主成分分析

阅读 / 问答 / 标签

除了主成分分析法还有什么确定多变量权重的方法

在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分

主成分分析中各主成分之间的关系是

主成分分析中各主成分之间的关系是:(1)每个主成分都是各原始变量的线性组合(2)主成分的数目大大骚鱼原始变量的数目(3)主成分保留了原始变量的绝大多数信息(4)各主成分之间互不相关主成分分析是一种无监督的降维算法,一般在应用其他算法前使用,广泛应用于数据预处理中。其在保证损失少量信息的前提下,把多个指标转化为几个综合指标的多元统计方法。这样可达到简化数据结构,提高分信息效率的目的。通常,把转化生成的综合指标称为主成分,其中每个成分都是原始变量的线性组合,且每个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能。

主成分分析和因子分析

主成分分析:主成分分析可以简单的总结成一句话:数据的压缩和解释。常被用来寻找判断某种事物或现象的综合指标,并且给综合指标所包含的信息以适当的解释。在实际的应用过程中,主成分分析常被用作达到目的的中间手段,而非完全的一种分析方法。这也是为什么SPSS软件没有为主成分分析专门设置一个菜单选项,而是将其归并入因子分析。因子分析:鉴于主成分分析现实含义的解释缺陷,统计学斯皮尔曼又对主成分分析进行扩展。因子分析在提取公因子时,不仅注意变量之间是否相关,而且考虑相关关系的强弱,使得提取出来的公因子不仅起到降维的作用,而且能够被很好的解释。因子分析与主成分分析是包含与扩展的关系首先解释包含关系。在SPSS软件“因子分析”模块的提取菜单中,提取公因子的方法很多,其中一种就是主成分。由此可见,主成分只是因子分析的一种方法。其次是扩展关系。因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

主成分分析法的主要目的

是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。

spss主成分分析是什么?

spss的主成分分析主要应用在因子分析里,目的是将原来很多的因素,通过他们内在的相关分析,整合成新的一个或多个相对独立的综合因素,来代表原来散乱的因素。例如我们测量客户满意度ue00e设计了10个题目,那数据收集完后,就可以通过因子分析,来看看这10个题目是否能综合成几个因素。通过spss的主成分分析,就可以得出相应结果。结果可能是其中5个题目的相关显著,可以通过一个因素来归纳这5个因素,另外3个、 2个也可以分别组成一个,而且主成分对应的特征值大于1,这样就最后就可以通过3个综合因素来研究和分析客户满意度了。主成分分析可以理解为一种数据的处理理论,也可以理解为一种应用方法。而因子分析则可以理解为一种应用方法,因为做因子分析采用的比较多的就是用主成分分析的方法来浓缩因子。所以其实所谓的区别只不过是在学科研究当中存在的,因为同属于统计学的理论,所以一定要找出两者的区别来。但是如果你只是应用的话,那就没必要考虑两者有什么区别。

主成分分析可以用于评价指标权数吗?

主成分分析可以用于评价指标权数。对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。评价指标权数的确定方法有4种,分别为指标比较法 、德尔斐法 、层次分析法 、主成分分析法。在进行多变量综合评价时,不能用的方法时主成分分析法。原理在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析图怎么解读

从不同的侧面对数据的状况进行整体的反映。PCA全名principal component analysis,即主成分分析。主成分分析是一组变量通过正交变换转变成另一组变量的分析方法,来实现数据降维的目的,转换后得到的这一组变量,即是主成分。PCA还可以让我们非常直观地看出各个样本之间的相似性。在一张主成分分析图中,数个样本的点聚在一起,那么就说明这几个样本之间的相似性非常高;反之,如果几个样本的点非常分散,则说明这几个样本之间的相似性比较低。

主成分分析的基本步骤

主成分分析的基本步骤:1、对原始数据标准化2、计算相关系数3、计算特征4、确定主成分5、合成主成分。主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H。霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

请问您知道怎么做全局主成分分析吗?谢谢啊!

我不知道全局主成分是一个什么概念,但是如果是说是对你所获得的整个面板数据做主成分分析的话,那我可以提供你一些简略的步骤,希望可以帮到你。第一步:将数据导入到SPSS软件(一般主成分分析可以通过SPSS或者SAS软件进行操作,但是SAS软件较大,而且界面没有SPSS来得直接,他的编程操作更简单,所以一般选择SPSS软件即可。不同版本的SPSS软件可能操作界面有不同,但整体是相似的)如何导入:1.打开SPSS,会跳出一个对话框,可以直接关闭。 2.点击文件-打开-数据-选择数据源。如果是excel的,在文件类型里选择excel,然后选择打开,在弹出的对话框中点击继续即可导入数据。如何进行主成分分析:点击分析(analyze)-数据缩减(data reduction)-将对话框的左边栏选择你需要分析的变量进入右边栏(注意,选择的变量必须是数字变量)-描述(descriptive)-相关矩阵(correlation matrix)-KMO检验(KMO and Bartlett"s test of sphericity)-继续-提取(extraction)-方法(method)-主成分(principal components)-分析(analyze)-相关系数矩阵(correlation matrix)(一般选择相关系数矩阵,因为主成分的原理是经过线性变化提取出主要的变量,这个线性变化中希望把相关度高的进行合并,使之最后形成的新的几个主成分之间的相关度不高,便于解释。另一个选项是根据协方差矩阵进行分析,一般不太选择这个)-输出(display)-全勾选-提取(extract)-可选择单位根大于1(eigenvalues over=1)或者自己根据需要指定最后有几个主成分(numbers of factor)-继续-旋转(rotation)(主成分不需要进行旋转,因子分析需要选择该项,并选择根据方差选择)-得分(scores)-保存为变量(save as variables)-继续-OK。

spss主成分分析结果解读

结果分析(1)KMO与巴特利特球形检验由表可以知,巴特利特球形检验的统计量值为3960.473,相应的概率P值为0。在显著性水平下,应拒绝原假设,认为相关系数矩阵与单位矩阵存在显著差异。同时KMO值为0.844,根据Kaiser给出的度量KMO的标椎可知问卷题项适合做因子分析。(2)公因子方差提取值表示每个变量被公因子表达的多少,一般认为,大于0.7就说明变量被公因子很好地表达。由表可以看出,绝大多数变量的提取值大于0.85,变量能被公因子很好地表达。(3)解释总方差提取方法:主成分分析法(4)旋转成分矩阵提取方法:主成分分析法(5)计算因子得分:因子分析是基于研究各题项之间的内部依赖关系,将一些信息重叠、相关性高的变量指标归结为几个不相关的综合因子的多重统计方法。通过SPSS23.0得出的成分得分系数矩阵,见表,可得到、、、、公因子的得分表达式为:其中、、、、公因子分别代表基础技能,创新能力,资源运用,合作精神,创新思维。

灌区地下水位变化驱动因子主成分分析

影响灌区地下水动态的因素主要有地下水补给、排泄和径流的自然因素与人为因素,其中的自然因素包括气候、水文、地形、地貌、地质、士壤和植被等(蔡明科等,2011)。气候对地下水位变化的影响是起重要作用,气温影响降水形式和蒸发强度,降水和蒸发直接影响地下水的补给和排泄,尤其是对潜水更为突出。水文因素对地下水位变化的影响主要是在有水力联系的地表水体周围,其中河流的影响较大,河水渗漏补给地下水使得地下水位抬升,其影响程度随距离增大而减弱,影响的滞后时间随距离的增大而延长。地表植被为水分积聚和改善降水渗入补给地下水创造了有利条件,影响入渗补给时间的长短,可以增加地下水的补给量。灌区地下水开采和人工补给也使地下水水位发生变化,由于地下水开采量增加,人为因素对灌区的地下水系统的补、径、排条件的影响变得更加突出。一、主成分分析数学模型主成分概念首先是在1901年由Karl parson引进的,但当时仅用来讨论非随机变量。1933年Hotelling将其推广到随机变量。特别是近年来,随着计算机技术的发展,使得主成分分析得到广泛应用(鲍卫锋等,2007;麻荣永等,2008)。主成分分析采取一种数学降维的方法,寻找几个综合变量替代原有众多的变量,使这些综合变量能尽可能地表现原来变量的信息量,且彼此之间互不相关。这种把多个变量转换为少数几个互不相关的综合变量的统计分析方法即主成分分析或主分量分析(包和平等,2010;张体彬等,2012)。主成分分析常用的数学处理方法是将原来的变量做线性组合,作为新的综合变量,但是如果这种组合不加限制,那么可能有很多。如果将选取第一个线性组合,即第一个综合变量记为F1,希望其尽可能多地反映原来的变量信息,用方差来测量其“信息”,即Var(F1)越大,表示F1包含的原来信息就越多。因此,在所有的线性组合中所选取方差最大的F1,称F1为第一主成分。若第一主成分F1不足以代表p个变量原来的信息,再考虑选取F2,即第二个线性组合,为了更有效地反映原来信息,F1的已有信息就不要再出现在F2中,用数学语言表达即要求Cov(F1,F2)=0,称F2为第二主成分,依此类推构造出第三,四,…,第p主成分。对于一个样本资料,观测p个变量x1,x2,…,xp,n个样品的观测数据矩阵为灌区农业节水对地下水空间分布影响及模拟其中:灌区农业节水对地下水空间分布影响及模拟主成分分析就是将p个观测变量综合成为p个新的变量(综合变量),即灌区农业节水对地下水空间分布影响及模拟模型要求满足以下条件:①Fi,Fj互不相关(i≠j,i,j=1,2,…,p);②F1的方差>F2的方差>F3的方差,依次类推;③ + +…+ =1 k=1,2,…,p。其中F1为第一主成分,F2为第二主成分,依此类推,有第p个主成分。aij为主成分系数。二、主成分分析计算步骤第一步:对原始数据进行标准化处理。灌区农业节水对地下水空间分布影响及模拟其中:灌区农业节水对地下水空间分布影响及模拟第二步:计算样本相关系数矩阵。灌区农业节水对地下水空间分布影响及模拟假定原始数据标准化后仍用X表示,则经标准化处理后数据的相关系数为灌区农业节水对地下水空间分布影响及模拟第三步:用雅克比方法求相关系数矩阵R的特征值(λi1,λi2,…,λp)和相应的特征向量aip=(ai1,ai2,…,aip),i=1,2,…,p。第四步:选择重要的主成分,并写出主成分表达式。主成分分析可以得到p个主成分,但是各个主成分方差是递减的,包含的信息量也是递减的,实际分析时,一般不是选取p个主成分,而是根据各个主成分累计贡献率的大小选取前k个主成分,其贡献率是指某个主成分的方差占全部方差的比重,即某个特征值占全部特征值合计的比重。灌区农业节水对地下水空间分布影响及模拟贡献率越大,说明该主成分所包含的原始变量信息越强。主成分个数k的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。第五步:计算主成分得分。根据标准化的原始数据,按照各个样本,分别代入主成分表达式,可以得到各主成分下的各个样本的新数据,即为主成分得分。三、地下水位变化驱动因子主成分分析根据泾惠渠灌区多年地下水观测资料,选取年降水量(X1)、年蒸发量(X2)、渠首引水量(X3)、年地下水开采量(X4)、井渠灌水比例(X5)、田间灌溉用水量(X6)、灌溉水利用系数(X7)、灌溉面积(X8)作为主要影响因子,进行地下水位变化驱动因子主成分分析,各年的指标值见表4-20。表4-20 泾惠渠灌区地下水变化驱动因子指标值 Table4-20 Groundwater changes driving factors index in Jinghui Canal Irrigation District以8个因子的34年指标值构成8×34的矩阵,利用SPSS13.0软件进行主成分分析。其相关系数矩阵见表4-21,规格化的特征向量矩阵见表4-22,相关矩阵的特征值见表4-23。表4-21 相关系数矩阵 Table4-21 Correlation coefficient matrix表4-22 规格化的特征向量 Table4-22 Normalization characteristic vector表4-23 相关矩阵的特征值 Table4-23 Eigenvalues of the correlation matrix根据主成分分析原理,选取特征值累计贡献率>80%,或者特征值>1的主成分,结合专业背景进行解释。由表4-23 可知,前5个主成分所构成的信息量占总信息量的95.0168%,基本保留了原来的变量信息。通过主成分的初始因子,对载荷矩阵做方差最大旋转进行因子分析,在方差极大旋转过程中,因子轴相互正交,始终保持初始解中因子间互不相关的特点。然而在实际研究中,斜交因子是普遍存在的现象,即互相影响的各种因素不太可能彼此毫无关系,地下水位变化的各种因素之间始终存在着错综复杂的联系。因此对这类问题的分析引入斜交因子解,即用相关因子对变量进行线性描述,使得到的新因子模型最大限度地反映实际问题。从主成分法提取方差极大正交旋转因子载荷矩阵及斜交参考因子结构矩阵见表4-24和表4-25,可以得出5个主分量表达式:F1=0.0065x1-0.0559x2+0.9115x3+0.214x4-0.840 x5+0.9149x6-0.0894x7+0.9044x8F2=-0.1489 x1+0.067 x2+0.2023 x3+0.9321 x4+0.3498 x5+0.2059 x6-0.111 x7+0.1914 x8F3=-0.0778 x1+0.2575 x2-0.3152 x3-0.2026 x4+0.1932 x5-0.086 x6+0.9528 x7-0.0661 x8F4=0.9569 x1-0.2051 x2-0.0581 x3-0.1659 x4-0.0478 x5-0.1741 x6-0.0173 x7+0.2267 x8F5=0.1907 x1-0.9356 x2-0.0228 x3-0.0617 x4-0.3202 x5+0.0322 x6-0.01295 x7-0.0316 x8由表4-24和表4-25可以看出,第一主因子F1在主要由渠首引水量X3、井渠灌水比例X5、田间灌溉用水量X6、灌溉面积X8这4个变量上有较大的负荷,第二主因子F2在年地下水开采量X4有较大载荷,第三主因子F3在灌溉水利用系数X7上有较大载荷,第四主因子F4在年降水量X1上有较大载荷,第五主因子 F5在年蒸发量X2上有较大载荷。表4-24 方差极大正交旋转因子载荷矩阵 Table4-24 Variance biggest orthogonal rotating factor loading matrix表4-25 斜交参考因子结构矩阵 Table4-25 Oblique reference factor structure matrix其中第一主因子F1在主要由渠首引水量X3、井渠灌水比例X5、田间灌溉用水量X6、灌溉面积X8这4个变量所决定,这4个变量反映的信息量占总体的46.8%,第二主因子F2由年地下水开采量X4所决定,第三主因子F3由灌溉水利用系数X7所决定,第四主因子F4由年降水量X1所决定,第五主因子F5由年蒸发量X2所决定。综上所述,基本可以认为,渠首引水量和田间灌溉用水量的减少、地下水开采量的增加是灌区地下水位下降变化驱动的主要因子,其次井渠灌水比例、灌溉水利用系数、降水量等因子也不同程度地影响地下水位变化。

