相关性分析

阅读 / 问答 / 标签

spss中相关性分析的原理是什么

_问题描述:在SPSS中做主成成分分析的时候有一步是指标之间的相关性判定,我想知道具体是怎么进行判定的,他的算法、原理是什么?答案1:: 说判定有些严格,其实就是观察一下各个指标的相关程度。一般来说相关性越是高,做主成分分析就越是成功。主成分分析是通过降低空间维度来体现所有变量的特征使得样本点分散程度极大,说得直观一点就是寻找多个变量的一个加权平均来反映所有变量的一个整体性特征。评价相关性的方法就是相关系数,由于是多变量的判定,则引出相关系数矩阵。评价主成分分析的关键不在于相关系数的情况,而在于贡献率,也就是根据主成分分析的原理,计算相关系数矩阵的特征值和特征向量。相关系数越是高,计算出来的特征值差距就越大,贡献率等于前n个大的特征值除以全部特征值之和,贡献率越是大说明主成分分析的效果越好。反之,变量之间相关性越差。举个例子来说,在二维平面内,我们的目的就是把它映射(加权)到一条直线上并使得他们分散的最开(方差最大)达到降低维度的目的,如果所有样本点都在一条直线上(也就是相关系数等于1或者- 1),这样的效果是最好的。再假设样本点呈现两条垂直的形状(相关系数等于零),你要找到一条直线来做映射就很难了。一般来说前三个主成分的贡献率在90%以上,第一个主成分的贡献率在 70%效果就已经很好了。答案2:: 你直接看书吧 那原理我要写一天 才能发给你。。。

请问spss在pearson相关性分析中r值的负值与正值代表什么意思?

负值表示两变量负相关,即一个随另一个的增大而减小,变化趋势相反。正值表示两变量正相关,即一个随另一个的增大而增大,减小而减小,变化趋势相同;SPSS中pearson(皮尔逊相关系数)r值和P值,两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小。扩展资料:在10版以后,SPSS的每个新增版本都会对数据管理功能作一些改进,以使用户的使用更为方便。13版中的改进可能主要有以下几个方面:1)超长变量名:在12版中,变量名已经最多可以为64个字符长度,13版中可能还要大大放宽这一限制,以达到对当今各种复杂数据仓库更好的兼容性。2)改进的Autorecode过程:该过程将可以使用自动编码模版,从而用户可以按自定义的顺序,而不是默认的ASCII码顺序进行变量值的重编码。另外,Autorecode过程将可以同时对多个变量进行重编码,以提高分析效率。3)改进的日期/时间函数:本次的改进将集中在使得两个日期/时间差值的计算,以及对日期变量值的增减更为容易上。

SPSS做pearson相关性分析,必须是两个变量相互影响吗?

pearson相关性分析的条件是 两个变量之间呈线性的相关趋势,此时的相关系数大小会比较准确至于两个变量是否相互影响 都没关系另外相关分析只能说明两者之间的互相关系,并不能说明因果关系

相关性分析 Pearson 相关系数 和 Spearman 秩相关系数

分析连续变量之间线性相关程度的强弱,并用适当的统计指标表示出来的过程称为相关分析。本文主要介绍比较常用的 Pearson相关系数、Spearman秩相关系数 。这两个相关性系数反应的都是两个变量之间变化趋势的方向以及程度,取值范围为 -1 到 +1, 0 表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。 1. 定义:皮尔森相关系数也称皮尔森积矩相关系数,是一种线性相关系数,用来反映两个变量 X 和 Y 的线性相关程度。 其中 表示变量 X 和 Y 的标准差, 表示变量 X 和 Y 的 协方差。 其中 、 是 和 的平均值。 最后整理可得: 2. 数据要求:Pearson相关系数可用于衡量变量之间的线性相关程度,但是对数据也有一定的要求 3. 缺点:皮尔森相关性系数受异常值的影响比较大 上面我们介绍了 Pearson 相关系数的局限性,为了摆脱这些局限性,我们将介绍 Spearman 相关系数。它比 Pearson 相关系数 的应用范围更广一些。 1.定义: 斯皮尔曼相关系数是秩相关系数的一种。通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解 它是一种无参数(与分布无关)的检验方法,用于度量变量之间联系的强弱。在没有重复数据的情况下,如果一个变量是另外一个变量的严格单调函数,则Spearman Correlation Coefficient(斯皮尔曼相关系数)就是+1或-1,称变量完全Spearman秩相关。 无论两个变量的数据如何变化,符合什么样的分布,我们只关心每个数值在变量内的排列顺序 如果两个变量的对应值,在各组内的排序顺位是相同或类似的,则具有显著的相关性。 其中 和 分别是观测值 i 的取值的等级, 和 分别是变量 x 和变量 y 的平均等级,N 是观测值的总数量, 表示二列成对变量的等级差数。 2. 数据要求: Spearman 和 Pearson 相关系数在算法上完全相同. 只是 Pearson 相关系数是用原来的数值计算积差相关系数, 而 Spearman 是用原来数值的秩次计算积差相关系数。

