barriers / 阅读 / 详情

机械闹钟的工作原理是什么?(一般的小闹钟)

2023-08-18 01:53:03
共3条回复
康康map

主要是秒针运动是靠钢质发条的力量带动齿轮有一个旋转的力,里面有个摆轮,它用来调节摆动周期(就是调快慢的那个旋钮),摆动一下,才能带动齿轮旋转一下。有了力,其它齿轮就相对有齿数配合达到合适的传动比,比如1;60:360分别就是时针,分针,秒针了。

很难讲出来的。

建议拆一个小闹钟看看,一般来讲是不会损坏的,而且价格也不是很贵.

苏州马小云

机械钟表中,利用带簧(发条)恢复变形所放出的能量或利用重物下降的重力作能源,以机械振动系统为时间基准,实现计量时间和时段的机械机构。机械钟表机构有多种类型,但一般都由原动系、传动系、擒纵调速系、上条拨针系和指针系组成,工作原理基本相同。此外,日历手表中还包括日历(或双历)机构,自动手表中还包括自动上条机构。

原动系储存和传递工作能量的机构。分为重锤原动系和弹簧原动系两类。

重锤原动系利用重锤的重力作能源。多用于简易挂钟和落地摆钟。重锤原动系结构简单,力矩稳定,但当上升重锤时,传动系与原动系脱开,钟表机构停止工作。

弹簧原动系利用卷成螺线形的带簧(发条)恢复变形所放出的能量作能源。带簧一端与轴连接,另一端与一个不动的零件或发条盒的壳体连接。弹簧原动系用作携带式钟表的能源,也用于摆钟上。弹簧原动系有带固定条盒式、不带条盒式和带活动条盒式等3种类型。

传动系将原动系的能量传给擒纵调速系的一组传动齿轮。通常由一系列轮片和齿轴组成(图3),在主传动中轮片是主动齿轮,齿轴是从动齿轮。传动比按照以下公式进行计算:i=Z1/Z2式中Z1为主动齿轮齿数,Z2为从动齿轮齿数。对于有秒针装置的钟表,其中心轮的轮片到秒轮的齿轴的传动比必须等于60。钟表传动系的齿形绝大多数是专门设计的。

传动系可按“二轮”(时轮和分轮)在表机芯的平面配置分为两类:①中心二轮式,二轮在表机芯的中央。它又包括直接传动式、秒簧式、短秒针和无秒针式、双三轮式。②偏二轮式,二轮不在表机芯中央。它又包括头轮传出式、二轮传出式、三轮传出式。

直接传动式是经常采用的传动系之一。在这种传动方式中,分轮上部有一凹槽,分轮依靠摩擦与中心轮管相配合;走针机构的运动由中心轮来带动。

擒纵调速系由擒纵机构和振动系统构成。按振动系统的特点可分为两类:①有固有振动周期擒纵调速系。它具有可以独立进行振动的、有稳定周期的振动系统。手表、闹钟中的走时系统的擒纵调速系属于此类。②无固有振动周期擒纵调速系。它没有能够独立进行振动的振动系统。这种调速系中的所谓振动系统的往复振动,完全依靠擒纵机构的往复运动。机械闹钟中的闹时系统的擒纵调速系属于此类。这种调速系精度要求不高,结构简单,工作可靠,抗外界干扰能力强,在机械式定时器和钟表引信中大量采用。

擒纵机构联系传动系和振动系统的一种机构。其作用是把原动系的能量传递给振动系统,以维持振动系统的等幅振动;并把振动系统的振动次数传给指针机构,达到计量时间之目的。擒纵机构种类很多,按其与振动系统联系的程度可分为两类。①非自由式擒纵机构:擒纵机构和振动系统经常保持运动上的联系。它包括直进式、后退式和工字轮式擒纵机构等。②自由式擒纵机构:只有在释放和传冲阶段,擒纵机构和振动系统才保持运动上的联系,其余阶段振动系统处于自由运动状态。它包括有销钉式、叉瓦式和天文钟式擒纵机构等。

①后退式擒纵机构:广泛用于低精度摆钟。它的叉瓦锁面和冲面是同一平面(工作面);进瓦的工作面是一圆柱面,其圆心与擒纵叉的转动中心不重合;出瓦的工作面是一平面。叉瓦和擒纵叉作成一体。传冲后,叉瓦工作面将迫使擒纵轮后退一个角度。

②叉瓦式擒纵机构:应用最广的擒纵机构之一。工作时,擒纵轮由传动系取得能量,通过擒纵轮齿和叉瓦(进瓦或出瓦)的作用转变为冲量传送给擒纵叉;通过擒纵叉的叉口和双圆盘的冲击圆盘上的摆钉的相互作用,再将冲量传给振动系统。双圆盘的保险圆盘和叉头钉,摆钉和擒纵叉的喇叭口是保证机构正常工作的保险装置。

③销钉式擒纵机构:与叉瓦式擒纵机构的不同之处是,在擒纵叉上用两根圆柱销钉代替叉瓦,冲量只沿擒纵轮齿冲面传递。这种擒纵机构结构简单,精度要求低,制造方便,多在闹钟和低精度表中采用,俗称粗马结构。振动系统作为时间基准的机构。振动系统的振动周期乘以被测过程内的振动次数,即为该过程经历的时间。机械钟表常用的振动系统有摆、扭转摆和摆轮游丝振动系统。

阿啵呲嘚

用卷簧(发条,一种弹性元件)储存以力矩形式表现的能量,用固定传动比的多级齿轮,分别显示不同的时间单位。

用具有精确固定振动周期的盘簧(游丝,一种弹性元件,由恒弹合金制造)与非线性摆动的机械离合--制动器,专业上称为擒纵机构,按照准确的角速度,将卷簧(发条,一种弹性元件)储存以力矩形式表现的能量释放出来。

不同指针的转动角速度不一样而各自恒定。

几十年前,中国生产的全国统一设计机械钟钟芯为N1型,本人用它制造了每周为一个周期的定时器,除了星期日,其他的日子,每天上午6~7点钟,自动预热电路,减轻工作人员的劳务,在传统上,是每天早上6~7点钟,操作工来开启电炉,就回家;到了早上8点钟,电炉温度达到额定值,才开始正式的工作。

一个星期上一次弦。

怎么样,如有拷贝来源,尽可砸板砖。

不一样就是不一样,这功夫偷懒的学不来。

The next generation keyboard, future keyboard!

challenge and subverting the global computer keyboard, keyboard music instruments in 25 years ago,

The pioneer of the Chinese people firstly entered this area. who sent it into the modern house of CEO of Microsoft?

To challenge AT&T of the United States by improving communication deficiencies

Improving communication deficiencies, Chinese people challenge AT&T of the United States.

相关推荐

钟摆的原理是什么?

摆钟是通过让齿轮匀速运行,一堆齿轮纵横交错地镶嵌在钟表里面,专门负责计算过了多少秒钟,然后转化成分钟和小时,再显示在钟面上,供人们观看时间。摆钟工作主要应用了单摆的等时性,还有就是巧妙的应用了齿轮与擒纵器的组合,利用摆锤每次单摆所用时间一样,来控制擒纵器交叉收放齿轮,所以这也是我们所听到摆钟滴答滴答声音的原因。摆钟的结构:摆钟主要由钟摆,擒纵器机构,表盘和指针组成的,它们之间的精密协调运作保证了整个摆钟计时的精确。而整个摆钟最核心的机构就是擒纵机构,它是一种机械能量传递的开关装置,所谓的擒-纵就是对应的关-开,主要用擒纵叉控制擒纵轮转动,从而指示准确的时间。
2023-08-10 14:22:132

钟摆原理是什么呢?

简谐运动,忽略空气阻力的话,机械能守恒
2023-08-10 14:22:272

钟摆原理是什么呢?

钟摆的构造由杆和摆捶组成,其原理是单摆周期原理。是利用单摆的等时性。正是这种性质可以用来计时。而单摆的周期公式是:时间=圆周率的2倍乘以 通过公式以及其推导可以看出来,单摆运动靠的是重力,和绳子的拉力。而摆动的周期仅仅取决于绳子的摆长和重力加速度。地球重力加速度固定,控制摆长可以调整周期来计时。工作原理:摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。
2023-08-10 14:22:341

摆钟的原理是什么?

等时性、惯性和弹性
2023-08-10 14:22:537

摆钟的工作原理是

自摆钟的工作原理摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期T=2π(l/g)^0.5一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。摆动的钟摆是靠重力势能和动能相互转化来摆动的,简单的说,如果你把钟摆拉高,由于重力影响它会往下摆,而到达最低位置后它具有一个速度,不可能直接停在那(就好象刹车不能一下子停一样),它会继续冲过最低位置,而摆至最高位置就往回摆是因为重力使它减速直到0,然后向回摆(就象往天上仍东西,它会在上升中减速到0,然后落下)。如此往复,就不停的摆动了。按照上述,钟摆可以永远摆下去,但由于阻力存在,它会摆动逐渐减小,最后停止.所以要用发条来提供能量使其摆动。
2023-08-10 14:23:121

钟摆原理

机械摆钟的工作原理是动能-势能的相互转换 发条上紧了,蓄满势能(形变势能) 发条放松,势能转换为动能,输出给“钟摆”,补充“钟摆”摆动时所消耗的能量. 当“钟摆”摆动到一定的高度(重力势能最大,动能为零),下跌(势能转换为动能)使“钟摆”往回摆动到另一端. 计时则是按其每分钟摆动多少次(60)来设定、计算的. 原来的靠重力摆动的钟摆是靠"重力势能"和"动能"相互转化来摆动的,简单的说,如果你把钟摆拉高,由于重力影响它会往下摆,而到达最低位置后它具有一个速度,不可能直接停在那(就好象刹车不能一下子停一样),它会继续冲过最低位置,而摆至最高位置就往回摆是因为重力使它减速直到0,然后向回摆(就象往天上仍东西,它会在上升中减速到0,然后落下).如此往复,就不停的摆动了. 按照上述,钟摆可以永远摆下去,但由于阻力存在,它会摆动逐渐减小,最后停止.所以要用发条来提供能量使其摆动.
2023-08-10 14:23:211

摆钟的工作原理

摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用
2023-08-10 14:23:311

钟表的工作原理

机械表:上发条的那种发条是动力源,装电池的里面有一个小小的电机作为动力源,然后就是动力源带动很多大大小小的齿轮转动同时带动与齿轮相接的表针转动。电子表:产生1HZ 60HZ,3600HZ的脉冲信号,然后分别接到译码器驱动显示器(液晶显示器、数码管)秒,分,时。
2023-08-10 14:23:482

摆钟是怎样来计时的?