如何有效利用主成分分析进行综合评价

主成分分析方法是一种将多个指标化为少数几个不相关的综合指标(即主成分)的多元统计分析方法。由于其具有消除各指标不同量纲的影响,以及消除指标间相关性所带来的信息重叠等优点,近几年,该方法在社会经济、管理、自然科学等众多领域得到了广泛的应用,尤其是被用于系统综合评价。 在使用主成分分析方法做综合评价的过程中,由于部分学者对主成分分析的原理及主成分的定义理解不深,出现了不少错误。 本文通过分析主成分分析的原理及综合评价的特点,从理论和实际例子上证实了有关文献作者在用主成分做综合评价过程中某些做法的不合理性。给出了主成分做综合评价的充要条件,阐明了主成分所含信息量的大小与综合水平之间的差异,为充分利用形状因子(反映指标间结构性差异的主成分)提供的有效信息,提出了一种定性与定量相结合的评价体系。并通过一个实例讲解了评价过程。

主成分分析的目的

主成分分析的主要目的是希望使用较少的变量去解释原来资料中的大部分的变异,将我们手上许多相关性很高的变量转化成彼此相互独立或不相关的变量1、通常是选用比原始变量个数少,且新变量能解释大部分资料中变异的几个新变量即所谓的主成分,且以解释资料的综合性指标。综上所述,主成分分析法实际上式一种降维方法。2.特点(1)维度灾难使用过多的变量时,需要估计的参数个数也在增加,在训练集保持不变的情况下待估参数的方差也会随之增加,导致学习量上升、学习效率下降。维度灾难简单来说就是变量的个数多。(2)变量之间的相关性高变量之间的相关性高,说明数据是有冗余的,数据中的信息是有重叠的。相关性高是我们利用主成分进行降维的前提条件,一个基本的适用经验:观察变量的相关系数矩阵,一般来说相关系数矩阵中多数元素绝对值大于0.5,非常适合做主成分分析,但也不是说小于的就不可以用这种方法。原文链接:https://blog.csdn.net/chengdong996/article/details/108409320

主成分分析法详细步骤

主成分分析法的详细步骤如下:第1步:标准化这一步的目的是把输入数据集变量的范围标准化,以使它们中的每一个均可大致成比例地分析。更具体地说,在使用PCA之前必须标准化数据的原因是PCA对初始变量的方差非常敏感。也就是说,如果初始变量的范围之间存在较大差异,那么范围较大的变量将占据范围较小的变量(例如,范围介于0和100之间的变量将占据0到1之间的变量),这将导致主成分的偏差。因此,将数据转换为可比较的比例可避免此问题。在数学上,这一步可以通过减去平均值,再除以每个变量值的标准偏差来完成。只要标准化完成后,所有变量都将转换为相同的范围[0,1]。第2步:协方差矩阵计算了解输入数据集的变量是如何相对于平均值变化的。或者换句话说,是为了查看它们之间是否存在任何关系。因为有时候,变量间高度相关是因为它们包含大量的信息。因此,为了识别这些相关性,我们进行协方差矩阵计算。第3步:计算协方差矩阵的特征向量和特征值,用以识别主成分特征向量和特征值都是线性代数概念,需要从协方差矩阵计算得出,以便确定数据的主成分。开始解释这些概念之前,让我们首先理解主成分的含义。主成分是由初始变量的线性组合或混合构成的新变量。该组合中新变量(如主成分)之间彼此不相关,且大部分初始变量都被压缩进首个成分中。所以,10维数据会显示10个主成分,但是PCA试图在第一个成分中得到尽可能多的信息,然后在第二个成分中得到尽可能多的剩余信息,以此类推。第4步:特征向量正如我们在上一步中所看到的,计算特征向量并按其特征值依降序排列,使我们能够按重要性顺序找到主成分。在这个步骤中我们要做的,是选择保留所有成分还是丢弃那些重要性较低的成分(低特征值),并与其他成分形成一个向量矩阵,我们称之为特征向量。因此,特征向量只是一个矩阵,其中包含我们决定保留的成分的特征向量作为列。这是降维的第一步,因为如果我们选择只保留n个特征向量(分量)中的p个,则最终数据集将只有p维。第五步:沿主成分轴重新绘制数据在前面的步骤中,除了标准化之外,你不需要更改任何数据,只需选择主成分,形成特征向量,但输入数据集时要始终与原始轴统一(即初始变量)。这一步,也是最后一步,目标是使用协方差矩阵的特征向量去形成新特征向量,将数据从原始轴重新定位到由主成分轴中(因此称为主成分分析)。这可以通过将原始数据集的转置乘以特征向量的转置来完成。

主成分进行综合评价 综合评价主成分分析方法与因子分析方法的比较

统计研究 主成分分析方法和因子分析方法都是寻求从高维空间到低维空间的映射的方法,其目的是起到降维的效果,以便于用几个较少的综合指标来综合所研究总体各方面的信息,且这几个指标所代表的信息不重叠,也就是说从高维空间到低维空间的映射仍保持高维空间的“序”的结构。但这两种综合评价方法往往易混淆,本文从这两种方法的统计依据、数学模型、计算方法、综合指标的选取等方面比较它们的异同,以供初学者参考。 1、统计依据不同。主成分分析方法的统计问题:依P个指标戈l,x2,A,戈P的/7,个观察值矩阵X=G0帅(已作标准化处理),能否找到能较好地综合反映这个P .二 指标的线性函数Y=乞atxt,即 i=1 找到这个主成分的方法就是主成分分析方法。 因子分析方法的统计问题仍 口由P个指标戈。,戈:,A,却的几个观钱道察信息阵X=GF)忡,用有限个不翠 可观测的潜在变量来解释原始变量间的相关性或协方差关系,寻求这几个公因子的方法就是因子缉含汗价士气分析劣珐乡图分奸劣珐的火仪 分析法。它的原理源于已知信息的指标向量戈=0。,戈:,A,菇P)",总存在正交变换戈=Qy使得记x=Az,这里正交阵Q是X=G0。巾的 协方差阵y的特征向量排成的,y的各分量是不相关的,若茹的方差集中在少数几个变量三,,A,缸上,即y的特征值A,,A,A。较大,后几个特征值A九,A,A。很小几乎为零,于是就有因子模型算=4厂+s。寻求公因子.厂及因子载荷阵A的方法就是因子分析法。 , 2、数学模型不同。主成分分析的数学模型:Y=Eat..ri, 1=1 即主成分是原始指标的线性函数。因子分析的数学模型(称因子模型):戈=4厂+£,A为因子载荷阵。厂为公因子向量,£为随机误差项,Vnroq=I。,Var(厂+8)=o,Var I30圈羹堑绻过丝Q丝生皇塑万  方数据(8)=D。从形式上看二者的模型不同,但主成分分析又为因子分析中因子的寻求提供了一个有效的途径。主成分分析与因子分析法最易混淆的地方在于,将主成分分析方法与因子分析方法中估计公因子及因子载荷阵的主分量(主因子)法混为一谈。求解因子模型的方法有多种,也就是说因子模型的解不惟一,主分量(主因子)法仅仅是其中的一种参数估计方法。 3、计算方法不同。因子分析的主分量法:为估计 模型石气伊£的A及.厂'设样本协方差阵y的特征值为 A1>--A:≥A≥A,≥0,相应的特征向量为e,,e2,A,e,,若前 o. 个特征值的和与总方差上4的比大于,则 loI VzAgle:+人+丸已。em7+D f√五彳1f《 1 =(√丑q,A,√厶%1MI+I O I√九L.I I盯;J =AA"+D 因子载荷阵A2(√丑巳,人,√丸%),砰=%一∑彳,(汪l,2.A,p), t=l 由这种方法得到因子模型的一个解A及D就是因子模型的主分量解。因子载荷阵A中的第J列的元素与 D 主成分分析中第,个主成分乃=∑唧^的系数啕仅相差 r- Id √^倍,因子分析的主分量解也是因此而得名。因子 载荷阵A,舻(60的第i行元素的意义:由模型x=价E 及V=AA 7+D看出,Var(xi)=b21怕刍+A,坛+研,即 b;反映了因子.五载荷了施的方差的量。故我们在求 解因子模型时,可将因子作旋转,使因子载荷阵中每一行的值尽可能两极化(接近于0或接近与±1),使其因子更具实际意义,这样就有了因子旋转的方法求解因 子模型。石=Ap8=APl盼8,令g=可,B=APl,则髫= 则为斜交变换。曰为因子模型的又一解。 4、综合评价的指标不同。因子得分是公因子的估归分析中的参数估计,因为公因子是潜在因素,事先无法度量和观察的。有了因子得分,它们的加权组合就得到综合评价指标E。即.f个因子的得分为向量 《旁 丑. ,∑一 羔A。。 (下转第32页) 盼£,若P为正交阵,则上述变换g=可为正交变换,否 计值。可用最小二乘回归的方法估计,但它又不同于回 统计研究 出相应的研究结果。 “旧房(二手房)房价收入比”是指某一整体内上市旧房(--手房)上市交易的平均价格与居民家庭户均收入的比例,这一指标与新房房价收入比对照,可用于评估该整体内的旧房折旧程度,也可以比较居民家庭对新旧住房的需求情况,从而得出研究结果。 在计算新房房价收入比与旧房房价收入比基础上,再按上市住房总蜃中新房所占的比例和旧房所占的比例作为新房房价收入比和旧房房价收入比的权重,加权计算整体房价收入比,公式为:房价收入比=∑新(IEt)房房价收入比×新(i11)房占上市住房的比例。三、按照居民是否拥有自有住房细分计算房价收入比 目前,我国大多数城市居民家庭拥有自有住房。他们如要进入市场,绝大多数是卖掉原有住房,再去买大些好些的住房,以改善居住条件。对于拥有住房的家庭户,购买新建商品房,其住房消费承受能力不能按新建商品房销售价格与家庭收入的比较来衡量。因为这部分居民可以通过销售自有住房所得来支付购买新建商品房房款÷",也可以出租自有住房所得来支付银行按揭购房的按揭款。如果考虑这一因素,对这一部分居民家庭购房的房价收入比可以按以下公式计算:有房户房价收入比=(新建商品房平均销售价格一自有住房平均销售价格)÷拥有自有住房居民家庭户均收入。 计算公式的这一改变对房价收入比的计算方法起到了补充和扩展作用,因为它考虑了我国经济发展水平和多数居民拥有自有住房的特点,能够较好的衡量城市居民购买住房的实际承受能力。这一公式计算结果会降低某一区域的房价收入比指标值,在政策与舆论导向上会提高居民购房的心理承受能力。实际上,我国大多数城市房地产业发展很快,房价涨幅较高,主要因素是居民的住房消费需求大于住房供给的结果。城市中,除了最低收入者外,大多数拥有住房的家庭,都具有一定的购买更大更好住房的能力或是具有置换住房的能力。(上接第30页) 上 对于没有住房的居民家庭,情况也不一样,大体可以分为三类:第一类是自身有较高收入或可以得到家庭支持的无房户(这类无房户所占比重较小),实际上有较高的购房能力;第二类是中等收入者无房户,其中年轻人占的比重最大,政府应鼓励他们购房,用人单位给予一定的补贴;第三类是低收人者无房户,应通过政府的廉租屋政策来解决居住问题,不参加买方行列,使他们能享受政府福利,享受改革开放的成果。对第一类与第二类无房户,房价收入比可以按市场平均房价与它们的平均收入之比计算。 在分别计算有房户与无房户的房价收入比基础上,同样也可以用有房户和无房户占总家庭户数的比例作为它们各自房价收入比的权重,计算某地区的综合房价收入比,公式为:房价收入比=∑有(无)房户的房价收入比×有(无)房户家庭户数占总家庭房数的比例。 总之,为了正确的衡量广大居民住房消费的能力,制定科学合理的政策,引导房地产市场的健康发展,需要不断的深化研究房价收入比的计算方法。前面介绍的房价收入比指标从不同的角度反映居民住房消费承受能力,而且每种角度计算都会使得整体的房价收入比指标值比现行计算的房价收入比指标值要小,也就是说,考虑到各收入阶层的不同、新旧住房的区别、是否存在自有住房这几方面因素之后,让我们再用所得到的房价收人比来评价整体居民的住房消费承受能力,就会对部分专家认为的“现在我国已经出现了住房泡沫危机”有一个更清晰的认识。 分析发达国家经济发展历史,对照我国房地产业发展过程,我国的房地产业总体上还是处在起步阶段。当然在房地产业发展过程中,特别是在起步阶段,市场还不够成熟,市场规则制定与完善以及居民住房消费理性预期的养成,都需要有一个过程,因而,在现阶段,部分地方房价涨幅比较高,也是正常的。笔者觉得,就整体而言,我国现行的房地产业并没有出现很大的泡沫,但可能少数城市,由于人为炒作等原因,可能会存在结构性的供求失衡,存在一定的房地产泡沫。 (作者单位:东北财经大学统计系u30fb邮编:116025)综上所述,主成分分析与因子分析都是综合评价的有效方法,它们有区别,也有联系,第_『个因子上的载荷是该总体第J个主成分的系数的A,倍。用因子分析作综合评价不仅可以给出排名顺序,还可以进一步探索影响排名次序的因素,从而找到进一步努力的方向,这就是因子分析所具有的独到的优越性。 (作者单位:浙江工商大学统计与计算科学学院) {;;;;i!{j|;;;;;j;;;i;Ejj;;;;;;;i;jj;i;;i;ij;;;;;i;;;;!;;i;i;;!;;;i;÷;;;iii;;;;!i;i;;;;;;j;;;;;!;;;i;;;E;ij;;;;;;;;;;i;;;;i;;;;;ji;!;;;;;;;ii;;;; 而主成分分析一般按第一主成分的得分Y-=艺口rXi的 i=1 值排序,若第一主成分作为综合指标损失较多的信息, 可继续选取第二主成分y2,A,ym等,然后计算其综合得 矗 分二wjyj再利用综合得分指标排序。 万方数据  综合评价主成分分析方法与因子分析方法的比较 作者:作者单位:刊名:英文刊名:年,卷(期):被引用次数: 钱道翠 浙江工商大学统计与计算科学学院浙江统计 ZHEJIANG STATISTICS2004(9)5次 引证文献(5条) 1.高磊 基于主成分分析方法的体育健身消费行为影响因素研究[期刊论文]-市场论坛 2009(1) 2.田开.郑宗培.虞小海 主成分分析法在学生成绩分析中的应用[期刊论文]-大众商务(下半月) 2009(12)3.FEI Nina.刘新平 入境游客对我国旅游接待设施评价的因子分析[期刊论文]-西安石油大学学报(社会科学版)2008(3) 4.应敏 多元统计分析在考试成绩分析中的应用[期刊论文]-中国科技信息 2006(4)5.石丽君 国际科技活动效率评价方法研究[学位论文]硕士 2005 本文链接:.com.cn/Periodical_zjtj200409013.aspx