皮尔森相关性分析结果怎么看?

皮尔森相关性分析结果首先看Y与X是否有显著关系,即P值大小。接着分析相关关系为正向或负向,也可通过相关系数大小说明关系紧密程度。一般相关系数在0.7以上说明关系非常紧密,0.4~0.7之间说明关系紧密,0.2~0.4说明关系一般。如果不太会对结果进行分析解读,SPSSAU还提供了智能分析建议。进行皮尔逊相关性分析,需要借助相关统计分析工具,关于分析工具这里推荐使用SPSSAU,在线对各种数据进行编辑和统计分析。无需下载软件安装包,无需经过繁琐的安装过程,也不必花大量时间学习如何操作软件。皮尔逊相关系数的变化范围为-1到1。系数的值为1意味着X和Y可以很好的由直线方程来描述,所有的数据点都很好的落在一条直线上,皮尔逊相关系数有一个重要的数学特性是,因两个变量的位置和尺度的变化并不会引起该系数的改变,即它该变化的不变量(由符号确定)。

怎样用spss做pearson相关性分析

简介相关性是指两个变量之间的变化趋势的一致性,如果两个变量变化趋势一致,那么就可以认为这两个变量之间存在着一定的关系(但必须是有实际经济意义的两个变量才能说有一定的关系)。相关性分析也是常用的统计方法,用SPSS统计软件操作起来也很简单,具体方法步骤如下。方法步骤选取在理论上有一定关系的两个变量,如用X,Y表示,数据输入到SPSS中。从总体上来看,X和Y的趋势有一定的一致性。为了解决相似性强弱用SPSS进行分析,从分析-相关-双变量。打开双变量相关对话框,将X和Y选中导入到变量窗口。然后相关系数选择Pearson相关系数,也可以选择其他两个,这个只是统计方法稍有差异,一般不影响结论。点击确定在结果输出窗口显示相关性分析结果,可以看到X和Y的相关性系数为0.766,对应的显著性为0.076,如果设置的显著性水平位0.05,则未通过显著性检验,即认为虽然两个变量总体趋势有一致性,但并不显著。

pearson相关性分析得出的相关性不对怎么办

一般使用pearson相关系数多一些,建议以pearson为准。其实很多时候两个的结果都差不多,但偶尔会出现相互矛盾的现象。如果这个时候建议使用pearson,另外,如果数据不正态,有时候是要求使用spearman。另外如果是做相关分析,直接使用在线SPSS软件进行就好,SPSSAU,里面全部都有智能化文字分析图表这些,非常傻瓜,拖拽点一下就完成分析了。读取哪个结果取决于资料的分布,Pearson相关要求两个变量都是随机变量,而且仅适用于二元正态分布资料。如果资料不服从正态分布,应先通过变量变换,使之正态化,再根据变换值计算Pearson相关系数,或者读取Spearman等级相关的结果。

pearson相关性分析至少需要多少年的数据?

Pearson相关性分析用于检测两个变量之间的线性关系。它是基于样本数据计算出的,因此至少需要两组数据才能进行分析。但是,较多的数据可以提供更多的信息,从而提高分析的准确性。因此,要想获得较准确的结果,通常需要至少几年的数据。

pearson相关性分析结果解读

r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性。相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。世界上很多事情都是存在一定的相关联系,因此我们往往需要对两个或多个变量进行相关性分析。如果两个变量都是连续性的变量,就可以用Pearson 分析方法。

请问spss在pearson相关性分析中r值的负值与正值代表什么意思?

