步设计轴上各段的长度大小(小齿轮共分五段)第一段此段安装的是大带轮,其尺寸略小于大带轮的宽度即可,取其小于大带轮宽度5mm,我们计算得到的大带轮的宽度为57mm故第一段长度为52mm第二段此段长度上安装轴承端盖,故此段长度=2+端盖长度+端盖上的螺钉长度此处,采用凸缘式轴承端盖,参考51面。因为轴承外径=85mm,故螺钉直径=8mm,螺钉数目=4经查表,用于铸铁的该种螺钉的拧入深度=12mm,经查表,张美麟的机械基础课程设计115面,该种螺钉的K值为5.3mm端盖凸缘厚度=1.2*8mm=9.6mm螺钉的k值(即大头长度=5.3mm)故估计此螺钉长度=26.9mm端盖长度>=2*端盖凸缘厚度+x,现在取x=5,则端盖长度=24.2mm故此段长度=2+端盖长度+端盖上的螺钉长度=53.1mm第三段此段上有轴承宽=19mm,有轴承端面到箱体内壁的距离,因为是脂润滑,取值在10~12,故取10,有齿轮端面到箱体内壁的距离也取10,故此段长度=19+10+10=39mm第四段此段长度为小齿轮宽度+2*5=70mm第五段根据对称分布,此段上有轴承宽=19mm,有轴承端面到箱体内壁的距离,因为是脂润滑,取值在10~12,故取10,有齿轮端面到箱体内壁的距离也取10(或者,此段的长度=第三段的长度) 此段的长度=39mm*****************over******************大齿轮轴的设计:初步设计轴上各段的直径大小(大齿轮共分六段)第一段dmin>=C*(P/N)^(1/3)采用45钢,取其C值115,其传递的功率P=3.6kw, 其转速N=76.4计算所得dmin= 41.5369mm此处有键槽,故扩大5%,得到43.6137mm按照标准直径系列选取45mm第二段此段直径最小值为52mm又因为此处有密封元件,查密封元件的相关资料,得知此处直径可取55mm第三段此段的直径最小值为64mm查找轴承的相关资料,得知此处的直径可取65mm采用深沟球轴承,宽度系列为2(即宽系列)则此轴承代号为62xx,外径尺寸=120mm,宽度=23mm.第四段此段直径最小值为74mm因为要安装齿轮,故要取标准直径系列值,取75mm第五段此段的直径最小值为84mm此处的尺寸无需采用标准尺寸,故采用较小的值84mm此段长度b≈0.7*直径差=4.2,取5mm第六段此处可能采用套筒+挡油盘来定位轴承,安装的尺寸为轴承尺寸,故和第三段相等,为65mm初步设计轴上各段的长度大小(大齿轮共分六段)第一段此段安装的是联轴器,其尺寸略小于联轴器的宽度即可,取其小于大带轮宽度2mm,我们选择的联轴器的宽度为112mm故第一段长度为110mm第二段此段长度上安装轴承端盖,故此段长度=2+端盖长度+端盖上的螺钉长度此处,采用凸缘式轴承端盖,参考51面。因为轴承外径=120mm,故螺钉直径=10mm,螺钉数目=6经查表,用于铸铁的该种螺钉的拧入深度=15mm,经查表,张美麟的机械基础课程设计115面,该种螺钉的K值为6.4mm端盖凸缘厚度=1.2*10mm=12mm螺钉的k值(即大头长度=6.4mm)故估计此螺钉长度=33.4mm端盖长度>=2*端盖凸缘厚度+x,现在取x=5,则端盖长度=29mm故此段长度=2+端盖长度+端盖上的螺钉长度=64.4mm第三段此段上有轴承宽=23mm,有轴承端面到箱体内壁的距离,因为是脂润滑,取值在10~12,故取10,有齿轮端面到箱体内壁的距离也取10,有齿轮超出轴段的一个小距离,取1,故此段长度=23+10+10+1=44mm第四段此段的长度=大齿轮的宽度-1=90- 1=89mm第五段此段已近在轴颈时确定为5mm第六段根据对称分布,此段上有轴承宽=23mm,有轴承端面到箱体内壁的距离,因为是脂润滑,取值在10~12,故取10,有齿轮端面到箱体内壁的距离也取10,再减去第五段的长度5mm.(或者,此段的长度=第三段的长度-第五段的长度-1) 此段的长度=44-5-1=38mm*****************over************************************over*******************为了使得大小齿轮轴的在同一内壁上安装,应该对大小齿轮轴的轴段进行如下修正:小齿轮轴第三段和第五段都要延长10mm*****************over************************************over******************* 以上的结果对不对就不知道了,选用的联轴器是GICL2,Y型轴孔。轴承好像是6209和6213.
2023-09-06 02:43:271