层次分析法和主成分分析权重怎么算?

层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。

层次分析法和主成分分析权重怎么算?

层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。

如何用主成分分析法确定指标权重?

在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。扩展资料:主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。参考资料来源:百度百科-主成分分析法

因子分析和主成分分析有什么区别啊

主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析中,各主成分的关系

主成分分析中,各主成分的关系是低度相关。主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

面板数据怎么做因子分析?和主成分分析的区别

stata 软件 有专门的 这方面的命令

主成分分析和层次分析法有什么异同?

层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。

主成分分析中,各主成分的关系

主成分分析中,各主成分的关系是低度相关。主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

主成分分析和层次分析法的区别和联系

层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。

因子分析法和主成分分析法的区别与联系

因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子,以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力。运用这种研究技术,我们还可以为市场细分做前期分析。

主成分分析和因子分析有什么区别?

因子分析与主成分分析的异同点:都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。

利用加权主成分分析法描述两个或多个

主成分分析法原理如下:主成分分析, 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

主成分分析的主要步骤包括

收藏立即下载为了提升浏览体验,原视图版网页已升级为如下版式主成分分析法的步骤和原理主成分分析法的步骤和原理.pdf438.91K, 15页, 13478次阅读sshiiwengy6 分享于2016-11-16 09:09立即下载 举报(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变 量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性 组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信 息,且所含的信息互不重叠。[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺 点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问 题得以简化,同时得到更为科学、准确的财务信息。(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用 X1, X2…Xp来表示,这p个变量 构成的p维随机向量为X=(X1, X2…Xp)t。设随机向量X 的均值为μ,协方差 矩阵为Σ。假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的 期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E [X])}=(如图对 X 进行线性变化,考虑原始变量的线性组合:Zp=μ p1X1+μ p2X2+…μ ppXp主成分是不相关的线性组合Z1, Z2……Zp,并且Z1是 X1, X2…Xp的线性 组合中方差最大者, Z2是与 Z1不相关的线性组合中方差最大者,…, Zp是与Z1, Z2 ……Zp-1 都不相关的线性组合中方差最大者。(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始 数据可得矩阵 X=(xij)m×p,其中 xij表示第 i 家上市公司的第 j 项财务指标数据。第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标 数据进行标准化,得到标准化矩阵(系统自动生成)。第三步:根据标准化数据矩阵建立协方差矩阵 R,是反映标准化后的数据 之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分 析。其中, Rij (i, j=1, 2,…, p)为原始变量Xi与Xj的相关系数。 R为实对 称矩阵(即 Rij=Rji),只需计算其上三角元素或下三角元素即可,其计算公式为:1/15页n第四步:根据协方差矩阵 R 求出特征值、主成分贡献率和累计方差贡献率, 确定主成分个数。解特征方程uf06cEuf02dR uf03d 0,求出特征值λi(i=1, 2,…, p)。因为R是正定矩阵,所以其特征值λi都为正数,将其按 大小顺序排列,即λ1≥λ2≥…≥λi≥0。特征值是各主成分的方差,它的大1 且累计贡献率达80%-95%的特征值λ1,λ2,…,λm所对应的1, 2,…, m (m≤p), 其中整数 m 即为主成分的个数。第五步:建立初始因子载荷矩阵,解释主成分。因子载荷量是主成分Zi与 原始指标Xi的相关系数R (Zi, Xi),揭示了主成分与各财务比率之间的相关程 度,利用它可较好地解释主成分的经济意义。第六步:计算企业财务综合评分函数Fm,计算出上市公司的综合值,并进 行降序排列:Fm=W1Z1 + W2Z2+…+ WiZi

主成分分析和因子分析有什么区别

主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,SPSSAU建议使用因子分析。主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。SPSSAU可直接使用这两种方法,支持自动保存因子得分及综合得分,不需要手动计算。

主成分分析法介绍 什么是主成分分析法

1、主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 2、在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。 3、主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

主成分分析法步骤

主成分分析法的步骤:对原始数据标准化、计算相关系数、计算特征、确定主成分、合成主成分。主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H。霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。主成分分析法的原理在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

什么是主成分分析?主成分分析的步骤有哪些

主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。美信分析

如何用主成分分析法确定指标权重

  在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。  确定数据的权重也是进行数据分析的重要前提。可以利用SPSS的因子分析方法来确定权重。主要步骤是:  (1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。  (2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。  (3)写出主因子得分和每个主因子的方程贡献率。  Fj =β1j*X1 +β2j*X2 +β3j*X3 + ……+ βnj*Xn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。  (4)求出指标权重。 ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指标Xi的权重。  因子分析应用在评价指标权重确定中,通过主成分分析法得到的各指标的公因子方差,其值大小表示该项指标对总体变异的贡献,通过计算各个公因子方差占公因子方差总和的百分数。

熵值法和主成分分析法哪个更客观

熵值法和主成分分析法一样客观。因为熵值法与主成分法在计算指标权重时都是客观赋权,是一样客观的,摒弃了研究者的主观性。熵值法计算过程简单易操作,主成分分析全过程较为复杂;熵值法没有改变评价指标的数量,而主成分因为信息浓缩的原理会减少评价的维度。

pca主成分分析

PCA(PrincipalComponentAnalysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。思考:我们如何得到这些包含最大差异性的主成分方向呢?答案:事实上,通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维。由于得到协方差矩阵的特征值特征向量有两种方法:特征值分解协方差矩阵、奇异值分解协方差矩阵,所以PCA算法有两种实现方法:基于特征值分解协方差矩阵实现PCA算法、基于SVD分解协方差矩阵实现PCA算法。既然提到协方差矩阵,那么就简单介绍一下方差和协方差的关系。然后概括介绍一下特征值分解矩阵原理、奇异值分解矩阵的原理。概括介绍是因为在我之前的《机器学习中SVD总结》文章中已经详细介绍了特征值分解原理和奇异值分解原理,这里就不再重复讲解了。可以看我的《机器学习中SVD总结》文章。地址:机器学习中SVD总结

主成分分析法的优缺点

主成分分析(Principal Component Analysis,PCA)是一种常用的多元统计分析方法,其优缺点如下:优点:降维效果显著:PCA可以将原始数据集的维度降低,从而方便数据的可视化和处理。减少冗余信息:PCA可以从原始数据中提取出主要的特征,减少冗余信息的影响。去除噪声:PCA可以通过特征值分解的方法去除噪声,提高数据的准确性和可靠性。提高计算效率:PCA通过对协方差矩阵进行特征值分解,可以将大规模数据计算转化为少量特征向量的计算,从而提高计算效率。缺点:对异常值敏感:PCA对异常值比较敏感,可能会导致提取出的主成分偏离真实情况。对数据分布的假设:PCA假设数据符合高斯分布,如果数据分布与该假设不符,则可能导致分析结果不准确。解释性不足:PCA提取的主成分可能难以解释其含义,需要通过额外的分析和解释才能得出结论。受样本量和变量个数限制:PCA的应用需要考虑样本量和变量个数的限制,如果样本量不足或变量过多,可能会导致提取的主成分不具有代表性。

主成分分析的基本思想

主成分分析的基本思想是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。历史:1846年,Bracais提出的旋转多元正态椭球到“主坐标”上,使得新变量之间相互独立。皮尔逊(Pearson)(1901)、霍特林(Hotelling)(1933)都对主成分的发展做出了贡献,霍特林的推导模式被视为主成分模型的成熟标志。主成分分析被广泛应用于区域经济发展评价,服装标准制定,满意度测评,模式识别,图像压缩等许多领域。