正或负相关

spss单因素相关性分析与Pearson区别

在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall"s tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表...在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall"s tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用 spearman或kendall相关 Pearson 相关复选项 积差相关计算连续变量或是等间距测度的变量间的相关分析 Kendall 复选项 等级相关 计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项 等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量 因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用 Spearman 或 Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项: Pearson Kendall"s tau-b Spearman:Spearman spearman(斯伯曼/斯皮尔曼)相关系数 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法” 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。 Kendall"s相关系数 肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。等级评定法每个评价者对N件事物排出一个等级顺序,最小的等级序数为1 ,最大的为N,若并列等级时,则平分共同应该占据的等级,如,平时所说的两个并列第一名,他们应该占据1,2名,所以它们的等级应是1.5,又如一个第一名,两个并列第二名,三个并列第三名,则它们对应的等级应该是1,2.5,2.5,5,5,5,这里2.5是2,3的平均,5是4,5,6的平均。 肯德尔(Kendall)U系数又称一致性系数,是表示多列等级变量相关程度的一种方法。该方法同样适用于让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物所得的数据资料,只不过评定时采用对偶评定的方法,即每一次评定都要将N个事物两两比较,评定结果如下表所示,表格中空白位(阴影部分可以不管)填入的数据为:若i比j好记1,若i比j差记0,两者相同则记0.5。一共将得到K张这样的表格,将这K张表格重叠起来,对应位置的数据累加起来作为最后进行计算的数据,这些数据记为γij。 正态分布的相关检验 对来自正态总体的两个样本进行均值比较常使用T检验的方法。T检验要求两个被比较的样本来自正态总体。两个样本方差相等与不等时用的计算T值的公式不同。 进行方差齐次性检验使用F检验。对应的零假设是:两组样本方差相等。P值小于0.05说明在该水平上否定原假设,方差不齐;否则两组方差无显著性差异。 U检验时用服从正态分布的检验量去检验总体均值差异情况的方法。在这种情况下总体方差通常是已知的。 虽然T检验法与U检验法所解决的问题大体相同,但在小样本(样本数n)=30作为大样本)且均方差未知的情况下就不能用U检验法了。 均值检验时不同的数据使用不同的统计量 使用MEANS过程求若干组的描述统计量,目的在于比较。因此必须分组求均值。这是与Descriptives过程不同之处。 检验单个变量的均值是否与给定的常数之间存在差异,用One-Sample T Test 单样本T检验过程。 检验两个不相关的样本是否来自来具有相同均值的总体,用Independent-Samples T test 独立样本t检验过程。 如果分组样本不独立,用Paired Sample T test 配对t检验。 如果分组不止两个,应使用One-Way ANOVO一元方差分析(用于检验几个独立的组,是否来自均值相等的总体)过程进行单变量方差分析。 如果试图比较的变量明显不服从正态分布,则应该考虑使用一种非参数检验过程Nonparametric test. 如果用户相比较的变量是分类变量,应该使用Crosstabs功能。 当样本值不能为负值时用右侧单边检验。

相关性分析spss步骤

spss如何进行相关性分析,相关性分析首先要看两变量的情况,符合正态分布,样本量大于30-50,线性关系,而且是连续变量,可以用Pearson分布。工具/原料:戴尔灵越5000、win10、SPSS241、样本数据能用Pearson相关就用这个,这个最准确,开始时,首先分布样本正态性,用k-s检验。2、正态性之后,点击分析-相关-双变量,之后选择Pearson,同时检验显著性相关要打勾。3、之后将样本数据,移动到变量那里过去,之后在点击左下角的确定。4、确定之后,出现分析结果,首先看显著性,显著性显示0.00,说明p<0.05,有线性关系。5、之后看0.892,大于0.8,是高度相关关系,如果是0.5-0.8是中度相关关系,0.3-0.5是低度相关性,小于0.3不相关。6、这个可以进行批量分析的,只要将每个变量都移动各自一列就行。