摆钟的原理是利用单摆的等时性。正是这种性质可以用来计时。而单摆的周期公式是。时间=圆周率的2倍乘以(根号下摆长除以重力加速度)通过公式以及其推导可以看出来,单摆运动靠的是重力,和绳子的拉力。而摆动的周期仅仅取决于绳子的摆长和重力加速度。地球重力加速度固定,控制摆长可以调整周期来计时。
2023-08-10 14:23:581

伽利略的钟摆原理是什么来的?

伽利略·伽利雷(1564~1642)意大利天文学家、力学家、哲学家。 1564年2月15日生于比萨,1642年1月8日卒于比萨。伽利略家族姓伽利莱(Galilei),他的全名是Galileo Galilei,但现已通行称呼他的名Galileo,而不称呼他的姓。 生平: 伽利略1572年开始上学,1575年随家迁居佛罗伦萨进修道院学习。1589年被聘为比萨大学的数学教授。1591年到威尼斯的帕多瓦大学任教。1609年回佛罗伦萨,1611年到罗马并担任林嗣科学院的院士。1633年2月以“反对教皇,宣扬邪学”被罗马宗教裁判所判处终身监禁。1638年以后,双目逐渐失明,晚景凄凉。1642年1月8日逝世。三百多年后,1979年11月10日,罗马教皇不得不在公开集会上宣布:1633年对伽利略的宣判是不公正的。1980年10月又提出重审这一案件,并在罗组成一个包括不同宗教信仰的世界著名科学家委员会来研究伽利略案件的始末,研究科学同宗教的关系,研究伽利略学说的科学价值及其对现代科学思想的贡献。 主要贡献: 可分下列三个方面: ①力学 伽利略是第一个把实验引进力学的科学家,他利用实验和数学相结合的方法确定了一些重要的力学定律。1582年前后,他经过长久的实验观察和数学推算,得到了摆的等时性定律。接着在1585年因家庭经济困难辍学。离开比萨大学期间,他深入研究古希腊学者欧几里得、阿基米德等人的著作。他根据杠杆原理和浮力原理写出了第一篇题为《天平》的论文。不久又写了论文《论重力》,第一次揭示了重力和重心的实质并给出准确的数学表达式,因此声名大振。与此同时,他对亚里士多德的许多观点提出质疑。 在1589~1591年间,伽利略对落体运动作了细致的观察。从实验和理论上否定了统治千余年的亚里士多德关于“落体运动法则”确立了正确的“自由落体定律”,即在忽略空气阻力条件下,重量不同的球在下落时同时落地,下落的速度与重量无关。根据伽利略晚年的学生V.维维亚尼的记载,落体实验是在比萨斜塔上公开进行的,但在伽利略的著作中并未明确说明实验是在比萨斜塔上进行的。因此近年来对此存在争议。 伽利略对运动基本概念,包括重心、速度、加速度等都作了详尽研究并给出了严格的数学表达式。尤其是加速度概念的提出,在力学史上是一个里程碑。有了加速度的概念,力学中的动力学部分才能建立在科学基础之上,而在伽利略之前,只有静力学部分有定量的描述。 伽利略曾非正式地提出过惯性定律(见牛顿运动定律)和外力作用下物体的运动规律,这为牛顿正式提出运动第一、第二定律奠定了基础。在经典力学的创立上,伽利略可说是牛顿的先驱。 伽利略还提出过合力定律,抛射体运动规律,并确立了伽利略相对性原理. 伽利略在力学方面的贡献是多方面的。这在他晚年写出的力学著作《关于两门新科学的谈话和数学证明》中有详细的描述。在这本不朽著作中,除动力学外,还有不少关于材料力学的内容。例如,他阐述了关于梁的弯曲试验和理论分析,正确地断定梁的抗弯能力和几何尺寸的力学相似关系。他指出,对长度相似的圆柱形梁,抗弯力矩和半径立方成比例。他还分析过受集中载荷的简支梁,正确指出最大弯矩在载荷下,且与它到两支点的距离之积成比例。伽利略还对梁弯曲理论用于实践所应注意的问题进行了分析,指出工程结构的尺寸不能过大,因为它们会在自身重量作用下发生破坏。他根据实验得出,动物形体尺寸减小时,躯体的强度并不按比例减小。他说:“一只小狗也许可以在它背上驮两三只同样大小的狗,但我相信一匹马也许连一匹和它同样大小的马也驮不起。” ②天文学 他是利用望远镜观测天体取得大量成果的第一位科学家。这些成果包括:发现月球表面凹凸不平,木星有四个卫星(现称伽利略卫星),太阳黑子和太阳的自转,金星、木星的盈亏现象以及银河由无数恒星组成等。他用实验证实了哥白尼的“地动说”,彻底否定了统治千余年的亚里士多德和托勒密的“天动说”。 ③哲学 他一生坚持与唯心论和教会的经院哲学作斗争,主张用具体的实验来认识自然规律,认为经验是理论知识的源泉。他不承认世界上有绝对真理和掌握真理的绝对权威,反对盲目迷信。他承认物质的客观性、多样性和宇宙的无限性,这些观点对发展唯物主义的哲学具有重要的意义。但由于历史的局限性,他强调只有可归纳为数量特征的物质属性才是客观存在的。 伽利略因为支持日心说入狱后,”放弃了”日心说,他说”考虑到种种阻碍,两点之间最短的不一定是直线”,正是因为他有这样的思想,暂时的放弃换得永远的支持,没有像布鲁诺那样去壮烈,但却可以为科学继续贡献自己的力量。 伽利略奥.伽利略(Galileo Galilei,1564 - 1642)是意大利文艺复兴后期伟大的天文学家、物理学家、力学家和哲学家,也是近代实验物理学的开拓者。他是为维护真理而进行不屈不挠的战士。恩格斯称他是“不管有何障碍,都能不顾一切而打破旧说,创立新说的巨人之一”。 一.伽利略生平 伽利略于1564年2月15日出生于意大利西部海岸的比萨城,他原籍佛罗伦萨,出身没落的名门贵族家庭。伽利略的父亲是一位不得志的音乐家,精通希腊文和拉丁文,对数学也颇有造诣。因此,伽利略从小受到了良好的家庭教育。 伽利略在十二岁时,进入佛罗伦萨附近的瓦洛姆布洛萨修道院,接受古典教育。十七岁时,他进入比萨大学学医,同时潜心钻研物理学和数学。由于家庭经济困难,伽利略没有拿到毕业证书,便离开了比萨大学。在艰苦的环境下,他仍坚持科学研究,攻读了欧几里德和阿基米德的许多著作,做了许多实验,并发表了许多有影响的论文,从而受到了当时学术界的高度重视,被誉为“当代的阿基米德”。 伽利略在25岁时被比萨大学的数学教授。两年后,伽利略因为著名的比萨斜塔实验,触怒了教会,失去这份工作。伽利略离开比萨大学后,于1592年去威尼斯的帕多瓦大学任教,一直到1610年。这一段时期是伽利略从事科学研究的黄金时期。在这里,他在力学、天文学等各方面都取得了累累硕果。 1610年,伽利略把他的著作以通俗读物的形式发表出来,取名为《星空信使》,这本书在威尼斯出版,轰动了当时的欧洲,也为伽利略赢得了崇高的荣誉。伽利略被聘为“宫廷哲学家”和“宫廷首席数学家”,从此他又回到了故乡佛罗伦萨。 伽利略在佛罗伦萨的宫廷里继续进行科学研究,但是他的天文学发现以及他的天文学著作明显的体现出了哥白尼日心说的观点。因此,伽利略开始受到教会的注意。1616年开始,伽利略开始受到罗马宗教裁判所长达二十多年的残酷迫害。 伽利略的晚年生活极其悲惨,照料他的女儿赛丽斯特竟然先于他离开人世。失去爱女的过分悲伤,使伽利略双目失明。即使在这样的条件下,他依然没有放弃自己的科学研究工作。 1642年1月8日,凌晨4时,伟大的伽利略——为科学、为真理奋斗一生的战士,科学巨人离开了人世,享年78岁。在他离开人世的前夕,他还重复着这样一句话:“追求科学需要特殊的勇气。” 二.伽利略和他的科学发现 古希腊在物理学说方面有两大学派,一派以哲学家亚里士多德为代表,另一派则以自然科学家阿基米德为代表。两人皆是古代希腊蓍名的学者,但由于两人的观点和方法不同,其科学结论也就各异,并形成了鲜明的对立。亚里士多德学派的观点基本是唯心的,他是凭主观思考和纯推理方法作结论的,所以是充斥着谬误。而阿基米德学派的观点基本是唯物的,他完全依靠靠科学实践方法得出结论。 然而从11世纪起,在基督教会的扶持下,亚里士多德的著作得到了经院哲学家的重视,他们排斥阿基米德的物理学,把亚里士多德的物理学奉为经典,凡违反亚里士多德物理学的学者均被视为“异端邪说”。但伽利略却对亚里士多德的物理学抱怀疑态度,相反他特别重视对阿基米德物理学的研究,他重视理论联系实际,注意观察各种自然现象,思考各种问题。在伽俐略十八岁那年,一次到比萨教堂去做礼拜,他注意到教堂里悬挂的那些长明灯被风吹得一左一右有规律地摆动,他按自己脉博的跳动来计时,发现它们往复运动的时间总是相等的。就这样他发现了摆的等时性,后来荷兰物理学家惠更斯根据这个原理制成挂摆时钟,人们称之为"伽利略钟"。 伽利略根据阿基米德的学说,作了迅速确定合金成分的流体静力天平的研究,发明了可以测定物质密度的"小天平",写出了名为《小天平》的论文。后来他又潜心研究了物体重心的几何学,于1588年发表了《固体的重心》的论文,引起学术界的注意。第二年,在友人的推荐下,被比萨大学聘任为数学教授。 亚里士多德认为两个物体以同一高度落下,重的比轻的先着地。但伽利略经过反复的研究与实验后,得出了与之截然相反的结论:物体下落的快慢与重量无关。1590年,伽利略在比萨斜塔公开作了落体实验,验证了亚里士多德的说法是错误的,使统治人们思想长达2000多年的亚里士多德的学说第一次发生动摇。而应邀前来观看的一些著名学者却否认自己亲眼见到的一切,他们群起攻击伽利略。1591年,伽利略被比萨解聘。 从科学史上看,伽利略并不是落体实验的首创者,其首创者是比利时的斯台文。但伽利略的比萨斜塔实验所造成的影响却是更为深远的。 1592年,伽利略来到威尼斯的帕多瓦大学任教,开始了他科学活动的黄金时期。在这一时期,他研究了大量的物理学问题,如斜面运动、力的合成、抛射体运动等。他还对液体与热学作了研究,发明了温度计。1609年,伽利略制成了天文望远镜,并用这台望远镜去探索宇宙的奥秘,他发现月球的表面凹凸不平,有高山深谷;木星有四颗卫星围绕它旋转,金星和月亮一样有盈有亏;土星有光环;太阳有黑子,能自转。银河是由于千千万万颗暗淡的星星所组成。这些发现为哥白尼、布鲁诺的观点提供了有力的证据。对教会的信条进行了严厉的打击。 第二年,他出版了《星际使者》,通俗地向读者介绍他观察到的天空现象,宣传了他的观点。这部著作在欧洲引起了极大的轰动,伽利略因此被称为“天空的哥伦布”。1613年,他在罗马发表了《论太阳黑子》。该书以书信形式明确指出了哥白尼学说是正确的,托勒密学说是错误的。由此伽利略触怒了教会,开始受到宗教裁制所的审讯。 在教廷的压制下,伽利略仍继续科学研究,在长期观察和研究天体运动的实践中,他更加坚信哥白尼学说的正确性。1632年1月,伽利略在佛罗伦萨出版了《关于托勒密和哥白尼的两大世界体系的对话》。他在书中用三位学者对话的形式,作了四天的谈话。讨论了三个问题:1、证明地球在运动;2、充实哥白尼学说;3、地球的潮汐。《对话》总结了伽利略长期科研实践中的各种科学发现,宣告了托勒密地心说理论的破产,从根本上动摇了教会的最高权威,从而推动了唯物论思想的发展。这部著作一经出版便受到广大读者的欢迎。但却遭到了罗马教会的反对。伽利略因此而受到了长期的监禁。 1636年,伽利略在监禁中偷偷地完成了他一生中另一部伟大的著作《关于两种新科学的对话》。该书于1638年在荷兰出版。这部伟大著作同样是以三人对话形式写的。“第一天”是关于固体材料强度的问题,反驳了亚里士多德关于落体的速度依赖于其重量的观点;“第二天”是关于内聚作用的原因,讨论了杠杆原理的证明及梁的强度问题;“第三天”讨论了匀速运动和自然加速运动;"第四天"是关于抛射体运动的讨论。这一巨著从根本上否定的亚里士多德的运动学说。 三.伽利略的科学研究方法 伽利略对物理规律的论证非常严格。他创立了对物理理象进行实验研究并把实验的方法与数学方法、逻辑论证相结合的科学研究方法。例如,为了说明惯性,他曾设计一个无摩擦的理想实验:在一定点O悬挂一单摆,将摆球拉到离竖直位置一定距离的左侧A点,释放小球,小球将摆到竖直位置的右侧B点,此时A点与B点处于同一高度。若在O的正下方C用钉子改变单摆的运动路线,小球将摆到与A、B两点同样高度的D。伽利略指出,对于斜面会得出同样的结论。他将两个斜面对接起来,让小球沿一个斜面从静止滚下,小球将滚上另一斜面。如果无摩擦,小球将上升到原来的高度。他推论说,如果减小第二个斜面的倾角,小球在这个斜面达到原来的高度就要通过更长的距离。继续使第二个斜面的倾角越来越小,小球将合滚得越来越远。如果第二个斜面改成水平面,小球就永远达不到原来的高度,而要沿水平面以恒定速度持续运动下去。伽利略设计的实验虽是想象中的,但却是建立在可靠的事实的基础上。把研究的事物理想化,就可以更加突出事物的主要特征,化繁为简,易于认识其规律。伽利略的这一自然科学新方法,有力地促进物理学的发展,他因此被誉为是“经典物理学的奠基人”。 四.伽利略在科学史上的地位 伽利略的科学发现,不仅在物理学史上而且在整个科学中上都占有极其重要的地位。他不仅纠正了统治欧洲近两千年的亚里士多德的错误观点,更创立了研究自然科学的新方法。 伽利略在总结自己的科学研究方法时说过,“这是第一次为新的方法打开了大门,这种将带来大量奇妙成果的新方法,在未来的年代里,会博得许多人的重视。”后来,惠更斯继续了伽利略的研究工作,他导出了单摆的周期公式和向心加速度的数学表达式。牛顿在系统地总结了伽利略、惠更斯等人的工作后,得到了万有引力定律和牛顿运动三定律。伽利略留给后人的精神财富是宝贵的。爱因斯坦曾这样评价:“伽利略的发现,以及他所用的科学推理方法,是人类思想史上最伟大的成就之一,而且标志着物理学的真正的开端!”
2023-08-10 14:24:263