什么是主成分分析

主成分分析是一种线性降维算法,也是一种常用的数据预处理方法。主成分分析法的目标:是用方差(Variance)来衡量数据的差异性,并将差异性较大的高维数据投影到低维空间中进行表示。绝大多数情况下,我们希望获得两个主成分因子:分别是从数据差异性最大和次大的方向提取出来的,称为PC1(Principal Component 1) 和 PC2(Principal Component 2)。Scores.xlsx (文末获取文件链接) 包含了约70名学生的全科考试成绩。其中每名学生是一个独立的样本,每门学科的成绩都是一个数据维度(共有13门成绩)。目的是通过分析学生的考试成绩来判断学生的类别(理科、文科生,和体育、艺术特长生)。特征提取(或称特征抽取)一般做两方面的工作:1、对原始数据进行某种变换。2、在变换的过程中使不同的类别(或不同样本)具有相对较好的区分性。PCA与LDA的局限性:PCA的局限性:PCA可以很好的解除线性相关,但是对于高阶相关性就没有办法了,对于存在高阶相关性的数据,可以考虑Kernel PCA,通过Kernel函数将非线性相关转为线性相关。另外,PCA假设数据各主特征是分布在正交方向上,如果在非正交方向上存在几个方差较大的方向,PCA的效果就大打折扣了。各个主成分特征是原始特征的线性组合,其含义具有一定的模糊性,不如原始样本特征的解释性强。方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。LDA的局限性:传统的线性鉴别分析和主成分分析均只作用于对一维数据即矢量数据进行特证抽取,由此带来诸多不便。假如我们要处理的数据是200×200大小的图像矩阵,那应用这两个方法之前,我们必须把每一个图像转换为一个40000维的矢量。在此基础上,主成分分析对应的协方差矩阵为一个40000×40000的矩阵,这是一个恐怖的数字,无论是计算协方差矩阵还是计算协方差矩阵的特征向量都将耗费巨大的计算资源。面对上述图像矩阵时,线性鉴别分析也存在一样的难题,而且过之而不及。线性鉴别分析中类间散布矩阵与类内散布矩阵的大小均为40000×40000,而且还需要计算类内散布矩阵的逆矩阵,计算量的巨大可想而知。

冗余分析和主成分分析的区别

一、基本思想的异同共同点从二者表达的含义上看,主成分分析法和因子分析法都寻求少数的几个变量(或因子)来综合反映全部变量(或因子)的大部分信息,变量虽然较原始变量少,但所包含的信息量却占原始信息量的 85%以上,用这些新变量来分析问题,其可信程度仍然很高,而且这些新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。不同点在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,……,x3,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。二、操作软件中的异同主成分分析与因子分析都可利用 SPSS 软件中的 FACTOR 过程来实现,在此过程中应该注意以下几点:1.指标的选定指标最好具有同趋势化,一般为了评价分析的方便,需要将逆指标转化为正指标。2.假设条件主成分分析:不需要有假设(assumptions)因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。3.因子变量个数的确定在利用 FACTOR 实现主成分分析时,在确定公共因子个数时,一般直接选择与原变量数目相等的个数,这样可以避免由于采用默认形式后累积方差贡献率达不到 85%而造成的二次操作。在利用FACTOR实现因子分析时,可以选择的选项较多,除了主成分分析法之外,还有未加权最小平方法、广义最小平方法、最大似然法、主轴因式分解法、Alpha式分解法、映像因式分解法。这七种方法中只有用主成分分析法求解因子载荷时可以选择与变量个数相等的因子变量个数,其它方法都必须因子变量个数小于原始变量个数。4.模型的生成经过 FACTOR 过程都产生因子载荷阵,但主成分分析模型需要的不是因子载荷量而是特征向量,所以还需要将因子载荷量输入到数据的编辑窗口,利用“主成分相应特征根的平方根与特征向量乘积为因子载荷量”性质来计算特征向量,从而得到主成分的线性表达式。

单因子指数法的主成分分析方法

地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。第一节 主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。如果记原来的变量指标为x1,x2,…,xp,它们的综合指标——新变量指标为x1,x2,…,zm(m≤p)。则在(2)式中,系数lij由下列原则来决定:(1)zi与zj(i≠j;i,j=1,2,…,m)相互无关;(2)z1是x1,x2,…,xp的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,…,xp的所有线性组合中方差最大者;……;zm是与z1,z2,……zm-1都不相关的x1,x2,…,xp的所有线性组合中方差最大者。这样决定的新变量指标z1,z2,…,zm分别称为原变量指标x1,x2,…,xp的第一,第二,…,第m主成分。其中,z1在总方差中占的比例最大,z2,z3,…,zm的方差依次递减。在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。从以上分析可以看出,找主成分就是确定原来变量xj(j=1,2,…,p)在诸主成分zi(i=1,2,…,m)上的载荷lij(i=1,2,…,m;j=1,2,…,p),从数学上容易知道,它们分别是x1,x2,…,xp的相关矩阵的m个较大的特征值所对应的特征向量。第二节 主成分分析的解法主成分分析的计算步骤通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:(1)计算相关系数矩阵在公式(3)中,rij(i,j=1,2,…,p)为原来变量xi与xj的相关系数,其计算公式为因为R是实对称矩阵(即rij=rji),所以只需计算其上三角元素或下三角元素即可。(2)计算特征值与特征向量首先解特征方程|λI-R|=0求出特征值λi(i=1,2,…,p),并使其按大小顺序排列,即λ1≥λ2≥…,≥λp≥0;然后分别求出对应于特征值λi的特征向量ei(i=1,2,…,p)。(3)计算主成分贡献率及累计贡献率一般取累计贡献率达85-95%的特征值λ1,λ2,…,λm所对应的第一,第二,……,第m(m≤p)个主成分。(4)计算主成分载荷由此可以进一步计算主成分得分:第三节 主成分分析应用实例主成分分析实例对于某区域地貌-水文系统,其57个流域盆地的九项地理要素:x1为流域盆地总高度(m)x2为流域盆地山口的海拔高度(m),x3为流域盆地周长(m),x4为河道总长度(km),x5为河表2-14 某57个流域盆地地理要素数据道总数,x6为平均分叉率,x7为河谷最大坡度(度),x8为河源数及x9为流域盆地面积(km)的原始数据如表2-14所示。张超先生(1984)曾用这些地理要素的原始数据对该区域地貌-水文系统作了主成分分析。下面,我们将其作为主成分分析方法在地理学研究中的一个应用实例介绍给读者,以供参考。表2-15相关系数矩阵(1)首先将表2-14中的原始数据作标准化处理,由公式(4)计算得相关系数矩阵(见表2-15)。(2)由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表2-16)。由表2-16可知,第一,第二,第三主成分的累计贡献率已高达86.5%,故只需求出第一,第二,第三主成分z1,z2,z3即可。表2-16 特征值及主成分贡献率(3)对于特征值λ1=5.043,λ2=1.746,λ3=0.997分别求出其特征向量e1,e2,e3,并计算各变量x1,x2,……,x9在各主成分上的载荷得到主成分载荷矩阵(见表2-17)。表2-17 主成分载荷矩阵从表2-17可以看出,第一主成分z1与x1,x3,x4,x5,x8,x9有较大的正相关,这是由于这六个地理要素与流域盆地的规模有关,因此第一主成分可以被认为是流域盆地规模的代表:第二主成分z2与x2有较大的正相关,与x7有较大的负相关,而这两个地理要素是与流域切割程度有关的,因此第二主成分可以被认为是流域侵蚀状况的代表;第三主成分z3与x6有较大的正相关,而地理要素x6是流域比较独立的特性——河系形态的表征,因此,第三主成成可以被认为是代表河系形态的主成分。以上分析结果表明,根据主成分载荷,该区域地貌-水文系统的九项地理要素可以被归为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。如果选取其中相关系数绝对值最大者作为代表,则流域面积,流域盆地出口的海拔高度和分叉率可作为这三类地理要素的代表,利用这三个要素代替原来九个要素进行区域地貌-水文系统分析,可以使问题大大地简化。二、内梅罗水质指数污染表1 内梅罗水质指数污染等级划分标准 P <1 1~2 2~3 3~5 >5 水质等级 清洁 轻污染 污染 重污染 严重污染 表2 地表水环境质量标准(GB3838—2002) 单位:mg/L 序 号 项 目 V类标准值 1 水温(℃) — 2 PH值(无量纲) 6—9 3 溶解氧 ≥ 2 4 高锰酸盐指数 ≤ 15 5 化学需氧量 ≤ 40 6 五日生化需氧量 ≤ 10 7 氨氮 ≤ 2.0 8 总磷 ≤ 0.4 9 总氮 ≤ 2.0 10 铜 ≤ 1.0 11 锌 ≤ 2.0 12 氟化物 ≤ 1.5 13 硒 ≤ 0.02 14 砷 ≤ 0.1 15 汞 ≤ 0.001 16 镉 ≤ 0.01 17 铬(六价) ≤ 0.1 18 铅 ≤ 0.1 19 氰化物 ≤ 0.2 20 挥发酚 ≤ 0.1 21 石油类 ≤ 1.0 22 硫化物 ≤ 1.0 23 粪大肠菌群(个/L) ≤ 40000 表3 水质评价计算方法 单因子污染指数 Pi = Ci/ Si Ci——第i项污染物的监测值; Si——第i项污染物评价标准值; 溶解氧指数   Cf——对应温度T时的饱和溶解氧浓度;Ci——溶解氧浓度监测值;Si——溶解氧评价标准值;                   pH指数   pHi——pH监测值;pHS,min——评价标准值的下限;pHS,max ——评价标准值的上限;   污染物超标倍数   Ci ——第i项污染物的监测值;C0 ——第i项污染物评价标准值; 内梅罗指数   Pmax ——单因子污染指数的最高值;Pi ——第i项污染物的污染指数;n ——参与评价污染物的项数; 常用的客观赋权法之一:熵值法熵是信息论中测度一个系统不确定性的量。信息量越大,不确定性就越小,熵也越小,反之,信息量越小,不确定性就越大,熵也越大。熵值法主要是依据各指标值所包含的信息量的大小,利用指标的熵值来确定指标权重的。熵值法的一般步骤为:(1)、对决策矩阵作标准化处理,得到标准化矩阵,并进行归一化处理得:(2)、计算第个指标的熵值:。其中。(3)、计算第个指标的差异系数。对于第个指标,指标值的差异越大,对方案评价的作用越大,熵值越小,反之,差异越小,对方案评价的作用越小,熵值就越大。因此,定义差异系数为:。(4)、确定指标权重。第个指标的权重为:。效益型和成本型指标的标准化方法对于效益型(正向)指标和成本型(逆向)指标,由于这两者是最常见并且使用最广泛的指标,所以,对这两种指标标准化处理的方法也最多,一般的处理方法有:1. 极差变换法该方法即在决策矩阵中,对于效益型指标,令=对于成本型指标,令=则得到的矩阵称为极差变换标准化矩阵。其优点为经过极差变换后,均有,且各指标下最好结果的属性值,最坏结果的属性值。该方法的缺点是变换前后的各指标值不成比例。2. 线性比例变换法即在决策矩阵中,对于效益型指标,令=对成本型指标,令=或=则矩阵称为线性比例标准化矩阵。该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例。但对任一指标来说,变换后的和不一定同时出现。3. 向量归一化法即在决策矩阵中,对于效益型指标,令对于成本型指标,令则矩阵称为向量归一标准化矩阵。显然,矩阵的列向量的模等于1,即。该方法使,且变换前后正逆方向不变,缺点是它是非线性变换,变换后各指标的最大值和最小值不相同。4. 标准样本变换法在中,令其中,样本均值,样本均方差,则得出矩阵,称为标准样本变换矩阵。经过标准样本变换之后,标准化矩阵的样本均值为,方差为。5. 等效系数法对成本型指标,令=该方法的优点是变换前后的指标值成比例,缺点是各指标下方案的最好与最差指标值标准化后不完全相同。另外,关于效益型指标的标准化处理还有:=关于成本型指标的标准化处理还有:=固定型指标的标准化方法对于固定型指标,若设为给定的固定值,则标准化处理的方法主要有以下几种,即令或或或(4.15)式的特点是各最优属性值标准化后的值均为1,而各最差属性的值标准化后的值不统一,即不一定都为0。若设和分别是人为规定的最优方案和最劣方案,在该情形下,还给出了效益型、成本型和固定型指标的新的标准化方法。对效益型和成本型,有:对固定型指标则有:区间型指标的标准化方法对区间型的指标,其指标标准化处理的方法主要有以下几式:设,令或令显然,还可以简化为:或令或令其中,是指给定的某个固定区间,即属性值越接近该区间越好。偏离型指标的标准化方法对越来越偏离某值越好的偏离性指标,一般有如下标准化公式:或令(对都有)或令偏离型指标是与固定型指标相对立的一种指标类型,它的公式使用可以用固定型指标的公式改造,但在使用时要注意其公式的适用范围。偏离区间型指标的标准化方法对偏离区间型指标,有如下标准化的方法:令或令或令其中,是某个固定区间,属性值越偏离该区间越好。偏离区间型指标是与区间型指标相对立的一种指标类型。