如何用spss做自相关性分析

执行工具栏[分析A]/相关[C]/双变量[B]程序,打开【双变量相关】对话窗口如果您是希望进行偏相关分析,请用鼠标选择偏相关[R];最常用到的是双变量相关分析和偏相关分析,偏相关分析控制了其他变量对该变量的影响,只研究某一变量对这一变量的影响。选择你所要研究的变量,以及分析方法,SPSS提供了三种相关系数,Pearson相关系数,kendall相关系数,Spearman相关系数,选择单侧检验还是双侧检验,如果您事先知道变量之间是正相关还是负相关请选择单侧检验,如果不知道,请选择双侧检验。最后,按【确定】按钮,输出结果。由输出结果可以看出,E1E2两个变量在0.01水平(双侧)上显著相关。

如何利用spss进行相关性分析

飞秒检测的步骤为第一步:建立数据文件。 定义变量:序号为Number,假设年份用y表示,零售总额用r表示,居民收入用i表示,全市总人口用p表示,输入数据,例如某市从1978年至1992年社会商品零售总额、居民收入和全市总人口统计数字表,试分析它们之间是否存在线性关系。第二步:进行数据分析。 在数据文件管理窗口中,点击Analyze,展开下拉菜单,再点击Correlate中的Bivariate项,进入Bivariate Correlations对话框,在对话框中,有两项选择项。 (1)Statistics:统计量选择项 在该栏中有两个有关统计量的选择项,只有在主对话框中选择了Pearson相关分析方法时才可以选择这两个选择项,如果选择了这些项,在输出结果中就会得到样本的相应的统计量数值。它们是: Means and standard deviations:均值与标准差; Cross-product deviations and covariances:叉积离差阵和协方差阵。 (2)missing values:缺失值的处理方法选择项,在该栏中有两个关于缺失值的处理方法选择项: Exclude cases pairwise:仅剔除正在参与计算的两个变量值是缺失值的观测量。这样在多元相关分析中或多对两两分析中,有可能相关系数矩阵中的相关系数是根据不同数量的观测量计算出来的,系统默认为此项; Exclude cases listwise:剔除在主对话框中Variables矩形阵中列出的变量带有缺失值的所有观测量。这样计算出来的相关系数矩阵,每个相关系数都是一句相同数量的观测量计算出来的。从表中可以看出,社会零售总额与居民收入之间的相关系数为0.991,双尾检验的概率值为0,小于1%,即相关程度是显著的,叉积离差值为42403.443,协方差为3028.817,;社会零售总额与总人口的相关系数为0.850,双尾检验的概率值为0,小于1%,即相关程度也是显著的,叉积离差值为4141.919,协方差为295.851;居民收入与总人口的相关系数为0.790,双尾检验的概率值为0,小于1%,即相关程度是显著的,叉积离差值为3498.399,协方差为249.886。因此可以说,该市从1978年到1992年社会零售总额、居民收入和总人口两两之间有着明显的线性关系。