钟摆的工作原理

一个钟摆,一会儿朝左,一会儿朝右,周而复始,来回摆动。钟摆总是围绕着一个中心值在一定范围内作有规律的摆动,所以被冠名为钟摆理论。 摆是一种实验仪器,可用来展现种种力学现象。最基本的摆由一条绳或竿,和一个锤组成。锤系在绳的下方,绳的另一端固定。当推动摆时,锤来回移动。摆可以作一个计时器。 垂直平面的线的交角,θ0为θ的最大值,m为锤的质量, 表示角度加速度。忽略空气阻力以及绳的弹性、重量的影响: 锤速率最高是在θ = 0时。当锤升到最高点,其速率为0。绳的张力没有对锤做功,整个过程中动能和位能的和不变。 运动方程为: 注意不论θ的值为何,运动周期和锤的质量无关。 当θ相当小的时候,,因此可得到一条齐次常系数微分方程。此为一简谐运动,周期。
2023-08-10 14:24:514

钟表的工作原理是什么?

钟表的应用范围很广,品种甚多,可按振动原理、结构和用途特点分类。按振动原理可分为利用频率较低的机械振动的钟表,如摆钟、摆轮钟等;利用频率较高的电磁振荡和石英振荡的钟表,如同步电钟、石英钟表等;按结构特点可分为机械式的,如机械闹钟、自动、日历、双历、打簧等机械手表;电机械式的,如电摆钟、电摆轮钟表等;电子式的,如摆轮电子钟表、音叉电子钟表、指针式和数字显示式石英电子钟表 等。  机械钟表有多种结构形式,但其工作原理基本相同,都是由原动系、传动系、擒纵调速器、指针系和上条拨针系等部分组成。  机械钟表利用发条作为动力的原动系 ,经过一组齿轮组成的传动系来推动擒纵调速器工作;再由擒纵调速器反过来控制传动系的转速;传动系在推动擒纵调速器的同时还带动指针机构,传动系的转速受控于擒纵调速器,所以指针能按一定的规律在表盘上指示时刻 ;上条拨针系是上紧发条或拨动指针的机件。  此外,还有一些附加机构,可增加钟表的功能,如自动上条机构、日历(双历)机构、闹时装置、月相指示和测量时段机构等。  原动系是储存和传递工作能量的机构,通常由条盒轮、条盒盖、条轴、发条和发条外钩组成。发条在自由状态时是一个螺旋形或 S形的弹簧,它的内端有一个小孔,套在条轴的钩上。它的外端通过发条外钩,钩在条盒轮的内壁上。上条时,通过上条拨针系使条轴旋转将发条卷紧在条轴上。发条的弹性作用使条盒轮转动,从而驱动传动系。  传动系是将原动系的能量传至擒纵调速器的一组传动齿轮,它是由二轮(中心轮)、三轮(过轮)、四轮(秒轮)和擒纵轮齿轴组成,其中 轮片是主动齿轮,齿轴是从动齿轮。钟表传动系的齿形绝大部分是根据理论摆线的原理,经过修正而制作的修正摆线齿形。  擒纵调速器是由擒纵机构和振动系统两部分组成,它依靠振动系统的周期性震动,使擒纵机构保持精确和规律性的间歇运动,从而取得调速作用。叉瓦式擒纵机构是应用最广的一种擒纵机构。它由擒纵轮、擒纵叉、双圆盘和限位钉等组成。它的作用是把原动系的能量传递给振动系统,以便维持振动系统作等幅振动,并把振动系统的振动次数传递给指示机构,达到计量时间的目的。  振动系统主要由摆轮、摆轴、游丝、活动外桩环、快慢针等组成。游丝的内外端分别固定在摆轴和摆夹板上;摆轮受外力偏离其平衡位置开始摆动时,游丝便被扭转而产生位能,称为恢复力矩。擒纵机构完成前述两动作的过程 ,振动系在游丝位能作用下,进行反方向摆动而完成另半个振动周期,这就是机械钟表在运转时擒纵调速器不断和重复循环工作的原理。  上条拨针系的作用是上条和拨针。它由柄头、柄轴、 立轮、离合轮、离合杆、离合杆簧、拉档、压簧、拨针轮、跨轮、时轮、分轮、大钢轮、小钢轮、棘爪、棘爪簧等组成。  上条和拨针都是通过柄头部件来实现的。上条时,立轮和离合轮处于啮合状态,当转动柄头时,离合轮带动立轮,立轮又经小钢轮和大钢轮,使条轴卷紧发条。棘爪则阻止大钢轮逆转。拨针时,拉出柄头,拉档在拉档轴上旋转并推动离合杆,使离合轮与立轮脱开,与拨针轮啮合。此时转动柄头便拨针轮通过跨轮带动时轮和分轮,达到校正时针和分针的目的。  钟表要求走时准确,稳定可靠。但一些内部因素和外界环境条件都会影响钟表的走时精度。内部因素包括各组成系统的结构设计、工作性能、选用材料、加工工艺和装配质量等。例如,发条力矩的稳定性,传动系工作的平稳性,擒纵调速器的准确性等都影响走时精度。  外界环境条件包括温度、磁场、湿度、气压、震动、碰撞、使用位置等。例如,温度变化会引起钟表内润滑油和摆轮游丝性能的变化,从而引起走时性能的变化;环境的磁场强度大于60奥斯特时,会引起部分零件磁化而走慢;湿度大会引起部分零件氧化和腐蚀 等等
2023-08-10 14:25:091