基于主成分分析法的长沙市土地生态安全评价:土地生态安全

  摘 要:近年来随着经济社会的发展,土地利用强度和利用方式发生了变化,造成了土地污染和人地矛盾的加剧。因此,文章采用主成分分析法对2013年长沙市土地生态安全进行评价,选取了8项代表性的评价因子,构建长沙市土地生态安全评价体系。结果显示:产业结构、人口结构、城市化水平是影响长沙市生态安全状况的关键因素,其他生态保护措施对于改善区域生态环境同样具有明显作用,据此提出相关建议。   关键词:土地生态安全;评价;主成分分析法;长沙市   十八届五中全会指出:“促进人与自然和谐共生,构建科学合理的城市化格局、农业发展格局、生态安全格局、自然岸线格局,推动建立绿色低碳循环发展产业体系。”随着经济社会的迅猛发展,土地生态系统却受到了严重的威胁,如:耕地、林地面积的不断缩小、水土流失、土地荒漠化、土地破坏、土地污染等,降低了土地生态系统服务功能并直接影响人类社会的可持续发展。面对严重的土地生态安全问题,逐渐引起了人们普遍关注。国内外学者分别从土地生态安全概念[1],土地资源生态安全与土地利用覆盖变化的关系[2]、土地资源生态安全设计[3]、土地生态安全评价指标体系与评价方法[4]等方面进行了研究。如1995年,世界银行与联合国粮农组织、联合国开发计划署及联合国环境规划署发布的《土地质量指标》[5]。也有学者运用主成分分析方法对地区的土地生态安全做过相关评价研究,如王鹏等运用主成分分析方法,对衡阳市的土地生态安全状况做了研究评估[6]。张浩中采用PSR模型对长株潭地区2000-2012年的土地生态安全状况做了研究评估[7]。综观现有研究,作者认为土地生态安全应是在必定的时空范围内,人类赖以生存和发展的土地生态系统处于一个不受或者少受威胁破坏的平衡状态,同时土地生态系统也为人类提供能够满足人类生存与发展的服务与资源[6]。因此,文章从可持续发展的角度,运用SPSS22.0主成分分析方法对长沙市2013年的生态安全进行定量评价,目的是找出制约长沙市生态可持续发展的重要因子,为长沙两型社会科学长远发展提出合理性建议。   1 研究区概况   长沙市处于湖南省东部偏北。2013年全市土地面积11816.0平方公里,与2012年相比,其耕地面积减少了740公顷,建成区面积增加了9.7平方公里,城市园林绿化覆盖面积增加了477公顷[8]。近年来在两型社会的引领下,长沙市以“资源节约、环境友好”为目标,开展了湘江流域治理、重金属污染土地整治、城乡环境同治等一系列措施。然而随着城镇化、工业化的推进,工业污染、农业面源污染、居民生活污染等问题却呈现了逐步走高的形态,对土地生态安全造成了严重威胁。   2 长沙市土地生态安全评价   2.1 指标选取   通过对现有文献的整理,依据主成分分析方法的科学、可比、可操性等原则[9],选取8项能反映长沙社会、经济、生态状况的指标:人口密度(人/平方千米)、人口自然增长率(%)、城市化水平(%)、人均GDP(元/人)、人均播种面积(亩/人)、地均工业产值(万元/平方千米)、规模工业增加值能耗降低率(%)、第三产业比重(%)(表1)。   2.2 指标获得及处理   本文数据取自《长沙市统计年鉴(2014年)》、《湖南省统计年鉴(2014年)》、长沙市统计信息网等。利用SPSS22.0软件,对所选取的8个指标进行标准化处理,以排除数据之间相互干扰和因单位的不同不具有可计算性的影响。   2.3 主成分分析原理   主成分分析方法是指将多个具有相关性的要素转化成几个不相关的综合指标的分析与统计方法[6]。研究对象往往具有复杂性,但变量太多会增加分析问题的难度和复杂性,因此基于原变量之间的相关关系,用较少的新变量代替原来较多的变量,能够简化复杂问题的研究,在保证研究精确度的前提下提高研究效率。   2.4 主成分法分析步骤   2.4.1 设M个研究区域,N个指标的矩阵Z,如下:   2.4.4 求得研究各地区生态安全综合得分W,如下:   W=aZ1+bZ2+…+xZn   式中:X表示特征值的特征向量;a、b等则是原始指标的标准化数据。   3 主成分分析评价过程   3.1 指标特征值与贡献率   通过SPSS22.0软件将标准化处理的8个指标进行分析,结果显示,前2项的贡献率累计值超过了85%,达到85.376%,所以提取前2项作为主成分因子,计算各因子的载荷状况。通过计算可以得出人口密度、人口自然增长率、城市化水平、人均GDP、地均工业产值和第三产业占比在主成分1中作用明显,这说明人口的增长、城市化水平的提高增加了资源环境承载压力。在主成分2中规模工业增加值能耗降低率、地均工业产值占比明显,而人口密度和人均播种面积等因素相对较弱,这说明优良的产业结构、土地利用产出率与生态环境安全密切相关。产业结构优化、土地利用集约对于生态安全有显著作用。   3.2 长沙市生态安全评价   通过以上结果计算长沙市各地区的生态安全评价综合得分并排名。如果综合得分为正,表明该主成分在平均发展水平之上,且得分越高,说明生态安全越好;反之,综合得分为负,表明该主成分在平均发展水平之下,得分越低,说明生态安全越差[10]。   结果表明(见表2):长沙市各地区生态安全稳定性由弱到强依次是宁乡县、浏阳县、长沙县、望城区、岳麓区、开福区、天星区、雨花区、芙蓉区。其中两项因子都为正的仅芙蓉区和雨花区。因此得出如下结论:一是土地生态安全情况与距城市中心距离相关。研究区内,芙蓉区位于长沙市中心,其土地生态安全综合得分为2.5751198。宁乡县距离长沙市中心城区较远,其土地生态安全综合得分为-2.081661881。因此,距离城区距离的远近是影响了土地生态安全稳定性的因素。二是土地生态安全状况与产业结构相关。研究区内,芙蓉区主要以第三产业为主,有效降低了因农业面源污染和工业“三废”污染,从而使得土地生态安全趋于稳定。而宁乡县第三产业发展水平在国民经济发展中的比重较低,区域内农业面源污染和工业“三废”排放污染压力较大,进而使得土地生态安全稳定性较差。三是土地生态安全状况与城市化率相关。研究区内,芙蓉区城市化已基本完成,人口的聚集虽然给土地生态安全带来了压力,但在其可承受范围内,因此土地生态安全状况较好。而宁乡县虽然人口密度较低,但其城市化水平较低,进而其土地生态安全评分较低。   4 结论与政策建议   依据评价结果,结合长沙市实际情况,对优化长沙市区域内土地生态安全系统提出以下建议。   4.1 调整产业结构,转变经济发展方式   加强土地生态安全建设,必须依托市场,优化产业结构,注重本地区特色产业的发展。对于土地生态安全压力较大的地区来说,应通过产业融合、互联网+等现代科学技术的改造,降低第一、二产业在GDP中的比重,从而缓解农业面源污染和工业三废污染对土地生态安全系统的破坏能力。   4.2 优化人口结构,提高公众环境意识   土地是一种稀缺资源,当人口增长过快、集聚过度将加大土地生态环境系统的承载压力。因此,一是树立环保意识。通过多形式的宣传教育和新兴媒体平台展开环保宣传教育活动。二是深化城乡一体化改革。长期以来,我国城乡二元结构的束缚,使得农村居民无法享受与城市居民相等的医疗、教育、养老等保障政策,严重影响了农村居民的发展。从研究结果来看,距离城市中心越近,土地生态安全越稳定,这于我国长期以来重视城市发展的政策相关,大量的资金和要素生产资源长期投资于城市,而对农村和偏远山区的投入资源相当有限,不仅加大了城乡二元经济结构,而且带来了产生了相当多的社会矛盾。三是完善环保制度。着重完善环境保护的产权制度、碳排放交易制度、资源保护考核制度、激励制度、监督制度等,从而通过制度约束提升环境保护意识。   4.3 运用技术创新,降低工农业生产能耗   由于要素资源的集聚和长期以来对特大城市和大城市扶植力,形成了城市在运用科学技术水平上的不均衡性特点。从研究结果来看,长沙市区内的科技程度更高,应用领域更广泛,在土地生态环境中的资金、科技、人力投入上占据优势,而下级地区由于资金、科技、人才的短缺,在土地生态环境中的投入较低。因此,加大对中小城市资金、技术的投入和应用,降低工农业生产能耗是未来发展的趋势。   4.4 强化土地规划,深化土地制度改革   守住耕地红线,减少建设用地“双高”现象,走集约型道路是我国土地制度的核心关键。一是确权颁证。通过确权颁证对土地的产权主体、权能内容、四至以及使用年限等进行明晰。二是土地规划修编。加强区域土地利用规划编制工作,用以指导具体地区土地利用规划的编制。明确各地区土地利用的用途、容积率、建筑高度、绿化率等各项指标。三是严格查处执法。各级政府不仅要将村镇规划纳入城镇规划中,而且必须明确各宗地的用途,加强对土地项目的审批工作,防止非法改变土地用途,防止破坏土壤层造成土地污染。   另外,长沙市各地区要重视环境保护,继续开展湘江流域综合治理、重金属土地污染治理和城乡同治等工作,将其纳入政府年度考核目标的体系,建立领导离任资源资产审计工作制度,完善考核指标、奖惩办法等机制,在改善现有土地生态安全的基础上提高土地生态安全的稳定性,形成有力土地生态安全建设的长效机制。   参考文献   [1]高长波,陈新庚,韦朝海,等.区域生态安全概念及评价理论基础[J].生态环境,2006(15):98-102.   [2]OjimaD,LavorelS,GraumiehL,et al.Terrestrial human-environment systems:the Future of land research in IGBP.II[J].Global Change Newsletter Issue,2002:(50).   [3]张虹波,刘黎明.土地资源生态安全研究进展与展望地理科学进展[J].地理科学进展,2006(5):23-28.   [4]Jorgensen S E,Nielson S N,Mejer H.Emergy,environ,energy and ecological modeling[J].Ecological Modeling,1995(77):156-160.   [5]FAO.FESLM:An International Framework for Evaluating Sustainable Land Management.World Soil Resources Report[Z].Rome,Italy:FAO,1993.   [6]王鹏,况福民,邓育武,等.基于主成分分析的衡阳市土地生态安全评价[J].经济地理,2015(1):124-128.   [7]张浩中.长株潭城市群土地生态安全评价[D].长沙:湖南师范大学,2014.   [8]长沙市统计局.长沙统计年鉴2014[M].北京:中国统计出版社,2014.   [9]孙奇奇,宋戈,齐美玲.基于主成分分析的哈尔滨市土地生态安全评价[J].水土保持研究,2012(1):132-136.   [10]邓建伟,唐小娟,张新民.石羊河流域北部平原区生态安全评价[J].干旱区资源与环境,2009(8):123-127.   作者简介:刘凝(1985-),男,中共湖南省委党校 湖南行政学院,土地资源管理,硕士研究生。