R - 相关性分析

相关性分析用于评估两个或多个变量之间的关联性。 皮尔森相关性分析是一种参数相关性检验,检测的是两个变量间的线性关系;应用皮尔森相关性分析的前提是两个变量都是正态分布的,其相关性可以用线性回归曲线表示。 H0: true correlation is equal to 0 cor.test(){stats} 返回一系列参数,主要关注p.value 和 correlation coefficient(ample estimates: cor ); 可以改变cor.test(){stats}中的method 参数进行非参检验,但stats 的作者都表示用上面提到的包更的支持数据种类更多、估计结果准确性更高。 实际上就是每一个变量与其他变量间的相关性检验,因此方法也是上面提到的参数相关和非参相关检验。 多个检验同时进行时,如果对任意单个假设检验问题,p-值小于 α就拒绝原假设,则无法控制总体第一类错误率(family-wise error rate, FWER);FWER随检验个数 mm增大而增大( m→∞m→∞时收敛到1)。 总的来说,当同一个数据集有n次(n>=2)假设检验时,就要做多重假设检验校正 p.adjust(){stats}中的参数: p.adjust.methods = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr", "none") Hochberg"s and Hommel"s : 适用于假设检验是独立或非负相关的检验结果, Hommel的方法比Hochberg的方法更强大,但差异通常很小,而Hochberg 的计算速度更快。 * BH{aka fdr(False Discovery Rate)} : 是控制错误发现率,即将假阳性结果和真阳性的比例控制在一定范围内。 错误发现率是一种不如第一类错误率(family-wise error rate, FWER)严格的条件,因此这些方法比其他方法更有效,也是非常常用的方法。 bonferroni :通过对p值的阈值进行校正来实现消除假阳性结果,是最严格的矫正方法,校正后拒绝的不只是假阳性结果,很多阳性结果也会被它拒绝。bonferroni 通过公式 p*(1/n){其中p为原始阈值,n为总检验次数},拒绝le所有的假阳性结果发生的可能性。 H0: 两矩阵没有相关关系。 在微生物群落分析中, 免不了分析环境因子与菌落的相关性,此时便需要做CCA 和 Mantel test 分析 。Mantel test 分析是将微生物群落作为一个距离矩阵(如UniFrac distance matrix),环境变量作为另一个距离矩阵(如pH、有机碳、总氮、盐度、温度、地理等),再检验两个矩阵之间的相关性。 mantel.rtest (){ ade4 } mantel(){ecodist} mantel(){vegan} ggcor不仅内置了mental test 函数, 也很好的实现了mental test 可视化。 如果是矩阵相关系数计算,结果可能不怎么好解读。通过热图的方式可以有效的将结果分为多个层次,然后再对每个层次进行专注解读就显得方便多了。 专门为相关矩阵可视化写的R包也不少,包括画风比较粗狂、但结果又比较详细的corrgram, GGally, PerformanceAnalytics等,他们可以将原始数据分布,相关系数,线性回归的回归线,显著性P值等展示在一张画布中;而基于base绘图系统写的 corrplot 应该是最为精美的了,配色清新,功能齐全。对于已经习惯用了grid 图形系统的ggplot2语法的人来说, ggcorrplot 只实现了小部分的corrplot内容,虽然也很精美但是又有些意犹未尽的感觉;还在紧锣密鼓构建中的 ggcor 将满足大部分的相关系数可视化需求。 ggcor不同于常规的ggplot2扩展包,它引入了ggcor函数,目的调用ggplot() 来进行图层初始化,因此很多图层参数是通用的;但它需要相关系数矩阵来进行数据处理、绘图类型、背景、坐标轴、颜色映射、图例设置等,因此矩阵需要在这一步就输入。要么调用作者封装的cor(){stats}或 cor.test(){stats},要么处理数据后用 as_cor_tbl() 和 fortify_cor()两个函数导入,应该能满足基本需求。 as_cor_tbl()函数 : fortify_cor()函数 : 主要用于处理原始数据表,可以调用cor(){stats}求相关系数,默认使用pearson方法,当然spearman和kendall方法也都支持。但stats 包的作者在cor() 下面提到,如果要用spearman和kendall 的方法,最好用其他的包。而且涉及P值矫正什么的,可能cor() 或者 cor.test() 函数并不能达到要求,最好还是自己做统计分析,最后进行数据格式处理。 几个重要图层: geom_square()、geom_circle2()、geom_ellipse2()、geom_pie2()、geom_colour()、geom_confbox()、geom_num()、geom_mark()、geom_cross() 基本就是形状、色彩、大小等,值得提出来说的只有geom_cross() 这个是根据阈值,在阈值外的位置打上一个X。

与相关性分析有关的两个概念(Pearson/Spearman)