摆钟原理是什么

摘要:很多人家里都还在使用那种老式的摆钟,整点或者每半小时都会发出响声提醒时间。那种老式挂钟的工作原理是什么?摆钟原理是根据单摆定律制造,用摆锤控制其它机件,使钟走的快慢均匀,一般要用发条来提供能量。下面来看看老式挂钟原理的介绍。【老式挂钟原理】摆钟原理是什么老式摆钟的工作原理您是否见过大座钟和小机械闹钟的内部结构,看过所有的齿轮和弹簧发条后,是否想,“哇——这么复杂?”虽然时钟通常非常复杂,但您不必觉得困惑或不可思议。事实上,了解时钟工作原理时,您可以想象时钟设计者们是如何面对和解决大量有趣的问题,并设计出准确的计时设备的。本文将帮助您了解是什么使时钟发出嘀嗒声,所以下次看到时钟内部结构时您就会明白一切了。让我们先看一下摆钟的不同部件。从1656年起,人们便开始使用摆钟计时了,但是此后摆钟的发展一直没有太大的变化。摆钟是第一款具有一定精确度的时钟。如果从外部观看摆钟,可以发现几个对所有时钟的机械装置而言都很重要的部件:时钟的表面、时针和分针(有时甚至有“月相”盘)。有一个或多个钟锤(如果时钟更现代,会有一个锁眼可用于给时钟内上紧发条——本文将继续以钟锤驱动的时钟为例)。当然,还有钟摆本身。大多数挂钟都有钟摆,每秒钟摆动一次。小布谷鸟钟的钟摆可以每秒钟摆动两次。大座钟的钟摆每两秒钟摆动一次。那么,这些部件如何协作以保持时钟运行和时间准确呢?首先,让我们看一下钟锤。钟锤的作用是作为一个能量存储装置,因此时钟可以在无人值守的情况下运行相对较长的时间。为钟锤驱动的时钟上紧发条时,可以拉紧绳索提起钟锤。这会在地球重力场的作用下赋予钟锤势能。我们一会可以看到,钟利用的正是钟锤下落时的势能驱动机构进行运转。举例来说,我们要利用下落的钟锤设计一个最简单的时钟——只有秒针的时钟。我们想在这个简单的时钟上安装秒针,使它象任何时钟上的正常秒针一样工作,每60秒旋转一周。我们可以尝试按右图所示的设计,只需将钟锤细绳连接到滚筒,然后将秒针也连接到滚筒上。当然,这并不会起作用。在这个简单的机构中,释放钟锤会导致它快速下落,使滚筒以约1000rpm(转数/分)的速度旋转,直到钟锤落到地板上。但是,它会在正确的方向前进。举例来说,我们在滚筒上放置某种摩擦装置——某种制动衬片或可以让滚筒减速的东西。这会起到作用。我们当然能根据使秒针每分钟旋转一周的摩擦力来设计某种方案。但它只能是近似值。随着空气温度和湿度的变化,装置的摩擦力也会改变。因此,秒针不会保持非常好的准确性。因此,追溯到17世纪,希望制造出准确时钟的人们曾努力解决如何使秒钟每分钟旋转一周的问题。荷兰天文学家克里斯琴·惠更斯(ChristiaanHuygens)被誉为使用钟摆的第一人。由于钟摆具有非常有趣的特性,因此非常有用:钟摆摆动的周期(钟摆来回摆动一次所用的时间)只和钟摆的长度和重力有关。由于地球上任何特定点的重力都是恒定的,所以影响钟摆运动周期的只有钟摆的长度。重量并不是问题,钟摆摆动的弧长度也不是问题,只有钟摆的长度是决定因素。如果不信,您可以尝试做下一页的实验!正如我们在上一页所说的那样,影响摆钟周期的唯一因素是钟摆的长度。您可以通过以下实验证明这个事实。要做这个实验,您需要准备:钟锤、细绳、桌子、带秒针的手表(或有数字秒数显示的数字手表)。您可以将任何东西当作钟锤。必要时,咖啡杯或书都可以——这并不重要。将细绳系到钟锤上。然后将钟摆悬挂在桌子边缘,这样钟摆长度就大约有61厘米,如下图所示:现在将钟锤向后拉约30厘米,然后让钟摆开始摆动。计时30或60秒钟,统计钟摆来回摆动的次数。记住摆动次数。现在,停止钟摆然后重新开始摆动它,但这次只将它向后拉约15厘米,这样它摆动的弧度就比较小。同样在30或60秒钟内统计摆动次数。您会发现得到的统计数字与第一次统计的数字相同。换句话说,钟摆摆动的弧度对周期没有影响。只有钟摆线绳的长度至关重要。如果摆弄钟摆长度,您会发现可以通过调整钟摆长度使它来回摆动60次正好为一分钟。注意到有关钟摆的这个事实后,您就会发现可以用钟摆设计出准确的时钟。下图显示了利用钟摆设计时钟棘轮装置的方法。棘轮装置中有一个轮齿带有特定形状的齿轮。还有一个钟摆,连接钟摆的是可以啮合齿轮轮齿的某种装置。图中展示的基本观点是,钟摆来回摆动一次,齿轮就会有一个轮齿“逃脱”。例如,如果钟摆向左摆动并通过右图中所示的中心位置,那么当钟摆继续向左摆动时,连接钟摆的左侧制动部件便会将释放一个轮齿。然后,齿轮会前进半个轮齿的宽度并撞到右侧制动部件。向前运动并撞上制动部件的过程中,齿轮会发出声响......最常见的是“滴嗒”或“呜声”。这正是时钟或手表发出嘀嗒声的原因!需要记住一件事,钟摆不会永不停歇地摆动。因此,棘轮装置齿轮的另一个作用是赋予钟摆足够的能量,使钟摆能够克服摩擦力并保持摆动。为了完成这个任务,锚(连接钟摆的机械装置的名称,每次释放一个棘轮装置齿轮轮齿)和棘轮装置齿轮的轮齿被设计为特殊形状。如果齿轮的轮齿正确逃脱,钟摆每摆动一次锚都会在适当的方向施加一个轻推力。轻推力增强了钟摆克服摩擦力所需的能量,从而使它能保持摆动。这样,您就设计出了一个棘轮装置。如果棘轮装置齿轮有60个轮齿,该齿轮直接连接到上面讨论的钟锤滚筒,并且使用周期为一秒的钟摆,您就会成功设计秒针旋转速度为每分钟一周的时钟。如果非常小心地调整钟摆长度,我们可以设计出精确度非常高的时钟。不过,该时钟虽然准确,但仍存在两个问题,这使它不太实用:大多数人都希望时钟有时针和分针。您必须每隔20分钟给时钟重新上一次发条。因为钟锤每分钟旋转一周,所以钟锤会很快地走松而落到地板上。大多数人都不会喜欢每隔20分钟重新上一次发条!那么,如何解决上紧发条的问题呢?请继续往下看......必须每隔20分钟重上一次发条的问题很容易解决。正如齿轮比原理中所讨论的,您可以设计高速比齿轮系,使齿轮滚筒每隔6至12小时旋转一周。这样,您会得到只需一周左右重新上一次发条的时钟。钟锤滚筒与棘轮装置齿轮之间的齿轮齿速比可能为500:1,如下图所示:图中的棘轮装置齿轮有120个轮齿,钟摆的周期为半秒钟,并且秒针直接连到棘轮装置齿轮。钟锤齿轮系中每个齿轮的齿数比为8:1,因此整个齿轮系的齿数比为492:1。您可以看到,如果让棘轮装置齿轮自身以60:1的齿数比驱动另一个齿轮系,则可以将分针安装到该齿轮系的最后一个齿轮上。齿数比为12:1的最后一个齿轮系将驱动时针。转瞬之间您就有了一个时钟!虽然现在这个时钟不错,但还存在两个问题:时针、分针、秒针位于不同的轴上。这个问题通常利用齿轮上的空心轴加以解决,然后排列齿轮系,使驱动时针、分针和秒针的齿轮共用同一轴。空心齿轮轴是一个对准另一个。近距离观看任一时钟表面,您都可以看到这种排列。由于所有这些齿轮都直接连在一起,所以不能轻易地重新上紧发条或设置时钟。这个问题通常由一个可滑出齿轮系的齿轮来解决。当您拉出手表的转柄设置时间时,实际上运用的就是这个方法。在上图中,您可以设想临时取出黑色的小齿轮以上紧发条或设置时钟。您可以看到,尽管时钟内的所有齿轮使它看起来很复杂,但是摆钟的工作原理非常简单。它共分为五个基本部分:钟锤或发条——这可以为时钟的指针旋转提供能量。钟锤齿轮系——高齿速比齿轮系可以驱动钟锤滚筒增速,因此不需要频繁地重新上紧发条。棘轮装置——由钟摆、锚和棘轮装置齿轮构成,棘轮装置可以精确调节钟锤能量释放的速度。指针齿轮系——指针齿轮系可以减速,因此分针和时钟能够以正确的速度运转。拨针机构——该机构可以分离、滑动或渐进齿轮系,因此时钟可以重新上紧发条和拨针。了解这些部件后,理解时钟工作原理就是轻松的事了!管机械闹钟已经有很长的历史了,但对它们进行探索仍然很有趣。有关一般钟表的更多信息,请查看标题为摆钟工作原理的文章。下图所示的就是我们现在将要拆解的闹钟:取下发条旋柄和后盖,闹钟的内部结构便显示在我们眼前:将支脚、闹铃、指针、面板和边缘的固定环拆去,您最终得到的就是闹钟的机械系统。这只闹钟(同大多数台钟和手表一样)使用了振荡轮来代替钟摆。振荡轮和它的发条位于闹钟底部。在上图中,闹钟的主发条在右上方。左边的发条用于驱动闹铃,它有自己的齿轮传动链和擒纵机。在下图中您可以看到该机械系统的正面。指针便是安装在中心的同心轴上。从侧面可以看到机械系统中各大小不同的齿轮是如何啮合到一起的。下图是振荡轮的前景照,它的动力由一些齿轮来传入。这只闹钟看起来复杂,但实际上只有十几个运动机件。在主发条和擒纵轮之间有四个齿轮。第四个齿轮的中轴驱动秒针。其余部件包括擒纵轮、支轴、振荡轮和发条。共有四个齿轮用于驱动时针、分针和闹针。另外有两个齿轮驱动闹锤,其中一个还兼作擒纵轮。
2023-08-10 14:25:181