主成分分析法的应用分析

在社会调查中,对于同一个变量,研究者往往用多个不同的问题来测量一个人的意见。这些不同的问题构成了所谓的测度项,它们代表一个变量的不同方面。主成分分析法被用来对这些变量进行降维处理,使它们“浓缩”为一个变量,称为因子。在用主成分分析法进行因子求解时,我们最多可以得到与测度项个数一样多的因子。如果保留所有的因子,就起不到降维的目的了。但是我们知道因子的大小排列,我们可以对它们进行舍取。哪有那么多小的因子需要舍弃呢?在一般的行为研究中,我们常常用到的判断方法有两个:特征根大于1法与碎石坡法。因为因子中的信息可以用特征根来表示,所以我们有特征根大于1这个规则。如果一个因子的特征根大于1就保留,否则抛弃。这个规则,虽然简单易用,却只是一个经验法则(rule of thumb),没有明确的统计检验。不幸的是,统计检验的方法在实际中并不比这个经验法则更有效(Gorsuch, 1983)。所以这个经验法则至今仍是最常用的法则。作为一个经验法则,它不总是正确的。它会高估或者低估实际的因子个数。它的适用范围是20-40个的测度项,每个理论因子对应3-5个测度项,并且样本量是大的 ( 3100)。碎石坡法是一种看图方法。如果我们以因子的次序为X轴、以特征根大小为Y轴,我们可以把特征根随因子的变化画在一个坐标上,因子特征根呈下降趋势。这个趋势线的头部快速下降,而尾部则变得平坦。从尾部开始逆向对尾部画一条回归线,远高于回归线的点代表主要的因子,回归线两旁的点代表次要因子。但是碎石坡法往往高估因子的个数。这种方法相对于第一种方法更不可靠,所以在实际研究中一般不用。抛弃小因子、保留大因子之后,降维的目的就达到了。 在对社会调查数据进行分析时,除了把相关的问题综合成因子并保留大的因子,研究者往往还需要对因子与测度项之间的关系进行检验,以确保每一个主要的因子(主成分)对应于一组意义相关的测度项。为了更清楚的展现因子与测度项之间的关系,研究者需要进行因子旋转。常见的旋转方法是VARIMAX旋转。旋转之后,如果一个测度项与对应的因子的相关度很高(>0.5)就被认为是可以接受的。如果一个测度项与一个不对应的因子的相关度过高(>0.4),则是不可接受的,这样的测度项可能需要修改或淘汰。用主成分分析法得到因子,并用因子旋转分析测度项与因子关系的过程往往被称为探索性因子分析。在探索性因子分析被接受之后,研究者可以对这些因子之间的关系进行进一步测试,比如用结构方程分析来做假设检验。 1问题的提出主成分分析是一种降维的方法,便于分析问题,在诸多领域中都有广泛的应用。但有些教科书与论文使用主成分分析时,出现了一些错误与不足,不能解决实际问题。如一些多元统计分析的教材中,用协方差矩阵的主成分分析出现了如下错误与不足:①没有明确和判断该数据降维的条件是否成立。②主成分系数的平方和不为1。③没有明确和判断所用数据是否适合作单独的主成分分析。④选取的主成分对原始变量没有代表性。以下从相关性等理论与结果上依次解决上述问题,并给出相应建议。2数据在行为与心理研究中,常常要求分析某种身份的人的行为特征,如本例中的小学生的日常行为特征,从而根据这些特征引导小学生向更积极的行为态度发展。这里用文献[1]的数据见表1,其来自某课题组的调查结果。课题组对北方某小学480名5~6年级学生的日常行为进行调查,共调查了11项指标如下:S1~对老师提问的反应、S2~对班级事务的关心、S3~自习课上的表现、S4~对家庭作业的态度、S5~关心同学的程度、S6~对待劳动的态度、S7~学习上的特殊兴趣、S8~对待体育锻炼的态度、S9~在娱乐上的偏好、S10~解决问题的思考方式、S11~对未来的打算  主成分分析法和层次分析法异同1.基于相关性分析的指标筛选原理两个指标之间的相关系数,反映了两个指标之间的相关性[1]。相关系数越大,两个指标反映的信息相关性就越高[1]。而为了使评价指标体系简洁有效,就需要避免指标反映信息重复[1]。通过计算同一准则层中各个评价指标之间的相关系数,删除相关系数较大的指标,避免了评价指标所反映的信息重复[2]。通过相关性分析,简化了指标体系,保证了指标体系的简洁有效[2]。2.基于主成分分析的指标筛选原理(1)因子载荷的原理通过对剩余多个指标进行主成分分析,得到每个指标的因子载荷。因子载荷的绝对值小于等于1,而绝对值越是趋向于1,指标对评价结果越重要[3]。(2)基于主成分分析的指标筛选原理因子载荷反映指标对评价结果的影响程度,因子载荷绝对值越大表示指标对评价结果越重要,越应该保留;反之,越应该删除。1通过对相关性分析筛选后的指标进行主成分分析,得到每个指标的因子载荷,从而删除因子载荷小的指标,保证筛选出重要的指标[2]。3.相关性分析和主成分分析相同点一是,基于相关性分析的指标筛选和基于主成分分析的指标筛选,均是在准则层内进行指标的筛选处理,准则层之间不进行筛选。这种做法的原因是,通过人为地划分不同准则层,反映评价事物不同层面的状况,避免误删反应信息不同的重要指标[2]。二是,基于相关性分析的指标筛选和基于主成分分析的指标筛选的思路,均是筛选出少量具有代表性的指标[2]。4.相关性分析和主成分分析不同点一是,两次筛选的目的不同:基于相关性分析的指标筛选的目的是删除反应信息冗余的评价指标。基于主成分分析的指标筛选的目的是删除对评价结果影响较小的评价指标[2]。二是,两次筛选的作用不同:基于相关性分析的指标筛选的作用是保证蹄选出的评价指标体系简洁明快。基于主成分分析的指标简选的目的是筛选出重要的指标[2]。[1]迟国泰,曹婷婷,张昆.基于相关主成分分析的人的全面发展评价指标体系的构建[J].系统工程理论与实践,2013,32(1):112-119.[2]李鸿禧.基于相关主成分分析的港口物流评价研究[D].辽宁大连:大连理工大学,2013.[3]孙慧,刘媛媛,张娜娜.基于主成分分析的煤炭产业竞争力实证研究[J].资源与产业,2012,14(1):145-149.

因子分析和主成分分析区别

主成分分析:主成分分析可以简单的总结成一句话:数据的压缩和解释。常被用来寻找判断某种事物或现象的综合指标,并且给综合指标所包含的信息以适当的解释。在实际的应用过程中,主成分分析常被用作达到目的的中间手段,而非完全的一种分析方法。这也是为什么SPSS软件没有为主成分分析专门设置一个菜单选项,而是将其归并入因子分析。因子分析:鉴于主成分分析现实含义的解释缺陷,统计学斯皮尔曼又对主成分分析进行扩展。因子分析在提取公因子时,不仅注意变量之间是否相关,而且考虑相关关系的强弱,使得提取出来的公因子不仅起到降维的作用,而且能够被很好的解释。因子分析与主成分分析是包含与扩展的关系首先解释包含关系。在SPSS软件“因子分析”模块的提取菜单中,提取公因子的方法很多,其中一种就是主成分。由此可见,主成分只是因子分析的一种方法。其次是扩展关系。因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

如何用主成分分析法确定指标权重?

您知道怎么做了吗、我现在也遇到了系数为负,该如何归一化的问题~~·

因子分析法和主成分分析法的区别与联系是什么?

因子分析与主成分分析的异同点:都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大 主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。

主成分分析法介绍

1、主成分分析(PrincipalComponentAnalysis,PCA),是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。2、在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。3、主成分分析首先是由K.皮尔森(KarlPearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

主成分分析和层次分析法的区别是什么?

层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。

主成分分析法与因子分析法的区别?

主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,SPSSAU建议使用因子分析。主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。SPSSAU可直接使用这两种方法,支持自动保存因子得分及综合得分,不需要手动计算。

什么是利用加权主成分分析法来描述

利用加权主成分分析法描述两个或多个。主成分分析法原理如下:主成分分析,是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K·皮尔森(Karl Pearson)对非随机变量引入的,尔后H·霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

PCA主成分分析原理

在多点地质统计学中,数据样板构成了一个空间结构,不同方向节点就是一个变量。一个数据事件就是由众多变量值构成的整体。在进行数据事件相似性计算与比较时,需要逐点计算其差异;在进行聚类时亦要对所有数据事件进行比较,导致计算效率非常低下。因此很有必要挖掘数据事件内部结构,将其变量进行组合,求取特征值,并用少量特征值完成数据事件的聚类,有效提高储层建模效率。因此,PCA主成分分析被引入到多点地质统计学中。主成分分析(Pirncipal Component Analysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。PCA的目标是寻找r(r<n)个新变量,使它们反映事物的主要特征,压缩原有数据矩阵的规模。每个新变量是原有变量的线性组合,体现原有变量的综合效果,具有一定的实际含义。这r个新变量称为“主成分”,它们可以在很大程度上反映原来n个变量的影响,并且这些新变量是互不相关的,也是正交的。通过主成分分析,压缩数据空间,将多元数据的特征在低维空间里直观地表示出来。假设x=[x1,x2,…,xp]′是一个p维的随机向量,它遵从正态分布x~N(u,σ2)。导出主成分的问题就是寻找x的线性函数a′x,并使a′x的相应的方差最大。多点地质统计学原理、方法及应用因此,在代数上就是寻找一个正交矩阵a,使a′a=1,并使方差:多点地质统计学原理、方法及应用设矩阵A的特征值为λ1≥λ2≥…≥λp≥0对应λi的特征向量记为ui,令Up×p=多点地质统计学原理、方法及应用则U是正交矩阵,即UU′=I,由于A是实对称矩阵,所以有多点地质统计学原理、方法及应用故多点地质统计学原理、方法及应用当a=u1时,多点地质统计学原理、方法及应用因此,当a=u1时,就满足了方差最大的要求,等于相应的特征值λ1。同理,可推广到一般:多点地质统计学原理、方法及应用并且协方差为多点地质统计学原理、方法及应用这就是说,综合变量的系数aj是协方差矩阵A的特征值λj对应的特征向量ju,综合变量Fj的重要性等同于特征值λj,这样,就可以用少数几个变量来描述综合变量的性质。

主成分分析法(PCA)

3.2.2.1 技术原理主成分分析方法(PCA)是常用的数据降维方法,应用于多变量大样本的统计分析当中,大量的统计数据能够提供丰富的信息,利于进行规律探索,但同时增加了其他非主要因素的干扰和问题分析的复杂性,增加了工作量,影响分析结果的精确程度,因此利用主成分分析的降维方法,对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。主成分分析法的建立,假设xi1,xi2,…,xim是i个样品的m个原有变量,是均值为零、标准差为1的标准化变量,概化为p个综合指标F1,F2,…,Fp,则主成分可由原始变量线性表示:地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例计算主成分模型中的各个成分载荷。通过对主成分和成分载荷的数据处理产生主成分分析结论。3.2.2.2 方法流程1)首先对数据进行标准化,消除不同量纲对数据的影响,标准化可采用极值法 及标准差标准化法 ,其中s= (图3.3);图3.3 方法流程图2)根据标准化数据求出方差矩阵;3)求出共变量矩阵的特征根和特征变量,根据特征根,确定主成分;4)结合专业知识和各主成分所蕴藏的信息给予恰当的解释,并充分运用其来判断样品的特性。3.2.2.3 适用范围主成分分析不能作为一个模型来描述,它只是通常的变量变换,主成分分析中主成分的个数和变量个数p相同,是将主成分表示为原始变量的线性组合,它是将一组具有相关关系的变量变换为一组互不相关的变量。适用于对具有相关性的多指标进行降维,寻求主要影响因素的统计问题。

主成分分析法适用于哪些问题?

