质谱仪原理

阅读 / 问答 / 标签

电感耦合等离子体质谱仪原理是什么

摘要:电感耦合等离子体质谱仪的工作原理比较复杂,气体经过仪器,经过高频感应圈时,产生磁场,从而使激发态的粒子回收到稳定的基态时要放出一定的能量,表现为一定波长的光谱,通过对比即可分析样品中所含元素的种类和含量。电感耦合等离子体质谱仪用途主要有痕量及超痕量多元素分析和同位素比值分析。具体的电感耦合等离子体质谱仪额的知识和我一起到文中来看看吧!一、电感耦合等离子体质谱仪原理是什么电感耦合等离子体质谱仪是在这个行业中比较常用到的一种设备,它主要是由等离子体发生器、雾化室、矩管、四极质谱仪和一个快速通道电子倍增管等部件组成,下面我们就来详细的介绍下电感耦合等离子体质谱仪工作原理:高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作时启动高压放电装置让工作气体发生电离,被电离的气体经过环绕石英管顶部的高频感应圈时,线圈产生的巨大热能和交变磁场,使电离气体的电子、离子和处于基态的氖原子发生反复猛烈的碰撞,各种粒子的高速运动,导致气体完全电离形成一个类似线圈状的等离子体炬区面,此处温度高达6000一10000摄氏度。样品经处理制成溶液后,由超雾化装置变成全溶胶由底部导入管内,经轴心的石英管从喷咀喷入等离子体炬内。样品气溶胶进入等离子体焰时,绝大部分立即分解成激发态的原子、离子状态。当这些激发态的粒子回收到稳定的基态时要放出一定的能量(表现为一定波长的光谱),测定每种元素特有的谱线和强度,和标准溶液相比,就可以知道样品中所含元素的种类和含量。二、电感耦合等离子体质谱仪用途有哪些电感耦合等离子体-质谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,那么你知道电感耦合等离子体质谱仪用途有哪些吗?电感耦合等离子体质谱仪主要用途:1、痕量及超痕量多元素分析。2、同位素比值分析。

lcms质谱仪原理

质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。中文名 质谱仪外文名mass spectrograph又称质谱计含义分离和检测不同同位素的仪器快速导航分类定义质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。原理公式:q/m=E/B1B2r质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的一种分析方法[1] 。质谱仪简介质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。用法分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达 105 ~106 量级,可测量原子质量精确到小数点后7位数字。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门。

质谱仪原理

分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105~106量级,可测量原子质量精确到小数点后7位数字。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门

质谱仪原理

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。

质谱仪原理是怎样的?

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。

氦气质谱仪原理

氦气质谱仪原理是根据质谱学原理,用氦气作示漏气体制成的气密性检测仪器,由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成,质谱室里的灯丝发射出来的电子,在室内来回地振荡,并与室内气体和经漏孔进人室内的氦气相互碰撞使其电离成正离子,这些氦离子在加速电场作用下进人磁场,由于洛伦兹力作用产生偏转,形成圆弧形轨道,改变加速电压可使不同质量的离子通过磁场和接收缝到达接收极而被检测。

lcms质谱仪原理是什么?

lcms质谱仪三重串联四极杆质谱法的原理是待测化合物分子在电离源电离,生成分子离子,通过第一个四极杆进行选择,基于化合物的质荷比将目标化合物选择出来。之后进行碰撞池进行碎裂。在碰撞池里,化合物生成一系列确定组成的碎片离子。 碎片离子进行第三个四极杆进行选择。通常会选出两对稳定的碎片离子,进行定性定量。将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。 由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。

质谱仪原理高中物理是什么?

质谱仪原理高中物理是:质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法。因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开。经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。质谱仪工作原理:质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。

质谱仪原理

质谱仪原理:质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理坦改分为静态仪器和动态仪器。质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达余拿检测器的时间不同。结果为质谱图。质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的一种分析方法。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。用法:分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电竖信搭场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。

如图是一个质谱仪原理图,一束带电粒子经加速电场加速后,以速度v0=2.0×107m/s进入速度选择器,恰好可以

粒子在速度选择器中受到的电场力与洛伦兹力相等,由平衡条件得:qv0B1=qUd,代入数据解得:B1=2.5×10-4T,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qv0B2=mv20r,D=2r,代入数据解得:D=4.0cm;故答案为:2.5×10-4,4.0.

高中物理题中关于质谱仪原理的疑问

问题提得好!在你所述的情况下确实存在这个问题,但并不耽误相关的计算题。实际的质谱仪里的加速电场起到的是把离子从离子源进一步加速并引入检测器。离子源产生的离子已经具有很高的能量,离子质量速度电荷很不一样,也就是说那些离子的初速并不都一样。高中题设成初始速度为零的情况确实会令你这样善于思考的高手纠结。建议在休假闲暇的时候百度一下质谱仪的有关条目,尽管不一定都明白,但至少这个问题是不会纠结了。 谢谢你,使我关注了这个一向熟视无睹的问题。

如图所示为质谱仪原理图,未知性质的带电粒子(不计重力)垂直于匀强磁场B、匀强电场E匀速穿过速度选择器

经过速度选择器时,洛伦兹力和电场力平衡,根据共点力平衡条件,有:qE=qvB…①进入磁场后做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律,有:qvB′=mv2R…②联立①②解得:v=EBqm=EBB′R故选:AD.