摆钟为什么能精确计时?

这是高中物理的单摆原理,单摆以固定周期摆动(T=2*(pai)sqr(L/G))。所以每摆动一次时间相同,所以可以计时。
2023-08-10 14:25:281

机械闹钟的走时原理

机械钟表中,利用带簧(发条)恢复变形所放出的能量或利用重物下降的重力作能源,以机械振动系统为时间基准,实现计量时间和时段的机械机构。机械钟表机构有多种类型,但一般都由原动系、传动系、擒纵调速系、上条拨针系和指针系组成,工作原理基本相同(图1)。此外,日历手表中还包括日历(或双历)机构,自动手表中还包括自动上条机构。 原动系 储存和传递工作能量的机构。分为重锤原动系和弹簧原动系两类。 重锤原动系 利用重锤的重力作能源。多用于简易挂钟(图2 )和落地摆钟。重锤原动系结构简单,力矩稳定,但当上升重锤时,传动系与原动系脱开,钟表机构停止工作。 弹簧原动系 利用卷成螺线形的带簧(发条)恢复变形所放出的能量作能源。带簧一端与轴连接,另一端与一个不动的零件或发条盒的壳体连接。弹簧原动系用作携带式钟表的能源,也用于摆钟上。弹簧原动系有带固定条盒式、不带条盒式和带活动条盒式等3种类型。 传动系 将原动系的能量传给擒纵调速系的一组传动齿轮。通常由一系列轮片和齿轴组成(图3),在主传动中轮片是主动齿轮,齿轴是从动齿轮。传动比按照以下公式进行计算: i=Z1/Z2 式中Z1为主动齿轮齿数,Z2为从动齿轮齿数。对于有秒针装置的钟表,其中心轮的轮片到秒轮的齿轴的传动比必须等于60。钟表传动系的齿形绝大多数是专门设计的(见钟表齿形)。 传动系可按“二轮”(时轮和分轮)在表机芯的平面配置分为两类:①中心二轮式,二轮在表机芯的中央。它又包括直接传动式、秒簧式、短秒针和无秒针式、双三轮式。②偏二轮式,二轮不在表机芯中央。它又包括头轮传出式、二轮传出式、三轮传出式。 直接传动式是经常采用的传动系之一(图3)。在这种传动方式中,分轮上部有一凹槽,分轮依靠摩擦与中心轮管相配合;走针机构的运动由中心轮来带动。 擒纵调速系 由擒纵机构和振动系统构成。按振动系统的特点可分为两类:①有固有振动周期擒纵调速系。它具有可以独立进行振动的、有稳定周期的振动系统。手表、闹钟中的走时系统的擒纵调速系属于此类。②无固有振动周期擒纵调速系(图4 )。它没有能够独立进行振动的振动系统。这种调速系中的所谓振动系统的往复振动,完全依靠擒纵机构的往复运动。机械闹钟中的闹时系统的擒纵调速系属于此类。这种调速系精度要求不高,结构简单,工作可靠,抗外界干扰能力强,在机械式定时器和钟表引信中大量采用。 擒纵机构 联系传动系和振动系统的一种机构。其作用是把原动系的能量传递给振动系统,以维持振动系统的等幅振动;并把振动系统的振动次数传给指针机构,达到计量时间之目的。擒纵机构种类很多,按其与振动系统联系的程度可分为两类。①非自由式擒纵机构:擒纵机构和振动系统经常保持运动上的联系。它包括直进式、后退式和工字轮式擒纵机构等。②自由式擒纵机构:只有在释放和传冲阶段,擒纵机构和振动系统才保持运动上的联系,其余阶段振动系统处于自由运动状态。它包括有销钉式、叉瓦式和天文钟式擒纵机构等。 ①后退式擒纵机构(图5):广泛用于低精度摆钟。它的叉瓦锁面和冲面是同一平面(工作面);进瓦的工作面是一圆柱面,其圆心与擒纵叉的转动中心不重合;出瓦的工作面是一平面。叉瓦和擒纵叉作成一体。传冲后,叉瓦工作面将迫使擒纵轮后退一个角度。 ②叉瓦式擒纵机构(图6):应用最广的擒纵机构之一。工作时,擒纵轮由传动系取得能量,通过擒纵轮齿和叉瓦(进瓦或出瓦)的作用转变为冲量传送给擒纵叉;通过擒纵叉的叉口和双圆盘的冲击圆盘上的摆钉的相互作用,再将冲量传给振动系统。双圆盘的保险圆盘和叉头钉,摆钉和擒纵叉的喇叭口是保证机构正常工作的保险装置。 ③销钉式擒纵机构(图7):与叉瓦式擒纵机构的不同之处是,在擒纵叉上用两根圆柱销钉代替叉瓦,冲量只沿擒纵轮齿冲面传递。这种擒纵机构结构简单,精度要求低,制造方便,多在闹钟和低精度表中采用,俗称粗马结构。 振动系统 作为时间基准的机构。振动系统的振动周期乘以被测过程内的振动次数,即为该过程经历的时间。机械钟表常用的振动系统有摆、扭转摆和摆轮游丝振动系统。 ①摆:由摆锤、摆杆、挂摆装置和周期调节装置等组成。用于固定式钟中(图2 )。当摆锤在外力作用下偏离铅垂线(平衡位置)任一角度而放开后,在重力作用下,摆锤将绕支点作往复运动。振动过程是摆的动能和位能交替转换的过程。 ②扭转摆:主要由摆盘和悬丝组成(图8)。悬丝下端固定摆盘,上端固定在不动的支点上。悬丝的截面可为矩形或圆形。扭转摆常与后退式擒纵机构或叉瓦式擒纵机构构成擒纵调速系。扭转摆有较长的振动周期(几秒~几十秒),多用于能量较节省而走时延续时间较长的固定式钟。 ③摆轮游丝振动系统(图9):游丝的内外端分别固定在摆轴和摆夹板上。摆轮受外力作用偏离其平衡位置开始摆动时,游丝就被扭转而产生位能,通常称为恢复力矩。该力矩促使摆轮向其平衡位置运动。 上条拨针系 卷紧原动系中的发条和拨动时针、分针以校正钟表所指示时间的机构(图10)。上条时,立轮和离合轮处于啮合状态。拨针时,离合轮和立轮脱开而与拨针轮啮合。
2023-08-10 14:26:071

石英钟摇摆器工作原理

摆钟是利用摆锤的周期性振动(摆动)过程来计量时间。正摇摆器是自由电子激光的重要组件,为了使自由电子激光的输出波长更短或降低其对电子束能量的要求。
2023-08-10 14:26:461

钟摆原理

钟摆的质量各异,但长度都约为2米。(单摆周期公式)
2023-08-10 14:27:393

摆钟是怎样发明的?