主成分分析法适用于人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等问题,是一种常用的多变量分析方法。主成分分析作为基础的数学分析方法,其实际应用十分广泛。主成分分析,是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量或因素,因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析法原理在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量关系紧密的变量删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

主成分分析法

在对灾毁土地复垦效益进行分析时,会碰到众多因素,各因素间又相互关联,将这些存在相关关系的因素通过数学方法综合成少数几个最终参评因素,使这几个新的因素既包含原来因素的信息又相互独立。简化问题并抓住其本质是分析过程中的关键,主成分分析法可以解决这个难题。(一)主成分分析的基本原理主成分分析法(Principal Components Analysis,PCA)是把原来多个变量化为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理方法,即通过对原始指标相关矩阵内部结果关系的研究,将原来指标重新组合成一组新的相互独立的指标,并从中选取几个综合指标来反映原始指标的信息。假定有n个评价单元,每个评价单元用m个因素来描述,这样就构成一个n×m阶数据矩阵:灾害损毁土地复垦如果记m个因素为 x1,x2,…,xm,它们的综合因素为 z1,z2,…,zp(p≤m),则:灾害损毁土地复垦系数lij由下列原则来决定:(1)zi与zj(i≠j,i,j=1,2,…,p)相互无关;(2)z1是x1,x2,…,xm的一切线性组合中方差最大者,依此类推。依据该原则确定的综合变量指标z1,z2,…,zp分别称为原始指标的第1、第2、…、第p个主成分,分析时可只挑选前几个方差最大的主成分。(二)主成分分析法的步骤(1)将原始数据进行标准化处理,以消除原始数据在数量级或量纲上的差异。(2)计算标准化的相关数据矩阵:灾害损毁土地复垦(3)用雅克比法求相关系数矩阵R的特征值(λ1,λ2,…,λp)和与之相对应的特征向量 αi=(αi1,αi2,…,αip),i=1,2,…,p。(4)选择重要的主成分,并写出其表达式。主成分分析可以得到P个主成分,但是由于各个主成分的方差与其包含的信息量皆是递减的,所以在实际分析时,一般不选取P个主成分,而是根据各个主成分所累计的贡献率的大小来选取前K个主成分,这里的贡献率是指某个主成分的方差在全部方差中所占的比重,实际上也是某个特征值在全部特征值合计中所占的比重。即:灾害损毁土地复垦这说明,主成分所包含的原始变量的信息越强,贡献率也就越大。主成分的累计贡献率决定了主成分个数K的选取情况,为了保证综合变量能包括原始变量的绝大多数信息,一般要求累计贡献率达到85%以上。另外,在实际应用过程中,选择主成分之后,还要注意主成分实际含义的解释。如何给主成分赋予新的含义,给出合理的解释是主成分分析中一个相当关键的问题。一般来说,这个解释需要根据主成分表达式的系数而定,并与定性分析来进行有效结合。主成分是原来变量的线性组合,在这个线性组合中各变量的系数有正有负、有大有小,有的又大小相当,因此不能简单地把这个主成分看作是某个原变量的属性作用。线性组合中各变量系数的绝对值越大表明该主成分主要包含了该变量;如果有几个大小相当的变量系数时,则认为这一主成分是这几个变量的综合,而这几个变量综合在一起具有什么样的实际意义,就需要结合具体的问题和专业,给出合理的解释,进而才能达到准确分析的目的。(5)计算主成分得分。根据标准化的原始数据,将各个样品分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下:灾害损毁土地复垦(6)依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成分回归,变量子集合的选择,综合评价等。(三)主成分分析法的评价通过主成分分析法来评价复垦产生的效益,可将多个指标转化成尽可能少的综合性指标,使综合指标间互不相干,既减少了原指标信息的重叠度,又不丢失原指标信息的总含量。该方法不仅将多个指标转化成综合性指标,而且也能对每个主成分的影响因素进行分析,从而判别出影响整个评价体系的关键因素,并且主成分分析法在确定权重时可以科学地赋值,以避免主观因素的影响。需要注意的是,主成分分析法虽然可以对每个主成分的权重进行科学、定量的计算,避免人为因素及主观因素的影响,但是有时候赋权的结果可能与客观实际有一定误差。因此,利用主成分分析法确定权重后,再结合不同专家给的权重,是最好的解决办法。这样可以在定量的基础上作出定性的分析,通过一定的数理方法将两种数据结合起来考虑。

主成分分析的原理

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

主成分分析和因子分析是什么?

主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。主成分分析和因子分析的不同:1、原理不同:主成分分析是利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,使得主成分比原始变量具有某些更优越的性能,从而达到简化系统结构,抓住问题实质的目的。而因子分析更倾向于从数据出发,描述原始变量的相关关系,是由研究原始变量相关矩阵内部的依赖关系出发,把错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。2、线性表示方向不同:主成分分析中是把主成分表示成各变量的线性组合,而因子分析是把变量表示成各公因子的线性组合。3、假设条件不同:主成分分析不需要有假设条件;而因子分析需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子之间也不相关,共同因子和特殊因子之间也不相关。

主成分分析的基本思想

主成分分析的基本思想介绍如下:主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析的主要作用1.主成分分析能降低所研究的数据空间的维数。2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。3.多维数据的一种图形表示方法。4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。5.用主成分分析筛选回归变量。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。拓展:主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。

主成分分析法原理

主成分分析法原理如下:主成分分析, 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

主成分分析与因子分析及SPSS实现

主成分分析与因子分析及SPSS实现一、主成分分析(1)问题提出在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?这时,主成分分析隆重登场。(2)主成分分析的原理主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:根据坐标变化的原理,我们可以算出:Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2Y2 = sqrt(2)/2 * X1 – sqrt(2)/2 * X2其中sqrt(x)为x的平方根。通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。至此我们解决了两个问题:降维和消除共线性。对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。二、因子分析(一)原理和方法:因子分析是主成分分析的扩展。在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。举个例子:比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:x1 = 0.02 * z1 + 0.99 * z2 + e1x2 = 0.94 * z1 – 0.01 * z2 + e2x3 = 0.13* z1 + 0.98 * z2 + e3x4 = 0.84 * z1 + 0.42 * z2 + e4x5 = 0.97 * z1 – 0.02 * z2 + e1(以上的数字代表实际为变量间的相关系数,值越大,相关性越大)第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”第二个公因子z2主要与味道、风味有关,代表“口味”e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。(二)使用条件:(1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。(2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。(3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。三、主成分分析和因子分析的联系与区别联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。区别:(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。(2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。 一、问题提出 男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。 二、分析过程 变量视图: 数据视图(部分): 菜单选择(分析->降维->因子分析):打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下: 点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:上图相关解释:”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。点击”继续“,回到主界面,点击”抽取“,打开对话框。”方法“ =>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。解释:①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。②输出:”未旋转的因子解”极为主成分分析结果。碎石图有助于我们判断因子的重要性(详细介绍见后面)。③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。点击”继续“,回到主界面,点击”确定“,进入分析。输出的主要表格如下:(1)相关性检验因子分析要求变量之间有相关性,所以首先要进行相关性检验。首先输出的是变量之间的相关系数矩阵:可以直观的看到,变量之间有相关性。但需要检验,接着输出的是相关性检验: 上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。第二个是Bartlett球形度检验,P值<0.001。综合两个指标,说明变量之间存在相关性,可以进行因子分析。否则,不能进行因子分析。(2)提取主成分和公因子接下来输出主成分结果:这就是主成分分析的结果,表中第一列为10个成分;第二列为对应的”特征值“,表示所解释的方差的大小;第三列为对应的成分所包含的方差占总方差的百分比;第四列为累计的百分比。一般来说,选择”特征值“大于1的成分作为主成分,这也是SPSS默认的选择。在本例中,成分1和2的特征值大于1,他们合计能解释71.034%的方差,还算不错。所以我们可以提取1和2作为主成分,抓住了主要矛盾,其余成分包含的信息较少,故弃去。下面,输出碎石图,如下: 碎石图来源于地质学的概念。在岩层斜坡下方往往有很多小的碎石,其地质学意义不大。碎石图以特征值为纵轴,成分为横轴。前面陡峭的部分特征值大,包含的信息多,后面平坦的部分特征值小,包含的信息也小。由图直观的看出,成分1和2包含了大部分信息,从3开始就进入平台了。接下来,输出提取的成分矩阵:上表中的数值为公因子与原始变量之间的相关系数,绝对值越大,说明关系越密切。公因子1和9个运动项目都正相关(注意跑步运动运动的计分方式,时间越短,分数越高),看来只能称为“综合运动”因子了。公因子2与铁饼、铅球正相关,与1500米跑、400米跑负相关,这究竟代表什么意思呢?看来只能成为“不知所云”因子了。(三)因子旋转前面提取的两个公因子一个是大而全的“综合因子”,一个不知所云,得到这样的结果,无疑是分析的失败。不过,不要灰心,我们可以通过因子的旋转来获得更好的解释。在主界面中点击“旋转”按钮,打开对话框,“方法”=>“最大方差法”,“输出”=>“旋转解”。点击“继续”,回到主界面点击“确认”进行分析。输出结果如下: 这是选择后的成分矩阵。经过旋转,可以看出:公因子1得分越高,所有的跑步和跨栏成绩越差,而跳远、撑杆跳等需要助跑类项目的成绩也越差,所以公因子1代表的是奔跑能力的反向指标,可称为“奔跑能力”。公因子2与铁饼和铅球的正相关性很高,与标枪、撑杆跳等需要上肢力量的项目也正相关,所以该因子可以成为“上肢力量”。经过旋转,可以看出公因子有了更合理的解释。(四)结果的保存在最后,我们还要将公因子储存下来供后续使用。点击“得分”按钮,打开对话框,选中“保存为变量”,方法采用默认的“回归”方法,同时选中“显示因子得分系数矩阵”。SPSS会自动生成2个新变量,分别为公因子的取值,放在数据的最后。同时会输出一个因子系数表格:由上图,我们可以写出公因子的表达式(用F1、F2代表两个公因子,Z1~Z10分别代表原始变量):F1 = -0.16*Z1+0.161*Z2+0.145*Z3+0.199*Z4-0.131*Z5-0.167*Z6+0.137*Z7+0.174*Z8+0.131*Z9-0.037*Z10F2同理,略去。注意,这里的变量Z1~Z10,F1、F2不再是原始变量,而是标准正态变换后的变量。

主成分分析和因子分析十大不同点

主成分分析和因子分析十大不同点主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。1.原理不同主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)2.线性表示方向不同因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。3.假设条件不同主成分分析:不需要有假设(assumptions),因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。4.求解方法不同求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况);求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。5.主成分和因子的变化不同主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的;因子分析:因子不是固定的,可以旋转得到不同的因子。6.因子数量与主成分的数量主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。因子分析:因子个数需要分析者指定(SPSS和sas根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;7.解释重点不同:主成分分析:重点在于解释个变量的总方差,因子分析:则把重点放在解释各变量之间的协方差。8.算法上的不同:主成分分析:协方差矩阵的对角元素是变量的方差;因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)9.优点不同:因子分析:对于因子分析,可以使用旋转技术,使得因子更好的得到解释,因此在解释主成分方面因子分析更占优势;其次因子分析不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;主成分分析:第一:如果仅仅想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析,不过一般情况下也可以使用因子分析;第二:通过计算综合主成分函数得分,对客观经济现象进行科学评价;第三:它在应用上侧重于信息贡献影响力综合评价。第四:应用范围广,主成分分析不要求数据来自正态分布总体,其技术来源是矩阵运算的技术以及矩阵对角化和矩阵的谱分解技术,因而凡是涉及多维度问题,都可以应用主成分降维;10.应用场景不同:主成分分析:可以用于系统运营状态做出评估,一般是将多个指标综合成一个变量,即将多维问题降维至一维,这样才能方便排序评估;此外还可以应用于经济效益、经济发展水平、经济发展竞争力、生活水平、生活质量的评价研究上;主成分还可以用于和回归分析相结合,进行主成分回归分析,甚至可以利用主成分分析进行挑选变量,选择少数变量再进行进一步的研究。一般情况下主成分用于探索性分析,很少单独使用,用主成分来分析数据,可以让我们对数据有一个大致的了解。几个常用组合:主成分分析+判别分析,适用于变量多而记录数不多的情况;主成分分析+多元回归分析,主成分分析可以帮助判断是否存在共线性,并用于处理共线性问题;主成分分析+聚类分析,不过这种组合因子分析可以更好的发挥优势。因子分析:首先,因子分析+多元回归分析,可以利用因子分析解决共线性问题;其次,可以利用因子分析,寻找变量之间的潜在结构;再次,因子分析+聚类分析,可以通过因子分析寻找聚类变量,从而简化聚类变量;此外,因子分析还可以用于内在结构证实