生物统计学中运用比较普遍的一个概念就是相关系数,可以通过相关系数这一基本概念,衍生到构建基因共表达网络。大部分基因网络分析的方法,都是基因表达量相关系数的计算的推广和衍生,即使复杂算法,也是以相关系数的计算作为基础。所以理解相关系数,对后续的分析都有很大的影响。 皮尔森相关系数是最常见的相关性计算。 皮尔森相关百度百科解释:皮尔森相关系数(Pearson correlation coefficient)也称皮尔森积差相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数。皮尔森相关系数是用来反映两个变量线性相关程度的统计量。相关系数用r表示,其中n为样本量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的绝对值越大表明相关性越强。 从皮尔森相关系数的定义看,如果两个基因的表达量呈现为线性关系那么两个基因表达量就有显著的皮尔森相关性。 我们用R模拟几组数据 a, b, c三组数据,a和b为线性关系,相关性分析采用Pearson相关性分析为1,a和c的关系为指数型关系,使用Pearson相关性分析,发现其相关性为0.769,而使用spearman相关性分析,发现其相关性为1。 从上面的分析可以看出,两个基因的表达呈现为线性关系,那么则具有显著的皮尔森相关性,可以是正相关关系,也可以是负相关关系。 斯皮尔曼等级相关(Spearman"s correlation coefficient for ranked data)主要用于解决名称数据和顺序数据相关的问题。适用于两列变量,而且具有等级线性关系的资料。由英国心理学家、统计学家斯皮尔曼根据积差相关的概念推到而来,一些人把斯皮尔曼等级相关看做积差相关的特殊形式。 其中 是指等级个数, 是指两列变量等级的差数。 怎么理解上面说到的等级个数和等级差,这个就有点类似于非参数检验的方法,无论两个变量的数据如何变化,符合怎样的分布,我们只关注每个数值在变量内的排列顺序,如果两个变量的的对应值在各组内的排序是类似的,那么则具有显著的相关性。 此处引用其他帖子的一张图,有助于理解 我们把表中的数据输入R,利用cor.test 进行实践检验。 我们可以看到使用两种不同的检验方式,Pearson检验得到的相关系数是r = 0.7658951 ,使用Spearman 检验方式得到的相关系数是ρ = 1。所以采用不同的方式进行检验,要根据具体的问题进行取舍,并且通过检验之后,要得到一个合理的解释才是关键。 检验是方法,结论解释才是重心。 最后,还是回到刚开始的例子,a,b,c,d四组数据,分别有线性,幂指数的关系,使用不同的相关性方法得到的相关性系数有所不同。关键在于怎样选择,并做出合理的解释,由此进一步阐述规律。 R语言中,还有进行多组相关性检验,并可视化结果,下一篇中使用R语言对两组数据,数据集进行操作并可视化。 参考文章 皮尔森相关和斯皮尔曼等级相关 R语言-相关系数计算 R语言 相关性分析 R 相关性分析 R语言相关分析

这个SPSS相关性分析结果代表什么?

相关不显著

spss相关性分析结果看不懂,帮忙解释下~谢了

请问一下,这张图是怎么来的啊?谢谢哦

相关性分析`correlation`

作者@ weanl 创建于 2018-12-13T14:20:00 1.1 理论分析: u2003u2003Pearson Correlation Coefficient, PCC 被称作 线性相关系数 ,可以衡量两个服从正态分布的随机变量 和 的线性相关性。其实就是统计学中的 相关系数 。 给出 协方差 的计算公式: 其中 称为分布的均值。实际上 和 相互独立( ),则 ,所以 ,反之并不成立。 给出 PCC 的计算公式: 其中 称为分布的方差。 在随机变量观测为 时,PCC 的估计计算公式: (式1-3 可以做其他的变形,另外这里分布方差的估计选的是 有偏估计 ) (根据 Cauchy–Schwarz inequality 可知值域为 ) (如果数据进行了 中心化 处理,即 ,PCC与 余弦相似度 "等价") u2003u2003 1.2 应用总结: u2003u2003 1.3 附加: { scipy 源码: scipy.stats.pearsonr } (好好看一下源码 ^ _ ^ ) u2003u2003 scipy.stats.spearmanr 且听下回分解

相关性分析 相关系数多少有意义?