对改进早期机械钟作出重大贡献的,是伟大的意大利科学家伽利略。他发现了摆的等时性原理。关于等时性原理,我们可以简单地作这样解释:当摆(单摆)获得一定动能时,它便从静止位置“0”向位置“1”运动,摆不断升高,到达最高点“1”以后,速度为零;随后又在重力作用下向下运动。经过“0”时,它的速度最大,然后摆向位置“2”,达到最高点位置“2”时速度为零,以后又在重力作用下往回摆动。实验证明,它每摆动一周,所经历的时间都是相等的,这就叫摆的等时性原理。摆的均匀摆动是人们继滴漏之后发现的一种真正的人造周期运动。从17世纪早期起,西方的工艺家们便把它运用到时钟上,作为稳定的“定时器”,使机械钟能够指示出“秒”,从而把计时精度提高了近100倍。随着社会生产力的发展,世界上使用齿轮机械的计时器诞生了。最早的要算是我国宋朝苏颂等人发明的“水运仪象台”,国际上称之为“苏颂钟”,计时甚为精巧。1955年英国剑桥大学教授德里克·丁·德索拉·普顿斯与李约瑟在追溯钟的家世时,认为苏颂钟是现代天文钟的鼻祖。摆钟是17世纪时才发明的。相传意大利天文学家伽利略在年轻的时候,有一次到教堂中去念圣经时,看见主教台上的吊灯在摆动。他就数自己脉博跳动的次数,来计量吊灯来回摆动的时间,发现了吊灯来回摆动一周的时间是一样的,也就是摆动周期不变,这个规律叫做摆的等时性。后来伽利略根据摆的等时性原理,在1640年设计了摆钟。它的结构虽然简单,但是现在的摆钟就是从它发展起来的。历史上头一个制作出实用的摆钟的人是荷兰的惠更斯。他在1656年做的一个摆钟,比当时的任何钟都准确。两年之后,1658年,英国科学家虎克制造了有摆轮的怀表。167年英人丹尼索·勒康制成的怀表有两根针(时针与分针),表面直径约6厘米,便于携带。最初的钟表只有一根时针,公元1550年前后增加了分针,1760年才出现秒针。3根针的出现,表明钟表制造技术已经有很大的提高。最精确的钟表是天文台上的天文钟。天文钟有好几种,最有名的是里弗列尔钟与邵特钟。普通的摆钟是放在空气中,由于空气的温度、气压、湿度等的变化,会影响摆的摆动周期,使钟走得不那么均匀准确。里弗列尔钟是放在玻璃罐中,罐中的空气已大都抽空(真空),减少了气压变化的影响。再将钟放在很深的地下室内,那里一年中的温度变化不超过1度,能使钟运行得十分均匀。里弗列尔钟在一昼夜中的变化约为1/100秒。更精确的天文钟是邵特在1920年发明的钟(称之为邵特钟)。它的特点是有两个摆。一个是自由摆,它控制子钟的摆,强迫它和自己同节拍地摆着。子钟的摆与钟表机械连在一起,指示时间。邵特钟走一昼夜的误差在1/1000秒左右。邵特钟被认为是机械钟表中最好的一种。天文钟都存放在恒温恒压的地下室内,人们不轻易到那里去(因为人的体温与呼吸会改变地下室内的温度),那么,怎么知道时间呢?原来,天文钟都另设有一个钟面,它用电线与地下室内工作的母钟连系,这个地面上的钟(叫工作钟或子钟)的时刻与母钟的时刻是一致的,人们只要看地面上的工作钟,就知道时刻,真可说是“上下一条心”。邵特钟的精确度是很高的,人们曾经利用它发现了地球自转的不均匀性。但是它还不是最高的,而且它也害怕震动,一次不大的地震就会使摆钟停顿或走得不准确。
2023-08-10 14:28:161

制作一个多少时间的计时器?

制作一个一分钟计时器 【教学目标】科学概念:机械摆钟是摆锤与齿轮操纵器联合工作的。过程与方法:观察摆钟内部构造;制作一个计时一分钟的简易摆钟。情感、态度、价值观:进一步体会到探究摆钟计时的乐趣;感受到科学与技术结合带给人类的进步。【教学重点】认识摆钟的内部结构,理解其工作原理。【教学难点】制作一个计时一分钟的简易摆钟。【教学准备】摆钟内部结构示意图或录象片段、学生自带制作材料。【教学过程】一、引入:1.通过近几节课的学习,我们已经知道了摆具有等时性,我们还知道了通过控制摆长,可以控制摆的快慢。那么摆钟又是怎样把摆的这个特性应用进去,制造出摆钟的呢?2.设计时钟的要诀在于让指针以一定的快慢移动,几世纪以来的时钟都是利用摆锤控制与齿轮相连的指针运转的。摆钟的摆锤是怎样带动指针一直以相同的快慢移动的?二、观察摆钟齿轮操纵器:1.带着上面的问题,自学课本P64——65内容。2.交流自学成果。3.师指出摆钟的几个重要部件:摆锤、垂体、齿轮操纵器、齿轮。并结合插图引导学生发现这些部件在摆钟工作时是怎样运动的?4.要求学生进行描述。小组内描述到独立描述。5.播放收集到的相关录象资料,加深学生理解。三、制作一个一分钟计时器:1.看了摆钟的内部结构,知道了摆钟的工作原理后,我们也来做一个简易摆钟吧。揭题:制作一个一分钟计时器2.引导思考:摆锤只需要摆动30次,摆钟就是一分钟,也就是60秒。这是为什么呢?3.用自带卡纸等其他材料进行仿制。4.请成功的小组进行展示。不能完成的可后继续完成。
2023-08-10 14:28:331

钟摆有什么作用(简答)

计时啊还能干嘛
2023-08-10 14:28:572

机械摆钟原理

机械摆钟有两个发条动力源,一个为走时动力源,一个为报时动力源。走时齿轮带动时针、分针显示时间。报时齿轮带动钟锤敲打盘条报时。由于发条动力有初始力量较大而末尾力量较小因而齿轮速度就有变化造成,计时了误差。为了克服这个问题采用了钟摆限制计时齿轮的走时速度,这样方案很精确,并且发展到手表中的摆轮。回答满意请点击采纳。
2023-08-10 14:29:361

你好,老式钟摆的运动原理是什么?如果把钟摆加长能带动比较重的东西运动吗?

  老式钟摆是依据单摆原理工作的(你可以百度一下“单摆”)  钟摆的作用是控制钟的驱动指针旋转的驱动力的释放速度,而不是驱动指针运动。  由于机械摩擦和空气阻力的存在,钟摆不可能在没有驱动力的情况下永久摆动,更不能作为动力源带动任何机械。  改变钟摆的摆杆长度可以改变摆动频率。
2023-08-10 14:29:572

世界上第一只摆钟是根据什么原理制成的?

世界上第一只摆钟是根据摆的等时性原理制成的。意大利科学家伽利略最早发现了摆的等时性原理。生活中的机械摆钟无论形状大小如何,单摆的周期只与摆长有关,与摆球的质量和摆角无关,即摆长一定时,单摆完成一次摆动的时间都相等,这一原理最早是意大利科学家伽利略发现的,叫做摆的等时性.世界上第一只机械摆钟就是根据这个原理制成的。世界上第一只摆钟的由来世界上第一只摆钟是根据摆的等时性原理制成的,此原理是由意大利科学家伽利略首先发现的。某摆球来回摆动60次所用的时间为2分钟,则该摆球来回摆动一次的时间为2秒。1656年,惠更斯利用钟摆的等时性原理制成了世界第一座摆钟。1673年,惠更斯从他的钟摆的原理出发,进行了更加深入的研究,出版了他的《摆钟》一书。在这本书中,他不仅详细记载了摆钟的发明,而且开始了他对离心力的研究。他最先提出了离心力与距离和速度的关系问题:(1)同一物体如果以相同的速度在不同的圆周上运动,离心力与直径成反比,圆越小,离心力越大。(2)同一物体如果以不同的速度在相同的圆周上运动,离心力与速度的平方成正比。惠更斯关于摆的研究,为以后牛顿经典力学中万有引力定律的建立提供了重要的理论依据。
2023-08-10 14:30:571

世界上第一只挂摆的钟是根据什么原理制成的

摆的运动规律
2023-08-10 14:31:333

摆钟的工作原理—在其他因素不变时,假如发条所给予棘轮的力矩过大或过小,会不会影响钟摆的周期?

基本不会影响,理论上不考虑这个
2023-08-10 14:32:012

机械钟摆的制作原理是什么

不知道
2023-08-10 14:32:125

摆钟是怎样摆动的?

钟摆是时钟机件的一部分,是根据单摆的原理制成的,左右摆动,通过一系列齿轮的作用,使指针以均匀的速度转动.根据能量守恒,当一个摆锤所处的初始位置越高,它摆过最低点后能够到达对面的位置就越高在最低点时的动能最大,势能为零.最高点时势能最大,动能为零
2023-08-10 14:32:301

世界上第一只摆钟是根据什么原理制成的

世界上第一只摆钟是根据摆的等时性原理制成的。意大利科学家伽利略最早发现摆的等时性原理。某摆球来回摆动60次所用的时间为2分钟,则该摆球来回摆动一次的时间为2秒。1656年,惠更斯利用钟这一原理制成了世界第一座摆钟。 世界上第一只摆钟是根据摆的等时性原理制成的。意大利科学家伽利略最早发现摆的等时性原理。某摆球来回摆动60次所用的时间为2分钟,则该摆球来回摆动一次的时间为2秒。1656年,惠更斯利用钟这一原理制成了世界第一座摆钟。 摆钟的发展历程: 此后利用振动原理计时,使时间的计量发生了突破性变化,大致经历了机械摆钟、石英钟、原子钟三个历程。老式的挂钟靠摆轮和游丝电;子表是利用电磁振动的等时性来计时的。石英钟是利用石英晶体振动的等时性来计时的。世界上第一架原子钟是1949年美国国家标准局制作的。由于原子钟振动频率特别稳定,因此原子钟十分准确,30万年也相差不到一秒。
2023-08-10 14:32:381

机械钟是根据什么的原理制作而成的?

你会发现里面有很多小弹簧小齿轮弹性势能转化为动能
2023-08-10 14:32:532

机械摆钟原理图以及设计方案谁知道啊?

不知道U0001f937u200d♀ufe0f旧的悲伤…….在..是.:.…。:不想去::不住自己.,不会.是否是
2023-08-10 14:33:032

垂体时钟的工作原理是什么

下垂体利用其重力构成的重力摆(单摆系统)是用来控制齿轮转速的,也就是说表锤摆一下,齿轮组转动一齿,因此可以通过调节摆长(表锤中心到摆杆顶端的距离)来调整摆钟走时的快慢:摆越长,表走得越慢。而齿轮转动所需的能量是依靠摆钟内部的发条装置(或电力)来提供的。 可以这样反过来考虑:假设齿轮的转动是依靠表锤的重力势能提供的,那么表锤的摆幅将会很快减小,最终停在中间位置,我们就只能抱着摆钟不停地给它起摆啦~~~
2023-08-10 14:33:122

钟摆是什么原理 每天慢三分钟怎么办?科学五年级试题

  钟摆利用的是单摆的等时性原理  由T=2π(L/g)^1/2, 钟摆每天慢三分钟,周期大了,要想校准需要减小摆长、减小摆钟的周期。使振动加快,表就准了。
2023-08-10 14:33:191

上海天文馆摆钟几点撞钟

上海天文馆的摆钟是一件非常著名的文物,因为它在每天正午的时候会自动撞钟。这样的摆钟被称为“自然摆钟”,它的原理是利用重力和摆动的惯性进行时间的测量。摆钟的核心是挂在钟体下方的摆锤,它可以来回摆动。当摆锤被人为地摆动一次之后,它就会按照一定的频率来回摆动,这个频率是由摆锤的长度所决定的。我们可以根据摆锤的摆动频率来测量时间,因为每次摆动所需要的时间是一样的。在上海天文馆的摆钟中,撞钟的机构是由一个钢球和一根长杆组成的。当摆锤摆动到顶点时,钢球就会被杆子挡住,这个时候钢球和杆子之间的能量会被释放出来,钢球就会被弹射出去,撞击钟面,发出清脆的钟声。总之,上海天文馆的摆钟是一件非常精密的机械装置,它不仅可以用来测量时间,还可以让人们感受到时间的流逝和生命的短暂。同时,它也是一件非常具有文化价值的珍品,可以让我们回顾历史,感受人类智慧的伟大。
2023-08-10 14:33:2815

怎么做摆钟

摆钟的结构大体上可分为走时部分、打点部分、指针部分和打点控制部分。1.走时部分由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。条盒轮是机芯中最大的轮子,发条装在轮片下面的盒里(以前生产的摆钟大多不带条盒),它是走时部分的能源。二轮、三轮、四轮都是传动轮,其结构由轮轴、轮片,销轮等组成。擒纵轮的结构与上述各轮相同,但它的轮片齿形是斜三角形的尖齿。擒纵叉也叫卡子,它的作用就是把擒纵轮齿接过来,送出去。摆锤组件包括摆锤、摆杆及挂摆装置。摆锤中间有透孔,摆杆从中通过,下面旋有螺母固定。此装置可以将摆锤升高或降低,从而调节钟的快慢。2.打点部分由打点条盒轮、打点二轮、打点三轮、打点四轮,打点五轮及风轮组成。在打点三轮上有一个星角轮,当轮系转动时,它使打点轴上的抬止杆不断地抬起落下,打点轴的一端固定着两个打锤,锤头敲击一长一短两根音簧,就发出悦耳的声音。风轮主要是起调节轮系转动速度的作用,使打点声音有一个合适的时间间隔。3.指针部分由分轮、跨轮和时轮组成。结构原理与闹钟基本相同。4.打点控制部分摆钟每隔半小时打点一次,整点敲击的次数必须与时针指示的时刻相同,因此,它的打点必须由走时来控制。在走时和打点之间有一个具有控制打点次数的机构,它由二角凸轮、十二角凸轮、扇形齿、抬闸杠杆、开关杠杆、拨齿凸轮等组成。二角凸轮紧紧固定在走时部分的中心轮轴上,每小时随中心轮转一圈。二角凸轮齿尖半径一长一短,长的打整点用,短的打半点用。十二角凸轮套在时轮管上,每十二个小时转一圈,每小时转过十二角凸轮的一个角。平时抬闸杠杆挡住打点五轮上止钉,使打点机构不能运转。当二角凸轮顺时针方向旋转时,慢慢将抬闸杠杆顶起,抬闸杠杆上端最后将止钉释放(这个过程也叫抬闸),但打点五轮的止钉转过一个角度后,又被开关杠杆的折角挡住,打点机构又停止运转。由于抬闸杠杆抬起的同时,顶起了开关杠杆,开关杠杆原来末端托住扇形齿板现在释放,扇形齿板落下,齿板中段折角落在十二角凸轮的一个角的中部。当二角凸轮将抬闸杠杆推到最高点落下时,开关杠杆挡住打点五轮的止钉部位也同时脱离,打点机构便开始转动。打点三轮上的星角轮拨动抬止杆,带动打锤敲击音簧。紧固在四轮轴上的拨齿凸轮也随着转动,凸轮上的拨销拨动扇形齿板向上运动,直至开关杠杆末端重新托住扇形卤板,抬闸杠杆挡住打点五轮上的止钉,打点工作完毕。发展历史编辑以摆作为振动系统的钟。通常都带有报时功能,所以又称自鸣钟。1582~1583年,意大利物理学家和天文学家伽利略发现了摆的等时性。1657年,荷兰物理学家和天文学家克里斯蒂安.惠更斯利用摆的等时性原理发明了摆钟。后经不断改进,沿用至今。摆钟可根据用途和要求制成座钟、挂钟、落地钟、子母钟的母钟、天文钟等型式。摆钟的报时方式通常为机械打点报时,也有用电子扩音报时的。近代帝王宫廷中使用的摆钟,常附有一套机械传动机构,以精工制作的人物、山水、飞禽、走兽等活动形象进行报时。摆钟的原理是利用单摆的等时性。正是这种性质可以用来计时。而单摆的周期公式是:时间=圆周率的2倍乘以(根号下摆长除以重力加速度) 通过公式以及其推导可以看出来,单摆运动靠的是重力,和绳子的拉力。而摆动的周期仅仅取决于绳子的摆长和重力加速度。地球重力加速度固定,控制摆长可以调整周期来计时。工作原理编辑摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用
2023-08-10 14:33:501

摆钟的工作原理是什么?

摆钟的工作原理是:摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。结构:由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。条盒轮是机芯中最大的轮子,发条装在轮片下面的盒里(以前生产的摆钟大多不带条盒),它是走时部分的能源。二轮、三轮、四轮都是传动轮,其结构由轮轴、轮片,销轮等组成。擒纵轮的结构与上述各轮相同,但它的轮片齿形是斜三角形的尖齿。擒纵叉也叫卡子,它的作用就是把擒纵轮齿接过来,送出去。摆锤组件包括摆锤、摆杆及挂摆装置。摆锤中间有透孔,摆杆从中通过,下面旋有螺母固定。此装置可以将摆锤升高或降低,从而调节钟的快慢。
2023-08-10 14:34:291

摆钟的原理是什么?

摆钟的工作原理是:摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。结构:由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。条盒轮是机芯中最大的轮子,发条装在轮片下面的盒里(以前生产的摆钟大多不带条盒),它是走时部分的能源。二轮、三轮、四轮都是传动轮,其结构由轮轴、轮片,销轮等组成。擒纵轮的结构与上述各轮相同,但它的轮片齿形是斜三角形的尖齿。擒纵叉也叫卡子,它的作用就是把擒纵轮齿接过来,送出去。摆锤组件包括摆锤、摆杆及挂摆装置。摆锤中间有透孔,摆杆从中通过,下面旋有螺母固定。此装置可以将摆锤升高或降低,从而调节钟的快慢。
2023-08-10 14:34:471

摆钟的原理是什么?

摆钟的工作原理是:摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。结构:由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。条盒轮是机芯中最大的轮子,发条装在轮片下面的盒里(以前生产的摆钟大多不带条盒),它是走时部分的能源。二轮、三轮、四轮都是传动轮,其结构由轮轴、轮片,销轮等组成。擒纵轮的结构与上述各轮相同,但它的轮片齿形是斜三角形的尖齿。擒纵叉也叫卡子,它的作用就是把擒纵轮齿接过来,送出去。摆锤组件包括摆锤、摆杆及挂摆装置。摆锤中间有透孔,摆杆从中通过,下面旋有螺母固定。此装置可以将摆锤升高或降低,从而调节钟的快慢。
2023-08-10 14:35:051

摆钟是怎样工作的?

摆钟的工作原理是:摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。结构:由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。条盒轮是机芯中最大的轮子,发条装在轮片下面的盒里(以前生产的摆钟大多不带条盒),它是走时部分的能源。二轮、三轮、四轮都是传动轮,其结构由轮轴、轮片,销轮等组成。擒纵轮的结构与上述各轮相同,但它的轮片齿形是斜三角形的尖齿。擒纵叉也叫卡子,它的作用就是把擒纵轮齿接过来,送出去。摆锤组件包括摆锤、摆杆及挂摆装置。摆锤中间有透孔,摆杆从中通过,下面旋有螺母固定。此装置可以将摆锤升高或降低,从而调节钟的快慢。
2023-08-10 14:35:201

钟摆原理

摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零。 摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零;之后摆钟下降重力势能再次转换为动能,进行上述两步的循环。由于空气阻力的影响,其最大摆动高度会逐渐降低并最终停在最低点处,因此,为了要保证摆钟的持久性和稳定性,需要为其提供能量。
2023-08-10 14:35:381

摆钟的原理是什么?

摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。 而摆的振动周期 T=2π(l/r)^0.5。 一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。 摆的引用长度减短,时钟变快; 反之则变慢。 对精密摆钟,也有用附加重物法来微调摆的振动周期。 摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。 摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。
2023-08-10 14:35:555

摆钟的原理是什么?

一般来说,摆的重量是确定的,调节摆的引用长度即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。扩展资料发展历史:1582~1583年,意大利物理学家和天文学家伽利略发现了摆的等时性。1657年,荷兰物理学家和天文学家克里斯蒂安.惠更斯利用摆的等时性原理发明了摆钟。后经不断改进,沿用至今。摆钟可根据用途和要求制成座钟、挂钟、落地钟、子母钟的母钟、天文钟等型式。摆钟的报时方式通常为机械打点报时,也有用电子扩音报时的。近代帝王宫廷中使用的摆钟,常附有一套机械传动机构,以精工制作的人物、山水、飞禽、走兽等活动形象进行报时。参考资料来源:百度百科——摆钟
2023-08-10 14:36:201

摆钟是根据什么原理而发明的?

是利用单摆的等时性。正是这种性质可以用来计时。而单摆的周期公式是:时间=圆周率的2倍乘以(根号下摆长除以重力加速度)通过公式以及其推导可以看出来,单摆运动靠的是重力,和绳子的拉力。而摆动的周期仅仅取决于绳子的摆长和重力加速度。地球重力加速度固定,控制摆长可以调整周期来计时。扩展资料:摆动的钟摆是靠重力势能和动能相互转化来摆动的,简单的说,如果你把钟摆拉高,由于重力影响它会往下摆,而到达最低位置后它具有一个速度,不可能直接停在那,它会继续冲过最低位置,而摆至最高位置就往回摆是因为重力使它减速直到0,然后向回摆。如此往复,就不停的摆动了。按照上述,钟摆可以永远摆下去,但由于阻力存在,它会摆动逐渐减小,最后停止.所以要用发条来提供能量使其摆动。发展历史以摆作为振动系统的钟。通常都带有报时功能,所以又称自鸣钟。1582~1583年,意大利物理学家和天文学家伽利略发现了摆的等时性。1657年,荷兰物理学家和天文学家克里斯蒂安.惠更斯利用摆的等时性原理发明了摆钟。后经不断改进,沿用至今。摆钟可根据用途和要求制成座钟、挂钟、落地钟、子母钟的母钟、天文钟等型式。摆钟的报时方式通常为机械打点报时,也有用电子扩音报时的。近代帝王宫廷中使用的摆钟,常附有一套机械传动机构,以精工制作的人物、山水、飞禽、走兽等活动形象进行报时。参考资料来源:百度百科-摆钟
2023-08-10 14:36:382

钟摆的工作原理

摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/g)^0.5。一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用。扩展资料:摆钟结构摆钟的结构大体上可分为走时部分、打点部分、指针部分和打点控制部分。1.走时部分由头轮(即条盒轮,内装发条)、二轮、三轮(中心轮)、四轮、擒纵轮、擒纵叉、摆锤等组成。2.打点部分由打点条盒轮、打点二轮、打点三轮、打点四轮,打点五轮及风轮组成。3.指针部分由分轮、跨轮和时轮组成。结构原理与闹钟基本相同。4.打点控制部分摆钟每隔半小时打点一次,整点敲击的次数必须与时针指示的时刻相同,因此,它的打点必须由走时来控制。在走时和打点之间有一个具有控制打点次数的机构,它由二角凸轮、十二角凸轮、扇形齿、抬闸杠杆、开关杠杆、拨齿凸轮等组成参考资料来源:百度百科-摆钟-工作原理
2023-08-10 14:36:471

钟摆原理

摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零;之后摆钟下降重力势能再次转换为动能,进行上述两步的循环。由于空气阻力的影响,其最大摆动高度会逐渐降低并最终停在最低点处,因此,为了要保证摆钟的持久性和稳定性,需要为其提供能量。
2023-08-10 14:37:142

钟摆原理

摆钟主要是基于单摆原理来完成工作,即不停地进行重力势能与动能之间的相互转化。当摆钟位于最高点时,其重力势能达到最高而动能为零;随着摆钟位置的下降,重力势能转换为动能,直至到达最低点时动能最大而重力势能为零;之后又反向升高,由动能转换为重力势能,直至最高点时重力势能最高而动能为零;之后摆钟下降重力势能再次转换为动能,进行上述两步的循环。由于空气阻力的影响,其最大摆动高度会逐渐降低并最终停在最低点处,因此,为了要保证摆钟的持久性和稳定性,需要为其提供能量。
2023-08-10 14:37:341

摆钟的工作原理是?

  摆钟的原理  是利用单摆的等时性。正是这种性质可以用来计时。 而单摆的周期公式是:时间=圆周率的2倍乘以(根号下摆长除以重力加速度) 通过公式以及其推导可以看出来,单摆运动靠的是重力,和绳子的拉力。 而摆动的周期仅仅取决于绳子的摆长和重力加速度。地球重力加速度固定,控制摆长可以调整周期来计时。  [编辑本段]工作原理  摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/r)^0.5  一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。对精密摆钟,也有用附加重物法来微调摆的振动周期。摆钟放置在不同的地理位置(不同的地球纬度和海拔高度)中,摆锤的重力加速度会发生变化从而影响其振动周期。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。气压的变化会引起空气阻力和空气密度的变化,从而引起振动周期的变化。因此,精密的摆钟常将摆安装在恒压的壳体中,以消除气压影响。  摆的振动幅度影响到钟的等时性。振幅愈小,振幅变化所造成的日差(见钟表日差)变化愈小,即等时性愈好,因而精密摆钟常采用长摆杆小摆幅。但是,小摆幅对外界来的震动和撞击很敏感,因而对安装环境要求很高。摆钟的走时日差一般可以达到20秒/天以内,精密摆钟达千分之几秒。  摆钟是机械钟。有的石英电子钟虽然也装有摆锤或扭摆,但只起装饰作用  [编辑本段]天文摆钟  astronomical clock  利用摆的机械振荡产生稳定频率,以此作为频率标准制成的计时仪器。16世纪中叶C.惠更斯根据伽利略发现的摆的等时性原理,发明了摆钟。摆钟是天文观测中的计时工具,也是时间服务中的守时工具。早期摆钟的走时误差约每天0.1秒;经过不断改进,到20世纪20年代误差约每天几毫秒,当时的天文学家曾依据天文摆钟指示的相对均匀的时间发现了地球自转的不均匀性。当钟摆在一定的幅度内摆动时,其周期只与摆长有关,摆长随温度的变化给走时带来误差。克服这一缺陷的途径在于稳定摆杆的长度,采取的措施有:摆杆用温度系数小的材料(如铟钢、石英等)制造或用两种膨胀系数不同的金属(如黄铜和钢)熔合在一起以补偿温度变化,而且将钟安放在恒温室内 ,罩入真空罩中 ,实行钟体(母钟)与钟面(子钟)分离,由母钟控制子钟指示时刻。20世纪50年代初期,天文摆钟已完全由精度更高的石英钟取代。  参考资料:http://baike.baidu.com/view/335560.htm
2023-08-10 14:37:517

钟摆定理的作用

钟摆定理的作用:摆钟是利用摆锤的周期性振动(摆动)过程来计量时间,时间=摆的振动周期×振动次数。而摆的振动周期 T=2π(l/r)^0.5一般来说,摆的重量是确定的,调节摆的引用长度(l)即可调整摆的振动周期。摆的引用长度减短,时钟变快;反之则变慢。摆钟放置在不同温度和气压的环境中,也会引起振动周期的变化。温度变化会引起摆的各部分尺寸包括摆的引用长度的变化。一般是温度升高,摆胀长而钟变慢;反之则摆缩短而钟变快。因此,精密摆钟常用不同的线胀系数的材料制成温度补偿管,以补偿温度影响。发展历史以摆作为振动系统的钟。通常都带有报时功能,所以又称自鸣钟。1582~1583年,意大利物理学家和天文学家伽利略发现了摆的等时性。1657年,荷兰物理学家和天文学家克里斯蒂安.惠更斯利用摆的等时性原理发明了摆钟。后经不断改进,沿用至今。摆钟可根据用途和要求制成座钟、挂钟、落地钟、子母钟的母钟、天文钟等型式。摆钟的报时方式通常为机械打点报时,也有用电子扩音报时的。近代帝王宫廷中使用的摆钟,常附有一套机械传动机构,以精工制作的人物、山水、飞禽、走兽等活动形象进行报时。摆钟的原理是利用单摆的等时性。正是这种性质可以用来计时。而单摆的周期公式是:时间=圆周率的2倍乘以(根号下摆长除以重力加速度) 通过公式以及其推导可以看出来,单摆运动靠的是重力,和绳子的拉力。而摆动的周期仅仅取决于绳子的摆长和重力加速度。地球重力加速度固定,控制摆长可以调整周期来计时。
2023-08-10 14:38:221

自摆钟的工作原理?

靠齿轮带动旋转!
2023-08-10 14:38:412

能说说伽利略的“钟摆原理”吗

在伽俐略十八岁那年,一次到比萨教堂去做礼拜,他注意到教堂里悬挂的那些长明灯被风吹得一左一右有规律地摆动,他按自己脉博的跳动来计时,发现它们往复运动的时间总是相等的。做实验时发现以一定长度的绳子系着一块重物,加以外力使它摆动,则不管摆动幅度是大是小,也不管所系的物体是轻是重,每摆动一次的时间都完全相同,这就是「钟摆原理」。就这样伽利略发现了摆的等时性。后来荷兰物理学家惠更斯根据这个原理制成挂摆时钟,人们称之为"伽利略钟"。
2023-08-10 14:38:501

摆钟为什么能摆个不停?而且还能保证钟表时间的准确性

实际就是如此,要经常调的
2023-08-10 14:39:012