聚类分析、判别分析、主成分分析、因子分析

来自: 带呀带尾呀 (数据小生、数字营销、新媒体) 主成分分析与因子分析的区别 1. 目的不同: 因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。 2. 线性表示方向不同: 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。 4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。 5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。 6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。 7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。 1 、聚类分析 基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。 常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。 注意事项:1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类; 2. K-均值法要求分析人员事先知道样品分为多少类; 3. 对变量的多元正态性,方差齐性等要求较高。 应用领域:细分市场,消费行为划分,设计抽样方案等 2、判别分析 基本原理:从已知的各种分类情况中总结规律(训练出判别函数),当新样品进入时,判断其与判别函数之间的相似程度(概率最大,距离最近,离差最小等判别准则)。 常用判别方法:最大似然法,距离判别法,Fisher判别法,Bayes判别法,逐步判别法等。 注意事项:1. 判别分析的基本条件:分组类型在两组以上,解释变量必须是可测的; 2. 每个解释变量不能是其它解释变量的线性组合(比如出现多重共线性情况时,判别权重会出现问题); 3. 各解释变量之间服从多元正态分布(不符合时,可使用Logistic回归替代),且各组解释变量的协方差矩阵相等(各组协方方差矩阵有显著差异时,判别函数不相同)。 相对而言,即使判别函数违反上述适用条件,也很稳健,对结果影响不大。 应用领域:对客户进行信用预测,寻找潜在客户(是否为消费者,公司是否成功,学生是否被录用等等),临床上用于鉴别诊断。 3、 主成分分析/ 因子分析 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子。(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系) 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。 (实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计) 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。 注意事项:1. 由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法; 2. 对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分; 3.主成分分析不要求数据来源于正态分布; 4. 在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。 5. 因子分析中各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。 应用领域:解决共线性问题,评价问卷的结构效度,寻找变量间潜在的结构,内在结构证实。 4、对应分析/最优尺度分析 基本原理:利用降维的思想以达到简化数据结构的目的,同时对数据表中的行与列进行处理,寻求以低维图形表示数据表中行与列之间的关系。 对应分析:用于展示变量(两个/多个分类)间的关系(变量的分类数较多时较佳); 最优尺度分析:可同时分析多个变量间的关系,变量的类型可以是无序多分类,有序多分类或连续性变量,并 对多选题的分析提供了支持。 5、典型相关分析 基本原理:借用主成分分析降维的思想,分别对两组变量提取主成分,且使从两组变量提取的主成分之间的相关程度达到最大,而从同一组内部提取的各主成分之间互不相关。

主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点。

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差- 协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。二、基本思想的异同(一) 共同点主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3 ]。聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。(二) 不同之处主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量) ,使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0 ,或样本向量彼此相互垂直的随机变量) ,在这种变换中,保持变量的总方差(方差之和) 不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。依次类推。若共有p 个变量,实际应用中一般不是找p 个主成分,而是找出m (m < p) 个主成分就够了,只要这m 个主成分能反映原来所有变量的绝大部分的方差。主成分分析可以作为因子分析的一种方法出现。因子分析是寻找潜在的起支配作用的因子模型的方法。因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。通过因子分析得来的新变量是对每个原始变量进行内部剖析。因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分。具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态。因子分析只能解释部分变异,主成分分析能解释所有变异。 聚类分析算法是给定m 维空间R 中的n 个向量,把每个向量归属到k 个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为: 类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。从三类分析的基本思想可以看出,聚类分析中并没于产生新变量,但是主成分分析和因子分析都产生了新变量。三、数据标准化的比较主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0方差为1 的无量纲数据。而因子分析在这方面要求不是太高,因为在因子分析中可以通过主因子法、加权最小二乘法、不加权最小二乘法、重心法等很多解法来求因子变量,并且因子变量是每一个变量的内部影响变量,它的求解与原始变量是否同量纲关系并不太大,当然在采用主成分法求因子变量时,仍需标准化。不过在实际应用的过程中,为了尽量避免量纲或数量级的影响,建议在使用因子分析前还是要进行数据标准化。在构造因子变量时采用的是主成分分析方法,主要将指标值先进行标准化处理得到协方差矩阵,即相关矩阵和对应的特征值与特征向量,然后构造综合评价函数进行评价。聚类分析中如果参与聚类的变量的量纲不同会导致错误的聚类结果。因此在聚类过程进行之前必须对变量值进行标准化,即消除量纲的影响。不同方法进行标准化,会导致不同的聚类结果要注意变量的分布。如果是正态分布应该采用z 分数法。四、应用中的优缺点比较(一) 主成分分析1、优点首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。再次它在应用上侧重于信息贡献影响力综合评价。2、缺点当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。命名清晰性低。(二) 因子分析1、优点第一它不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;第二,它通过旋转使得因子变量更具有可解释性,命名清晰性高。2、缺点在计算因子得分时,采用的是最小二乘法,此法有时可能会失效。(三) 聚类分析1、优点聚类分析模型的优点就是直观,结论形式简明。2、缺点在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

常用的统计分析方法总结(聚类分析、主成分分析、因子分析)

1. 系统聚类法 :由N类--1类 2. 分解法 :由1类---N类 3. K-均值法 :事先在聚类过程中确定在K类,适用于数据量大的数据 4. 有序样品的聚类 :N个样品排序,次序相邻的样品聚成一类 5. 模糊聚类法 :模糊数学的方法,多用于定性变量 6. 加入法 :样品依次加入,全部加入完得到聚类图。 a.夹角余弦 b.相关系数 a.常用的类间距离定义有8种之多,与之相应的 系统聚类法 也有8种,分别为 a. 中间距离法 b. 最短距离法 :类与类之间的距离最近两个样品的距离。 c. 最长距离法 :类与类之间的距离最远两个样品的距离。【先距离最短,后距离最远合并】 d. 类平均法 :两类元素中任两个样品距离的平均。 e. 重心法 :两个重心xp 和xq 的距离。 f. 可变类平均法 e. 离差平方和法(Ward法) : 该方法的基本思想来自于方差分析,如果分类正确,同 类样品的离差平方和应当较小,类与类的离差平方和较大。 具体做法是先将 n 个样品各自成一类,然后每次缩小一类,每 缩小一类,离差平方和就要增大,选择使方差增加最小的两 类合并,直到所有的样品归为一类为止。 a. 最短距离法的主要缺点是它有链接聚合的趋势,容易形 成一个比较大的类,大部分样品都被聚在一类中,所以最短 距离法的聚类效果并不好,实际中不提倡使用。 b. 最长距离法克服了最短距离法链接聚合的缺陷,两类合 并以后与其他类的距离是原来两个类中的距离最大者,加大 了合并后的类与其他类的距离。 a. 定义 :主成分分析(Principal Component Analysis,简记 PCA)是将 多个指标化为少数几个综合指标的一种统计分析方法 ,通常我们把转化成的综合指标称为主成分。 b. 本质:降维 c. 表达 :主成分为原始变量的线性组合 d. 即信息量在空间降维以后信息量没有发生改变,所有主成分的方差之和与原始的方差之和 e. 多个变量之间有一定的相关性,利用原始变量 的线性组合形成几个综合指标(主成分),在保留原始变量主要信息的前提下起到降维与简化问题的作用。 f. 累积贡献率一般是 85% 以上 (1)每一个主成分都是各 原始变量的线性组合 (2)主成分的数目大大少于原始变量的数目 (3)主成分保留了原始变量绝大多数信息 (4)各主成分之间 互不相关 a. 基本目的:用 少数几个综合因子去描述多个随机变量之间的相关关系 。 b. 定义:多个变量————少数综合因子(不存在的因子) c. 显在变量:原始变量X;潜在变量:因子F d. X=AF+e【公共因子+特殊因子】 e. 应用: 因子分析主要用于相关性很强的多指标数据的降维处理。 f. 通过研究原始变量相关矩阵内部 的依赖关系,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。 g. 定义:原始的变量是可观测的显在变量,而 综合 的因子是 不可观测 的 潜在变量 ,称为因子。 i. 根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。 ii. 公共因子 :每组变量代表一个基本结构,并用一个不可观测的综合变量表示。 iii. 对于所研究的某一具体问题,原始变量分解成两部分: i. R 型因子分析——研究变量之间的相关关系 ii. Q 型因子分析——研究样品之间的相关关系 a. 因子载荷 是第i个变量与第j个公共因子的相关系数,绝对值越大,相关的密切程度越高。 a. 变量 Xi 的共同度是因子载荷矩阵的第i行的元素的平方和。记为 b. 所有的公共因子与特殊因子对变量 Xi 的贡献和为1。 a. 确定因子载荷 b. 因子旋转 c. 计算因子得分 a. 寻找简单结构的载荷矩阵:载荷矩阵A的所有元素都接 近0或±1,则模型的公共因子就易于解释。 b. 如果各主因子的典型代表变量不突出,就需要进行旋转使因子载荷矩阵中载荷的绝对值向0和1两个方向分化。 a.意义:对公共因子作正交旋转相当于对载荷矩阵 A 作一正交变换 ,右乘正交矩阵 T ,使 A* = AT 能有更鲜明的实际意义。 b.几何意义:是在 m 维空间上对原因子轴作一刚性旋转。 因子旋转不改变公共因子的共同度,这是因为 A A "=ATT"A"=AA" c. 旋转方法有:正交旋转和斜交旋转 d. 最普遍的是: 最大方差旋转法 a. 定义:通过坐标变换使各个因子载荷的方差之和最大。 b. 任何一个变量只在一个因子上有高贡献率,而在 其它因子上的载荷几乎为0; c. 任何一个因子只在少数变量上有高载荷,而在其 它变量上的载荷几乎为0。 思想相同: 降维 前提条件:各变量间必须有 相关性 ,否则各变量之间没有共享信息

spss主成分分析步骤是什么?

spss主成分分析法详细步骤:1、打开SPSS软件,导入数据后,依次点击分析,降维,因子分析。如图1所示:2、打开因子分析界面之后,把需要进行分析的变量全部选进变量对话框,然后点击右上角的描述。如图2所示:3、勾选原始分析结果、KMO检验对话框,然后点击继续。如图3所示:4、点击抽取,方法里选择主成分再点击碎石图。如图4所示:5、点击旋转,再点击最大方差旋转。如图5所示:6、点击得分,再点击,保存为变量及显示因子得分系数矩阵。如图6所示:7、最后点确定就可以在输出截面看到主成分分析的结果了。如图7所示:扩展资料:SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口。

spss主成分分析的原理是什么?

(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。(3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1j*X1 +β2j*X2 +β3j*X3 + ……+ βnj*Xn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。(4)求出指标权重。 ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指标Xi的权重。扩展资料产品特点1、操作简便界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。2、编程方便具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。3、功能强大具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。参考资料来源:百度百科-spss

如何用spss主成分分析出现factor

可以save一下就得到

如何利用spss进行主成分分析标准化

主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。第一步:判断是否进行主成分(pca)分析;判断标准为KMO值大于0.6.第二步:主成分与分析项对应关系判断.第三步:在第二步删除掉不合理分析项后,并且确认主成分与分析项对应关系良好后,则可结合主成分与分析项对应关系,对主成分进行命名.spssau主成分分析操作共有三步:①选择【进阶方法】--【主成分分析】②将分析项拖拽到右侧分析框③点击开始分析请点击输入图片描述默认提供主成分得分和综合得分,分析前勾选“成分得分”、“综合得分”即可。

spss主成分分析结果怎么看??急求

KMO检验用于检查变量间的偏相关性 一般认为该值大于0.9时效果最佳 0.7以上尚可,0.6时效果较差 Bartlett"s球形检验用于检验相关阵是否是单位阵 P<0.01说明指标间并非独立,取值是有关系的。可以进行因子分析根据上图 可以看出一共提取了3个主成分 可是能解释的方差为69.958% 软件默认的是提取特征根大于1的主成分 如果加上第四个主成分的话可以解释的变异度为86.26%所以结合专业知识 可以考虑是不是增加一个主成分。

如何利用pca主成分分析将多维数据变为一维数组

matlab 代码:% PCA dimensionality reduction%lores 的行数表示原始数据的维数, 列数表示数据的个数C = double(lores * lores");[V, D] = eig(C);D = diag(D); % perform PCA on features matrix D = cumsum(D) / sum(D);k = find(D >= 1e-3, 1); % ignore 0.1% energyV_pca = V(:, k:end); % choose the largest eigenvectors" projectionlores = V_pca" * lores;

主成分分析法与因子分析法的区别

主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到。所以这种区分不是绝对的。在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。

R语言用principal和princomp怎么实现 主成分分析和因子分析

princomp(x, cor = FALSE, scores = TRUE, covmat = NULL, subset = rep_len(TRUE, nrow(as.matrix(x))), )当cor = TRUE是使用相关系数矩阵计算 当cor = FALSE是使用协方差矩阵计算 用相关系数矩阵计算就相当于先标准化,在进行主成分分析 用。