在数据分析的问题中, 经常会遇见的一种问题就是 相关的问题。 比如:抖音短视频的产品经理经常要来问留存(是否留下来)和观看时长, 收藏的次数, 转发的次数, 关注的抖音博主数等等是否有相关性, 相关性有多大。 因为 只有知道了哪些因素和留存比较相关, 才知道怎么去优化从产品的方向去提升留存率 。 比如:如果留存和收藏的相关性比较大 那么我们就要引导用户去收藏视频, 从而提升相关的指标, 除了留存的相关性计算的问题, 还有类似的需要去计算相关性的问题。 比如淘宝的用户,他们的付费行为和哪些行为相关, 相关性有多大, 这样我们就可以挖掘出用户付费的关键行为。 这种问题就是相关性量化, 我们要找到一种科学的方法去计算这些因素和留存的相关性的大小。 这种方法就是相关性分析。 01 什么是相关性分析 相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析(官方定义) 简单来说, 相关性的方法主要用来分析两个东西他们之间的相关性大小。 相关性大小用相关系数r来描述,关于r的解读:(从知乎摘录) (1) 正相关: 如果x,y变化的方向一致,如身高与体重的关系,r>0;一般: |r|>0.95 存在显著性相关; |r|≥0.8 高度相关; 0.5≤|r|<0.8 中度相关; 0.3≤|r|<0.5 低度相关; |r|<0.3 关系极弱,认为不相关 (2) 负相关 :如果x,y变化的方向相反,如吸烟与肺功能的关系,r<0; (3) 无线性相关: r=0, 这里注意, r=0 不代表他们之间没有关系, 可能只是不存在线性关系。 下面用几个图来描述一下,不同的相关性的情况: 第一张图r=-0.92 <0 是说明横轴和纵轴的数据呈现负相关,意思就是随着横轴的数据值越来越大纵轴的数据的值呈现下降的趋势, 从r的绝对值为0.92>0.8 来看, 说明两组数据的相关性高度相关。 同样的, 第二张图 r=0.88 >0 说明纵轴和横轴的数据呈现正向的关系, 随着横轴数据的值越来越大, 纵轴的值也随之变大, 并且两组数据也是呈现高度相关。 02 如何实现相关性分析 前面已经讲了什么是相关性分析方法, 那么我们怎么去实现这种分析方法呢 , 以下先用python 实现 : 1. 首先是导入数据集, 这里以tips 为例 import numpy asnpimport pandas aspdimport matplotlib.pyplot aspltimport seaborn assns%matplotlib inline## 定义主题风格sns. set(style= "darkgrid")## 加载tipstips = sns.load_dataset( "tips") 2. 查看导入的数据集情况 字段分别代表: total_bill: 总账单数 tip: 消费数目 sex: 性别 smoker: 是否是吸烟的群众 day: 天气 time: 晚餐 dinner, 午餐lunch size: 顾客数 tips.head # 查看数据的前几行 3. 最简单的相关性计算 tips.corr 4. 任意看两个数据之间相关性可视化,比如看 total_bill 和 tip 之间的相关性,就可以如下操作进行可视化 从散点图可以看出账单的 数目和消费的数目基本是呈正相关 , 账单的总的数目越高, 给得消费也会越多。 5. 如果要看全部任意两两数据的相关性的可视化: sns.pairplot(tips) 6. 如果要分不同的人群, 吸烟和非吸烟看总的账单数目total_bill和小费tip 的关系。 sns.relplot(x= "total_bill", y= "tip", hue= "smoker", data=tips)# 利用 hue进行区分 plt.show 7. 区分抽烟和非抽烟群体看所有数据之间的相关性,我们可以看到: 对于男性和女性群体, 在小费和总账单金额的关系上, 可以同样都是账单金额越高的时候, 小费越高的例子上, 男性要比女性给得小费更大方。 在顾客数量和小费的数目关系上, 我们可以发现, 同样的顾客数量, 男性要比女性给得小费更多。 在顾客数量和总账单数目关系上, 也是同样的顾客数量, 男性要比女性消费更多。 sns.pairplot(tips ,hue = "sex") 03 实战案例 问题: 影响B 站留存的相关的关键行为有哪些? 这些行为和留存哪一个相关性是最大的? 分析思路: 首先规划好完整的思路, 哪些行为和留存相关, 然后利用这些行为+时间维度 组成指标, 因为不同的时间跨度组合出来的指标, 意义是不一样的, 比如登录行为就有 7天登录天数, 30天登录天数 第二步计算这些行为和留存的相关性, 我们用1 表示会留存 0 表示不会留存 那么就得到 用户id + 行为数据+ 是否留存 这几个指标组成的数据 然后就是相关性大小的计算 import matplotlib.pyplot aspltimport seaborn assnsretain2 = pd.read_csv( "d:/My Documents/Desktop/train2.csv") # 读取数据retain2 = retain2. drop(columns=[ "click_share_ayyuid_ucnt_days7"]) # 去掉不参与计算相关性的列plt.figure(figsize=( 16, 10), dpi= 80)# 相关性大小计算sns.heatmap(retain2.corr, xticklabels=retain2.corr.columns, yticklabels=retain2.corr.columns, cmap= "RdYlGn", center= 0, annot=True)# 可视化plt.title( "Correlogram of retain", fontsize= 22)plt.xticks(fontsize= 12)plt.yticks(fontsize= 12)plt.show 图中的数字值就是代表相关性大小 r 值,所以从图中我们可以发现: 留存相关最大的四大因素: