双缝干涉实验

阅读 / 问答 / 标签

双缝干涉实验滤光片前的透镜的作用

实现平行光的汇聚。半透半反镜,又叫做分光镜、分光片、半反半透镜,双缝干涉实验滤光片前的透镜的作用是实现平行光的汇聚,是一种在光学玻璃上镀制半反射膜。

在双缝干涉实验中,滤光片能不能放在单双缝之间

在双缝干涉实验中,滤光片不能放在单双缝之间.在双缝干涉实验中,滤光片的作用是将复色光变为单色光,单缝作用是将单色光分解成频率相同,所以,振动情况相同的光不能放在单双缝之间。

量子力学电子双缝干涉实验简介和一些思考

内容主要来自量子力学科普书《见微知著》 量子力学的经典电子双缝干涉实验证明了粒子具有波粒二象性,是量子力学迄今为止最重要的实验,让我们一起来看一下这个实验。 如图所示,费恩曼设想的理想单电子干涉示意图。最左侧为电子枪,1和2为两条狭缝。当只开启缝1或者缝2时,电子穿过狭缝打到后面的接收屏上的分布曲线分别是P1和P2,当两条缝都开启时,接收屏上电子的分布曲线不是P1和P2简单的相加,而是如最后一个图片下面所标注的公式。 这个实验最令人不可思议的,是当两条缝开启,电子枪单个射出电子,其间间隔足够长的时间,最后得到的电子分布依然如上图所示,好像是先到的电子“规定”后到的电子的行为。 如果觉得上述说明不足以理解,请看下面进一步的说明。 在宏观世界中,以玻璃球为例。我们让玻璃球射过开了一道缝的挡板,大家知道,玻璃球会在后墙留下的痕迹,是一条线。射过开了两条缝隙的挡板,在后墙也是两条线。如下图。 当把玻璃球换成水波的时候,开一条缝,在后墙上也会出现一条线。开了两条缝的,就会出现干涉条纹。如下图。 那么量子世界是咋样的呢?将玻璃球换成电子,通过一条缝隙时候,后墙上只有一条线。如下图。 通过两条缝隙时候,后墙上出现干涉条纹。科学家在想,这么小的电子是如何出现干涉条纹的。他们设计了单电子干涉实验。让一个电子通过一条缝隙,后墙也只出现一条线。可是让人奇怪的是,当开了两条缝隙时候,竟然出现了干涉条纹现象。如下图。 这该怎么解释呢?明明电子一个个射过双缝的。怎么还出现了干涉条纹,难道一个电子同时穿过了两条缝隙? 如下图。 更让人不解的是,当用摄像机试图看着电子的时候,干涉条纹竟然消失了。不看的时候,干涉条纹又出现了。 观测竟然也能影响电子行为? 它知道我们在看它? 如下图。 这就是电子双缝干涉实验,所以费曼说:“电子双缝实验是量子力学的中心区域,研究量子力学,这个问题不可避免。”任何想要重建量子力学的人,也不可能避开这个问题。 结论一:当单个电子一个一个通过双缝后会形成干涉,说明单个电子有波属性。 答案:一个电子可以自相互作用发生干涉,但 一个电子的干涉可以忽略不计,也就是你观测不到。 这是量变到质变的认识。 这意味着对电子双缝干涉条纹现象的研究是群体行为而非个体行为。 答案: 电子不会同时通过两条缝隙。 大多数相信它可以同时穿过两条缝隙的人,都会拿高维度空间来解释,关于平行宇宙,多宇宙,高维度空间等未经证实的理论,在此不讨论。 答案:说明了两条缝隙对产生干涉的必要性,也即说明了 电子干涉和光的干涉现象没有本质区别。 单电子双缝干涉实验电子是一个一个间隔发出的,而经典的光干涉实验发出的是一束光而不是单颗光子,在这点上它们是有区别的。但就干涉而言,它们的本质是一样的。 即然光的干涉和电子干涉本质是一样,那么问题就转化为单电子是波还是粒子? 答案: 单电子具有波的性质,通过自相互作用,发生干涉。 (见本文第四部分的两个新闻证明) 就干涉而言,一定要是波才能行,这是前提条件。单电子具有波的性质意味着,可以用经典的光的波动理论来描述电子双缝实验,这样就不用考虑它究竟是通过哪个缝隙的问题了,因为通过哪个都可以自相互作用发生干涉。就好像一个人跳格子,左一下,右一下,这样就留下了干涉条纹。 答案: 因为波动关系,我们必须要用惠更斯和菲涅尔的光的波动理论来解释。 也就是波动“包络面”“次波”的概念的来理解。 结论二:当观测电子时,干涉消失,表现为粒子属性。 答案: 对实验结果产生影响的不是人的意识。 如果是因为意识,那么人的观测和物体的观测应该有不同的结果,因为物体没有意识。但通过公开的实验信息知道,无论是实验者自己看还是摄像机测,干涉条纹均不会出现。 答案: 电子或者光子不具有自我选择意识。 (见本文第四部分的新闻一证明) 答案(未经实验的推测):目前能想到的合理自洽的解释是, 观测行为影响结果的原因是“有序的定向观测”影响。 在实验中,每一个物体都可以通过辐射来“观测”电子,但这些观测是无序并混乱的。现在有一个开着的摄像机,对着双缝观测,形成一个有序的“定向观测”,影响到了电子的干涉条纹的形成。“定向观测”观测取消,干涉条纹又出现。(如果以开着的摄像机因为通电而有磁场来解释其与其他物体的不同也是说不通的,因为实验室通电的设备不仅有摄像机。) 至于影响的机制,通过场的方式来破坏电子的干涉条纹形成的可能性比较大。(可以通过建一个定向磁场来影响电子双缝实验的方式验证。) 对于观察行为影响结果,可以这样理解:一组“电子”水波,向前走,遇到挡板的两个缝隙,大家知道肯定要发生干涉条纹的。但这个时候,水盆里突然掉入一块石头(观测行为),干扰了干涉条纹的形成,没有这块石头,干涉条纹将会出现。 假设在某大学一个实验室中做这个实验,当实验外有人看着这个实验室时算观测吗?实验室是否隔绝了这样的观测? 答案: 观测距离是有限制的。 目前是这样的认为,实验外面的情况,对实验室内的实验,起不到观测作用。这点可以用观测行为发生作用需要达到一定的辐射能量强度来解释。 只要光通过两条缝隙的实验条件符合,干涉条纹就出现,并不受观测行为影响,但单电子却不同,这是为何? 答案: 光束和一个电子的“稳定性”不同,单个电子对观测能量更加“敏感”。 影响的能量不足以影响到光束形成干涉条纹,但足以影响到电子的干涉条纹形成。这就是量子力学与宏观物理学的区别。 中科大新闻网:中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室李传锋研究组 首次实现了量子惠勒延迟选择实验,制备出了粒子和波的叠加状态 ,极大地丰富了人们对玻尔互补原理的理解。 研究成果作为封面文章发表在9月份的《自然-光子学》上,英国著名量子物理学家Adesso教授和Girolami教授,在同期杂志的《新闻与观察》栏目以《波-粒叠加》为题撰文,高度评价了这一研究成果:“量子惠勒延迟选择实验的实现挑战互补原理设定的传统界限,在一个实验装置中展示光子可以在波动和粒子两种行为之间相干地振荡”。《自然-物理》杂志也以《选择的问题》为题在《研究高亮》栏目报道了该成果,评价该成果“重新定义了波粒二象性的概念”。 量子实验装置的引入,使得人们可以从一个全新的视角来观察世界,就好像给我们安上了一双“量子的眼睛”,能够看到经典探测装置观察不到的物理现象。此项研究工作拓展和加深了人们对玻尔互补原理的理解,揭示了互补原理和叠加原理间的深层次关系,也使得人们对“光是什么”这个萦绕千年的问题有了更进一步的理解。 该项研究受到科技部和国家自然科学基金委的资助。 光是什么?这是个古老的科学问题。三个世纪以来粒子和波的概念就一直是对立的,比如牛顿最初的粒子说和胡克及惠更斯的波动说。现在我们对光的理解可以归结为玻尔的互补原理,即光具有波粒二象性,波动性和粒子性这两种属性即对立又互补,一个实验中具体展示哪种属性取决于实验装置。比如在由两块分束器构成的马赫-曾德干涉仪中,单个光子被第一个分束器分到两个路径上,在第二个分束器所在位置重合。如果我们选择加入第二个分束器,则构成干涉仪,有干涉条纹,观测到波动性,反之如果我们选择不加第二个分束器,则不能构成干涉仪,没有干涉条纹,观测到的是粒子性。马赫-曾德干涉实验是可以用量子力学解释的。 然而存在一种隐变量理论认为,光子是有自由意志的,在进入干涉仪之前光子就察觉到有没有第二个分束器,然后光子根据它察觉到的信息决定自己经过第一个分束器的方式,从而展现粒子性或波动性。 为了检验这种隐变量理论和量子力学孰是孰非,玻尔的学生惠勒于1978年提出了著名的延迟选择实验,即实验者延迟到光子已经完全经过第一个分束器之后再选择加不加第二个分束器。在经典的惠勒延迟选择实验中,探测光的波动性和粒子性的实验装置,即加与不加第二个分束器,是相互排斥的,因此光的波动性和粒子性不能够同时展现出来。 李传锋研究组设计出了量子实验装置,巧妙地利用偏振比特的辅助来控制测量装置,使得测量装置处于探测波动性与探测粒子性的两种对立状态的量子叠加态上。他们利用自组织量子点产生的确定性单光子源作为输入, 实现了量子的惠勒延迟选择实验,排除了光子有自由意志的假设,并首次观测到了光的波动态与粒子态的量子叠加状态。 实验结果显示,处于波粒叠加态上的光子,既不象普通的粒子态那样没有干涉条纹,也不象普通的波动态那样表现出标准的正弦形干涉条纹,而是展现出锯齿形条纹这样一种“非波非粒,亦波亦粒”的表现形式。 2015年澳大利亚一个研究小组也获得光同时表现出波粒二象性的单个快照,新闻也摘录如下:据澳大利亚spacedaily网站2015年3月3日报道,量子力学告诉我们:光可以同时表现波粒二象性。然而,人类迄今为止还从未在实验上同时拍摄到光的波粒二象性;最多我们能看到光波动性和或粒子性,但总是在不同时间。 通过采用完全不同以往的实验方法,瑞士洛桑联邦理工学院(EPFL)的科学家们第一次从实验上同时拍摄到光波粒二象性的快照。这项突破性研究成果发表在《自然通讯》杂志上。 Fabrizio Carbone说:“这项实验有史以来第一次证明,我们可以直接拍摄量子力学及其矛盾属性。” 此外,这项开创性工作的重要性在于它可以扩展基础科学到未来技术。正如Carbone解释说:“能够像这样在纳米尺度对量子现象进行成像和控制,开辟了迈向量子计算的新途径。” 当紫外光线照射金属表面时,它导致电子发射。阿尔伯特 爱因斯坦这样解释“光电效应”:光原本认为仅仅是一种波,其实它也是一束粒子流。虽然各种实验已经成功观察到了光的波动性和粒子性行为,但是它们从未被同时观测到。 EPFL的Fabrizio Carbone领导的一个研究小组,利用一个巧妙的方法完成了一项实验:使用电子来使光成像。研究人员有史以来第一次,获得光同时表现出波粒二象性的单个快照。 实验这样设置的: 一束激光脉冲照射在微小的金属纳米线上。激光使纳米线中的带电粒子能量增加,引起它们振动。 光沿着这根小小的纳米线在两个可能的方向上传输,就像公速路上的汽车。当沿相反方向传输的光波相遇时,它们会形成驻波(stand wave)。这里,驻波成为实验的光源,在纳米线周围辐射。 实验的巧妙之处在于:科学家们在纳米线附近发射一束电子流,利用它们来使光的驻波成像。因为电子与限制在纳米线中的光相互作用,因此,电子会加速或减速。利用超快显微镜对电子速度发生变化的位置成像,Carbon的团队现在可以使这个作为光波动性指纹的驻波可视化。 这种现象说明光的波动性,同时它也证明了光的粒子性。当电子在很接近光驻波的地方传输时,它们与光粒子,即光子发生碰撞。 如上文所述,这会影响电子的速度,使它们移动得更快或更慢。这种速度变化表现为电子和光子之间能量“包”(量子)的交换。这些能量包之间的交换,表明纳米线中的光是一种粒子。

科学家们在双缝干涉实验中看到了什么,真的会令人恐怖吗?

看到了光的波粒二象性,真的很奇怪,光竟然又是一种波也是一种粒子,就跟具有生命一样。

双缝干涉实验恐怖在哪?

双缝干涉实验不恐怖,但是难以理解。即使对于物理专业的学生来说,一开始接触到量子力学的双缝干涉实验时,也会嗅到有一丝玄学的味道。因为测量和叠加态这两个在量子力学中的玄学概念在双缝干涉实验中的完美展示,双缝干涉实验开始进入大众的视野。其实双缝干涉实验的历史悠久,这个故事始于光的“波动说”的一次阶段性胜利。光是波还是粒子,一直都是物理学争论的核心议题。整个18世纪,在超级学霸牛顿的压制下,波动说一直暗无天日。英国物理学家托马斯杨就观测到将光束照射于两条相互平行的狭缝,在探射屏显示出一系列明亮条纹与暗淡条纹相间的图样。介绍在量子力学里,双缝实验(double-slit experiment)是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。

大学教授认为双缝干涉实验是假的,你怎么看?

双缝干涉实验是物理学的经典实验,是真实可重复的。没有任何可以质疑的地方。但凡质疑的,都是不懂物理的民科。双缝干涉现象是微观粒子波粒二象性的实验体现,在微观世界,粒子是以波函数的形式存在,双缝干涉实验进一步验证了波函数的存在。微观粒子的波粒二象性还体现在电子上,电子围绕原子核运动时,是以电子云的形态存在。基于这些事实,德布罗意推广这一现象到宏观世界,提出了物质波的理论,并数学推导出了物质波的波长。波粒二象性的理念在我们日常生活的3维世界是难以理解的,但如果放到5维世界中,就很容易理解了。以电子云为例,电子围绕原子核运动有多种可能的运动轨迹,这些轨迹汇集起来,就形成了云,当你去探测这个电子是,你从一条经过探测器轨道上捕获了电子,这时候你观察到了这条轨道上的粒子,换成物理语言,波函数塌缩到了这个粒子。在5维空间里,其他轨道上的粒子同一时刻依然存在,只是探测器看不到。所以说,波粒二象性是高维空间,特别是5维空间的完美诠释。是世界本来的样子。

双缝干涉实验中,条纹的宽度怎么测量?

两个明纹或者两个暗纹之间的间距用公式:涉条纹宽度Δx=L*λ/d其中:d是双缝间距,L是屏到狭缝水平距离。如果是明纹和暗纹之间的间距,只要把明纹和明纹之间间距除以2就可以了。在探测屏上观察到的明亮条纹,是由光波的相长干涉造成的,当一个波峰遇到另外一个波峰时,会产生相长干涉;暗淡的条纹是由光波的相消干涉造成的,当一个波峰遇到另外一个波谷时,会产生相消干涉。扩展资料:假设一个光子要从发射点a移动至探测屏的位置点d,它会试着选择经过所有的可能路径,包括选择同时经过两条狭缝的路径;可是,假若用探测器,来观察光子会经过两条狭缝中的那一条狭缝,整个实验设置立刻有所改变。假设探测器的位置为点e,而探测器观察到光子,则新的路径是从点e到点d;这样,在点e与点d之间,只有空旷的空间,并没有两条狭缝,所以不会出现干涉图样。

物理双缝干涉实验中单缝有什么作用化

单缝的作用是衍射

杨氏双缝干涉实验

什么?

双缝干涉实验究竟证明了什么

证实了光具有波动性。光的干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象。1801年,英国物理学家托马斯·杨(1773—1829)在实验室里成功地观察到了光的干涉。两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象,证实了光具有波动性。扩展资料当单色光经过双缝后,在屏上产生了明暗相间的干涉条纹。当屏上某处与两个狭缝的路程差是半波长的偶数倍时,则两列波的波峰叠加,波谷与波谷叠加,形成亮条纹。当屏上某处与两个狭缝的路程差是 半个波长的奇数倍时,在这些地方波峰跟波谷相互叠加,光波的振幅互相抵消,出现暗条纹 。参考资料来源:百度百科-双缝干涉参考资料来源:百度百科-光的干涉

怎么理解“双缝干涉实验”

这个实验证明了光及微观粒子(如电子)同时具有波和粒子的特性。它是证明量子力学可能性现象的基本实验。最早的实验由托马斯·扬在1801年完成,实验观测到光束在通过双缝后,在屏上形成了特定的干扰图案,因而具有波的性质。如果光是粒子,则每个粒子只能通过双缝中的一个,不会形成稳定的干扰图案。然而当在双缝上安装了探测器时,探测结果又显示光束每次只通过一个缝而不是两个同时通过,这又证明了粒子的性质。因此,双缝实验证明的是波粒二象性。

双缝干涉实验 光子同时通过了两条缝隙吗

是的,这是现代量子力学的解释。事实上,单光子也能发生干涉的,并不是多粒子集群引起的结果。千万不要以为波粒二象性是指“大量粒子呈波动性,单个粒子呈粒子性”,完全错误。当然,如果你用经典物理的波动光学那另说,但那就谈不上光子。

“双缝干涉实验”中的原因居然可以改变结果,这究竟因为什么?

因为这项研究的开始和结果可以互换,并且不会影响这项研究的最终结果,也不会让这项研究有任何的不好。

光的双缝干涉实验到底在讲什么,为什么说很可怕?

讲的是光的变化,在实验过程中光在无人观察时和有人观察时呈现的状态不同所以才会觉得可怕。

恐怖的双缝干涉实验,为什么颠覆了我们对宇宙的认知?

双缝干涉实验被神化,其实是人类没弄懂。承认自己水平有限真的很困难。

在双缝干涉实验中为什么单缝要与双缝平行

单缝相当于一个线光源,所以要与双缝平行。

杨氏双缝干涉实验中明条纹位置表达式

杨氏双缝干涉的原理是光波的叠加原理。光波解释了干涉现象。用强烈的单色光照射不透明的百叶窗,上面有一个小孔S,后面有一个小孔S1和S2。杨用光传播的惠更斯亚波假说解释了这个实验。S1和S2是完全相同的线光源,P是在屏幕上任意一点,这是x的交点年代行S1和S2的rl和R2远离S1和S2,双缝之间的距离是D,双缝和屏幕之间的距离是L。D=R2-R1=dsin=壳体=dx/Lsin=TG,因为两个缝之间的距离是远低于L从屏幕上的距离,δ=R2-R1=dsin=壳体=dx/Lsin=TG,这是因为在一个小角度,它可以被认为是近似相等。干涉亮条纹的位置可以极大条件kd=λ:x=(L/d)kλ,干扰暗条纹的位置可以最低条件d=(k+1/2)λ:x=(d/d)(k+1/2)λ之间的明亮的条纹,黑色条纹之间的距离是:Δx=λ(d/d)。扩展资料:干涉条纹是等距的,公式中包含波长参数。波长越长,差异越大。条纹形状:是一组平行于狭缝且等距的直线(有干涉条纹的特点)。菲涅耳双棱镜与菲涅耳双面镜和埃洛镜具有相似的干涉条件。光的干涉是指几个光波相遇时产生的光强分布不等于单个成员波产生的光强分布的总和,发生在明暗之间的现象。光的干涉现象的发现在光粒子理论到光波理论的历史发展过程中起到了不可磨灭的作用。1801年,托马斯·杨提出了干涉原理,并首次进行了双缝干涉实验。参考资料:百度百科-杨氏双缝干涉

双缝干涉实验

能。干涉条纹的方向与双缝的方向平行。拨动"拨杆",双缝随之转动,可以使双缝转到竖直方向,于是干涉条纹就沿竖直方向(与分划板中心刻线同方向)。

该如何理解双缝干涉实验?

只是一个现象,肉眼能看到的一个波的一个特性表现,证明光有波动性用的。这个实验本身没有什么好说的。引申的一个设想到可以思考一下:如果双缝干涉实验的一束光换成了一个光子,那么这个光子会通过那个缝隙。左边的、右边的、还是两个都通过!所以双缝干涉实验只是肉眼观察到的一个波的特性,而这个特性可能只在肉眼观察下有效。光是粒子还是波动还需要更多有利的实验证明。量子世界很有很多未知,还需要进一步发现。 仅供参考

杨氏双缝干涉实验中,光源上下移动时,干涉条纹如何变化

杨氏双缝干涉实验中,光源上下移动时,干涉条纹下上移动(移动方向与前者的相反)。干扰必须第一相干光绕过障碍物(事实上,衍射),然后相互叠加,形成了光与暗的条纹。双缝垂直,水平方向上,体积小,容易绕过去的光(衍射),位于左,右两侧;每个接缝,而垂直方向上的大小,是不容易的光绕过去,所以没有光上下。最终,每一个垂直缝左右两侧的光彼此叠加,形成明暗相间条纹,性质和平行的接缝。扩展资料:假若光束是由经典粒子组成,将光束照射于一条狭缝,通过狭缝后,冲击于探测屏,则在探射屏应该会观察到对应于狭缝尺寸与形状的图样。可是,假设实际进行这单缝实验,探测屏会显示出衍射图样,光束会被展开,狭缝越狭窄,则展开角度越大。在探测屏会显示出,在中央区域有一块比较明亮的光带,旁边衬托著两块比较暗淡的光带。参考资料来源:百度百科-双缝实验

如果将双缝干涉实验放在水中进行,干涉条纹会如何变化,为什么

波长反比于折射率,变小了,干涉条纹按比例收缩。

双缝干涉实验最重要的步骤是什么?该如何进行?

假设装置探测器来观察光子到底是从那一条狭缝经过,因此能够获得路径信息(不论是否真正读取这路径信息),则干涉图样会消失。这种路径实验演示出粒子性与波动性的互补原理,光子可以表现出粒子性,也可以表现出波动性,但不能同时表现出粒子性与波动性。虽然这思想实验对于量子力学的基础理论极为重要,直到20世纪70年代,没有出现任何可能的技术体现这思想实验的提议。实际而言,这类实验也无法简单地设置,因为旧式探测器会将光子吸收。但现今,已完成多个实验展示关于互补性的各个方面,例如量子擦除实验。于1987年完成的一个实验发现了一个惊人的结果,假若只获得部分路径信息,则干涉图样不会完全消失。这实验显示,假若测量的动作不过度搅扰粒子的运动,则干涉图样也只会对应地被改变。在恩格勒-格林柏格对偶关系式,有对于这方面量子行为的详细数学论述。在双缝实验里,粒子抵达探测屏的位置的概率分布具有高度的决定性。量子力学可以精确地预测粒子抵达探测屏任意位置的概率密度,可是,量子力学无法预测,在什么时刻,在探测屏的什么位置,会有一个粒子抵达。这无可争议的结果,是经过多次重复的实验而得到的。这结果给予了科学家极大的困惑,因为无法预测粒子的抵达位置,这意味着没有任何缘由而发生的粒子的抵达事件。很多物理学者非常不愿意接受这种事实。尽管量子力学可以正确地预测实验结果,量子力学不能解释为什么会发生这类现象,为什么粒子似乎可以同时通过两条狭缝?阿尔伯特·爱因斯坦认为,从这里可以推论量子力学并不完备,一个完备的理论必须对这些难题给出满意解释。尼尔斯·玻尔反驳,这正好显示出量子力学的优点,量子力学不会用不恰当的经典概念来解释这种量子现象,如果必要,量子力学可以寻找与应用新的概念来解释这些难题。

你知道双缝干涉实验中的条纹吗?

屏幕中心为零级亮条纹,两侧为平行等间距的明暗相间条纹。双缝干涉实验条纹特点的有:1、明暗相间的条纹;2、条纹等间距排列;3、中间级次低;4、零级明纹只有一条;5、除了零级,其它级次条纹对称分布;6、在装置确定的情况下,入射光波长越长,条纹间距越大。扩展资料英国物理学家托马斯·杨最先在1801年得到两列相干的光波,并且以明确的形式确立了光波叠加原理,用光的波动性解释了干涉现象。他用强烈的单色光照射到开有小孔S的不透明的遮光扳(称为光阑)上,后面置有另一块光阑,开有两个小孔S1和S2。杨氏利用了惠更斯对光的传播所提出的次波假设解释了这个实验。S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S"相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。因双缝间距d远小于缝到屏的距离L,P点处的光程差:δ=r2-r1=dsinθ=dtgθ=dx/Lsinθ=tgθ。这是因为θ角度很小的时候,可以近似认为相等。干涉明条纹的位置可由干涉极大条件d=kλ得:x=(L/d)kλ,干涉暗条纹位置可由干涉极小条件d=(k+1/2)λ得:x=(D/d)(k+1/2)λ,明条纹之间、暗条纹之间距都是Δx=λ(D/d),因此干涉条纹是等距离分布的。

双缝干涉实验的公式

  1、双缝干涉公式:△x = Lλ/d 。   2、双缝干涉的公式中的Δx、d、L和λ的单位都是米(m)。   3、公式中的Δx是相邻两条亮(暗)纹间隔,d是双缝间距,L是双缝到屏的距离,λ是单色光的波长。距离的单位统一用米作为国际单位。

如何做双缝干涉实验

1. 需要一个激光笔(发红色激光那种,玩具级的,有些地方俗称"红外线"),放大镜,纸张,头发,刀片。 双缝实验的话比较难做,因为比较难划出相距 0.5mm 或更小的双缝. 但是可以用一根头发来代替缝。用放大镜聚焦激光,在焦点附近放一根头发,就能在后面的屏看到干涉条纹了,通过条纹可以推算出头发的直径。除了头发,还可以用导线等等一切细的东西,其实纸也是可以试试的,只是我做的不是很成功,条纹很暗淡。另外不一定是要缝,只要是材料的边缘,就可以有干涉衍射现象,用放大镜聚焦的激光射向这些东西就可以看到了。做这些实验就是要自己试、玩嘛。2. 电子....难度就高了,首先你需要能产生高压的东西,比如废旧的电视(要能用的,显像管式(CRT)的),里面有发生高压的电路(一般有1万伏以上),这应该是最为容易获得高压的方法了,其他的方法至少需要一个高压线圈(比如机动车的点火线圈)之类的;用起电机大概也是可以的,但我没见过卖的。有了高压源后你需要发射电子的装置,一般是个真空的玻璃管....话说刚才那个电视的显像管就是一个,其次就是用一些烧掉的白炽灯,需要注意的是有些白炽灯内部并不是真空的(特别是低压的小灯泡),这个一加高压看看就知道了,电子本身是看不见的,但是电子撞上里面的填充其他分子就可能发出辉光,从而被看到,否则可能根本看不到,或者只是在玻璃上有非常暗淡的绿光。电子本身没什么好看的,好看的是它引起的辉光...所以可以考虑近距离看看霓虹灯。发射电子还有一种手段就是用高温,日光灯就是这样,有个灯丝发热,然后加上数百伏特就能发射大量电子了。关于辐射的问题,完全不用担心,这跟看电视受的辐射式同一级别的,......不过据说显像管的后部,辐射是比前部大许多的,但是你做实验这么几个小时,也不用担心。需要特别注意的倒是不要被电到了。我也有时自己做做这些日常生活中就能完成的实验,Q408926096

双缝干涉实验的现象是什么样子的?

条纹形状:与双缝平行的一组明暗相间彼此等间距的直条纹,上,下对称。对于该实验,首先量子力学认为,光是由一份一份的光量子组成,每份的能量大小为E=hυ,其中h为普朗克常数,υ为光子的频率。束单色光穿过狭窄的单缝后再次穿过双缝,就会在双缝后面的屏幕上产生干涉条纹,该实验的神秘之处在于,如果一个一个地发射光子,也能得到干涉条纹,甚至把光子换成电子,甚至是分子,也能得到干涉条纹。扩展资料:注意事项:平行的单色光投射到一个有两条狭缝的挡板上,狭缝相距很近,平行光的光波会同时传到狭缝,它们就成了两个振动情况总是相同的波源称为相干波源,它们发出的光在档板后面的空间相互叠加,就发生了干涉现象。当单色光经过双缝后,在屏上产生了明暗相间的干涉条纹。当屏上某处与两个狭缝的路程差是半波长的偶数倍时,则两列波的波峰叠加,波谷与波谷叠加,形成亮条纹。当屏上某处与两个狭缝的路程差是半个波长的奇数倍时,在这些地方波峰跟波谷相互叠加,光波的振幅互相抵消,出现暗条纹。参考资料来源:百度百科-双缝实验参考资料来源:百度百科-双缝干涉

双缝干涉实验能够解释清楚吗?

实际上,双缝干涉实验之所以令人感到恐怖是因为这项实验颠覆了数千年以来,人类对客观世界的主流认知,简单来说就是,当人类在认识世界、改造世界的的过程中,人们的意识决定着客观对象的呈现形式。

杨氏双缝干涉实验中,光源上下移动时,干涉条纹如何变化

并联双缝干涉条纹不明白,可以这样认为:干扰必须第一相干光绕过障碍物(事实上,衍射),然后相互叠加,形成了光与暗的条纹。双缝垂直,水平方向上,体积小,容易绕过去的光(衍射),位于左,右两侧;每个接缝,而垂直方向上的大小,是不容易的光绕过去,所以没有光上下。最终,每一个垂直缝左右两侧的光彼此叠加,形成明暗相间条纹,性质和平行的接缝。当煤层旋转,条纹旋转。 />通过分析,从每个条带中的波程差,对于一个给定的值的两个狭缝,也可以理解,所有这些点必须分布在平行的直线与接缝,所以双缝平行的条纹。 考虑您的第四段移动单缝,条纹分布。要知道双缝很窄,只相当于两个新光源。单缝,以确保只有光通过双缝,宽度没有影响它的条纹的方向上。

杨氏双缝干涉实验中单缝的作用?

相当于两个有固定相位差的等效光源。杨氏双缝干涉实验属于分振幅干涉,思路是保证 两个有固定相位差的等效光源。

杨氏双缝干涉实验中明条纹位置表达式

杨氏双缝干涉的原理是光波的叠加原理。光波解释了干涉现象。用强烈的单色光照射不透明的百叶窗,上面有一个小孔S,后面有一个小孔S1和S2。杨用光传播的惠更斯亚波假说解释了这个实验。S1和S2是完全相同的线光源,P是在屏幕上任意一点,这是x的交点年代行S1和S2的rl和R2远离S1和S2,双缝之间的距离是D,双缝和屏幕之间的距离是L。D=R2-R1=dsin=壳体=dx/Lsin=TG,因为两个缝之间的距离是远低于L从屏幕上的距离,δ=R2-R1=dsin=壳体=dx/Lsin=TG,这是因为在一个小角度,它可以被认为是近似相等。干涉亮条纹的位置可以极大条件kd=λ:x=(L/d)kλ,干扰暗条纹的位置可以最低条件d=(k+1/2)λ:x=(d/d)(k+1/2)λ之间的明亮的条纹,黑色条纹之间的距离是:Δx=λ(d/d)。扩展资料:干涉条纹是等距的,公式中包含波长参数。波长越长,差异越大。条纹形状:是一组平行于狭缝且等距的直线(有干涉条纹的特点)。菲涅耳双棱镜与菲涅耳双面镜和埃洛镜具有相似的干涉条件。光的干涉是指几个光波相遇时产生的光强分布不等于单个成员波产生的光强分布的总和,发生在明暗之间的现象。光的干涉现象的发现在光粒子理论到光波理论的历史发展过程中起到了不可磨灭的作用。1801年,托马斯·杨提出了干涉原理,并首次进行了双缝干涉实验。参考资料:百度百科-杨氏双缝干涉

在双缝干涉实验中,怎么求明暗条纹间的距离,有什么公式

你指的是明条纹和边上紧挨的一个暗条纹之间的间距还是两个明条纹之间间距还是两个暗条纹之间的距离?如果是两个明纹或者两个暗纹之间的间距用公式:涉条纹宽度Δx=L*λ/d其中:d是双缝间距, L是屏到狭缝水平距离。如果是明纹和暗纹之间的间距,只要把明纹和明纹之间间距除以2就可以了!

为什么说双缝干涉实验恐怖?到底恐怖在哪里?

双缝干涉实验所显示出来的结果是20世纪科学家集体遭遇的一次“灵异事件”,在这个简单的实验中微观世界的基本本质,叠加态、不确定性、观察者效应展现的淋漓尽致。而这三个现象有是如此的烧脑、违反直觉、毁人三观,所以我们常说双缝干涉实验的结果让人觉得后背发凉,有那么一点“恐怖”的感觉。我们人类作为一个宏观世界的一部分,在量子力学出现之前我们的科学认知都是建立在现实的确定性之上的,我们科学理论可以完美的解释和预测宇宙中的任何现象。例如,通过牛顿力学我们可以准确的预测一个事物未来的发展动向,前提是只要知道这个事物初始的状态,以及它未来所经历的相互作用。1846年,我们更是利用物理和数学预测的方式准确的发现了海王星的位置,可以说这是人类宏观世界科学的一次伟大胜利。毫不夸张的说,如果有一台超级强大的计算机,它可以根据已有的理论预测出宇宙中所有事物的未来,这就是现实世界的确定性,以及可预测性。这不仅仅是我们普通人心里的世界观,也是20世界大部分科学家的世界观,爱因斯坦也不例外。但是这一切都被一场物理学的“灵异事件”打破了。是波还是粒子微观世界的尺度非常小,都是些原子、电子之类的小玩意,这些东西不仅在生活中看不到,就连科学家也一直被挡在门外,我们真正了解原子、建立模型也就是上个世纪的事。但是有一个粒子经常在我们眼前晃来晃去,可以说晃了数百万年,那时我们还是树上的猴子,它就是光子!虽然光子很常见,但是关于光是什么?这个问题人类是想了几千年,直到17世纪牛顿大哥才说光是微粒,是一种实物粒子。不过当时就有人提出反对意见认为光是波,因为身为粒子的光无法解释光的衍射现象,而且如果光是微粒的话为什么我们看不见两束光发生碰撞呢?这个人就是惠更斯。由于惠更斯并拿不出任何实验证据,再加之牛顿学霸当时在科学家的威望极高,所以光是微粒就得到人们的认可。那么关于光到底是什么?就在科学界形成了两个不同的派别:波派和粒派!粒派所认为的粒子,我们可以将其想象成为一个个光滑的小球,它们遵循实物粒子的运动规律。也就是说,当你打开手电筒的一瞬间既有无数颗光颗粒向炮弹一个沿着直线向外飞奔。除了牛顿之前所说的实物颗粒,普朗克和爱因斯坦后来也认为光是一种粒子,称为光量子,这个光量子和牛顿的微粒有着本质的区别。量子是一份一份不可分割、且不连续的能量。波派所认为的波,就类似于我们生活中常见的水波,有波峰、波谷,可以完美的解释光的衍射和干涉现象。可问题是波和粒子是完全不同的东西,在现实生活中我们看到的事物它是实物粒子就是实物粒子,它是波就是波,不可能存在两面性,我们也无法理解即使波又是粒子的事物。硬币不是正面就是反面,不可能有即使正面又是反面的硬币,事物不是黑就是白,这就是现实的确定性。所以波派和粒派就持续撕逼了百年,不分胜负。灵异实验:双缝干涉也许微观世界有它自己的本质,也许它真的跟宏观世界不一样,也许宇宙真的需要两套不同的理论去解释,也是事物真的存在两面性,也就是波粒二象性,而我们只是各执一词、盲人摸象罢了。那么光到底是什么?科学家决定做一个实验,这个实验可以完美探测波和粒子的不同特性。双缝干涉实验其实特别简单,就是在光源和探测屏幕之间放一个开了两个狭缝的挡板。然后用光源向挡板啪啪啪发射光子,然后观察屏幕上的呈现。这个实验无外乎两种可能:光就是粒子,就是我们所说的实物小球,或者是生活中的石子、子弹,当光经过中间的挡板时,大部分的光会被挡住,只有两条狭缝可以允许光通过,并且光在屏幕上留下两道杠。这就是粒子运动的典型特性。光是波,它可以像水波那样在经过两条狭缝以后发生干涉,波峰和波峰叠加,波谷和波谷叠加,波峰和波谷抵消,最后在屏幕上留下干涉条纹,看起来就像是斑马线。第一次实验,我们对准双峰发射光束,实验的结果是在屏幕上产生了明暗相间的干涉条纹。这无疑说明,光确实是一种波,可以发生干涉。这是否就说明波派胜利了?其实不然,上面你是发射的光束,你能不能改成一个个光子来发射。也就是我们上文说的光量子。粒派认为这样铁定是两道杠!第二次实验:重复做上述过程,一个一个发射光子,起初由于光子的数量很少,在屏幕上出现了杂乱无章的图案,但是当光子数量增多时,神奇的事情发生了,屏幕上开始显示出了干涉条纹!到这里先不谈波粒之间的竞争,因为出现了一个全新的问题,我们知道要想产生干涉条纹,必须得有两个波进行干涉,这就是为什么要开双峰的原因,但缝的话任何波都不会产生斑马线。但是一个一个发射光子,单个光子要么经过右狭缝、要么经过左狭缝,单个光子在和谁发生干涉?难道它同时经过了双缝,并且和自己发生了关系?所以说波粒之争的事情在双缝实验上变得越来越复杂了。如何解决这个问题?科学家想到了一个办法,我们可以在左右狭缝后加上光电探测器,来看一下单个光子到底是通过了哪条狭缝,还是它会分身分别经过了两条狭缝?这里需要注明一点:观察粒子经过哪条狭缝这个实验,历史上使用的是电子而不是光子,因为我们可以向电子发射光子来进行探测它到底经过了哪个狭缝,而光子本身我们无法去探测,所以使用光子的实验我们本身也做不出来,不过这不影响我们的思想实验。第三次实验:还是以点射的方式发射光子,探测的结果是,光子要么经过左狭缝,要么经过右狭缝,并没有分身,也没有同时经过两个狭缝,光子还是一个一个的粒子。这时波派和粒派都松了一口气,这说明光子具有波粒二象性(其实粒子的性质也在光电效应上得到了证实),它即使波也是粒子,处在两种状态的叠加态,微观世界还真是诡异,粒子处在混沌的两面性。但是到这里真正刷新人们三观的灵异事件发生了。我们不就是探测了一下光子到底经过了哪个狭缝,居然导致了屏幕上的干涉条纹消失了,变成两道杠。这说明我们的观测行为导致了光子的状态发生了改变。这也意味着我们的观测行为,影响了结果。这听起来十分的玄学,难道我们看不看一个事物能够改变它的最终状态。观察者效应微观世界毕竟离我们很远,我们无法体会到这件事道理灵异到了哪里。下面我就举个宏观世界的例子。足球这项运动看过吧。足球运动员射球的一瞬间这个球进不进和足球当时所处的位置、运动员发力的大小和位置、风速等等这些物理因素有关,只要经过足够精细的科学分析,我们就能判断出这个球到底能不能进。但是唯独没有关系的就是你当时有没有看这场比赛,你看与不看都不妨碍球是否能进。但是微观世界的实验告诉我们,球进与不进这个结果和你有没有看球有关。这简直令人发狂,不可思议。尤其是当有些人给观察者这件事上加入了人类的意识以后,整件事情就变得更加的诡异了。被搬倒了几千年的唯心主义差点复活。人类的意识可以改变宇宙的状态。以上的实验都是在光子经过双缝的时候我们对其进行了观测,导致了光子的叠加态坍缩到了单一的量子态,表现出了粒子的特性。那么我们这次让光子首先经过双缝,在它经过双缝的时候应该会保持原有的叠加状态,我们这时在以非常快的速度加上探测器,那么结果会怎么样?不论我们加上探测器的速度有多快干涉条纹都会消失。反过来,一开始有探测器,只要在最后的一瞬间撤掉探测器,干涉条纹就会出现。这次实验类似于惠勒的延迟选择实验,光子貌似是事先已经知道了我们要对它进行探测,在经过双缝时就表现出了粒子的特性导致干涉条纹消失。而我们只要停止观测,光子在双缝处又开始与自己发生干涉。反过来说,我们未来的选择,决定了光子最初的状态!因为光子做出选择在先,我们观测在后。在微观世界中,因果律貌似也失去了作用。这就是量子力学的世界,这就是微观世界的诡异和恐怖之处。哥本哈根诠释双缝干涉实验包含了量子力学中的三大基本原则:叠加态、不确定性、观察者。叠加态是微观粒子的本质,一个粒子可以处在不同状态的混沌态,它具有多面性。以光子来说它就是波粒二象性。一个光子可以同时处在左缝和右缝这两种路径的叠加态中,可以同时穿过两条狭缝,并于自己发生干涉。不确定性原理,也称为测不准原理,在微观世界中我们宏观世界中科学准确的预测性完全不起作用,微观粒子的行为只满足概率统计,我们不能准确的同时知道一个粒子的位置和动量。这两个物理量的测量误差的乘积一定大于某个值,也就是说,如果我们准确的知道了一个粒子的位置,那么它的动量可能会是0到无穷大,变得十分不确定。而在单个发射光子的时候,这个光子到底会落在屏幕的那个位置,我们无法准确的知道,只能说出它出现在某个位置的概率是多少。这一点和宏观世界有着本质的区别,需要用不同的理论去解释。测量这件事会导致微观粒子的波函数发生坍缩,也就是从混沌的叠加态转变为确定的状态,例如,我们对光子(电子)的观测就导致了光子从叠加态坍缩到了粒子态。这样也会导致光子不能神奇同时处在两个路径的叠加态中,只能选择一个单一的狭缝经过,从而导致干涉条纹消失。那么这跟人类的观察有何关系?观察这个行为确是具有人为的因素,貌似是人的因素导致了量子态发生坍缩,导致结结果发生改变,甚至导致未来决定过去。但是观察这种行为是怎样发生的呢?上文我已经提过,历史上对双缝实验的观察我们无法用光子做出来,而使用的是电子,因为在我们观察的时候,我们要想获得粒子的信息,就必须要使用另外一个粒子和其发生相互作用,来反馈给我们。你想一下我们如何去观察电子?是不是要向电子发射一定能量的光子,当光子在被反射回来时,我们才能知道电子的状态。没有这种交互作用,也就没有所谓的观察!但是这个测量的过程就会导致电子的状态被限制单一的状态中,换句话说,当电子穿过狭缝时,我们强迫电子与光子发生相互作用,正是这个过程导致电子波函数的坍缩。所以说观察行为也是一种量子行为。跟人类的意识没有任何关系。

怎么理解“双缝干涉实验”

这个实验证明了光及微观粒子(如电子)同时具有波和粒子的特性。它是证明量子力学可能性现象的基本实验。最早的实验由托马斯·扬在1801年完成,实验观测到光束在通过双缝后,在屏上形成了特定的干扰图案,因而具有波的性质。如果光是粒子,则每个粒子只能通过双缝中的一个,不会形成稳定的干扰图案。然而当在双缝上安装了探测器时,探测结果又显示光束每次只通过一个缝而不是两个同时通过,这又证明了粒子的性质。因此,双缝实验证明的是波粒二象性。

双缝干涉实验为什么恐怖?

压根就不恐怖,只要你了解原理。可以看看杨家福的《原子物理学》,里面已经解释了原因。

光的双缝干涉实验

双缝干涉实验应该是对物理学很有兴趣的人都知道的著名实验,其原理就是一束光,再通过了一道狭隘缝隙后,又穿过了互相平行的两道狭隘缝隙,在后方的探测屏上会显示出明暗相间的干涉条纹,这个实验原本是托马斯u2022杨所提出,其原本意图是反驳光的粒子学说来支持光的波动学说,因为实验中产生的干涉条纹是光的波动干涉所形成的,而粒子无法形成这样的干涉条纹。这种光的波动说在很长一段时间内成功的取代了光的粒子说 但在一段时间后,人们发现了一个恐怖的现象,当人类将光子一个一个的穿过双缝时,发现在后方的探测屏上依然可以得到干涉条纹,甚至,当人类将光子置换成电子分子时,依然可以构成干涉条纹。这是一个非常恐怖的现象,因为单个光子通过双缝时并不会自己发生干涉,原本屏幕上应该出现两条明亮的光线,但是他依然出现了干涉条纹,这就是奇怪的地方,除非光子再通过双凤之前自我分裂成两个光子,穿过双缝后自己与自己进行干涉所形成干涉条纹,不然他不可能出现干涉条纹,更奇异的是,当人们在双缝前方装上探测器后,光子竟然会老老实实的一个一个的穿过左右两条双缝在屏幕上形成两条光斑 这种情况让人们都非常的迷惑 我认为在单个单个发出光子的时候,光子干涉的条纹是处于一种不确定性的,当我们不去观察他的时候,只观察结果,这种不确定性就会变成波形成了干涉条纹,但是如果我们观察他确定单个粒子光子到底通过了哪条缝隙时,那么这时候光,粒子等都会被确定为粒子状,从而形成两条光斑刚变成播的时候,无论我们发射的是单个粒子还是群体,粒子都会变成波的形式,去散发与自我干涉

双缝干涉实验怎么做啊!!急求!

将缝宽和缝剧调整为以下范围再试:缝宽0.016~0.020mm,缝距0.080mm

双缝干涉实验中,人的观测会使干涉条纹消失,为什么有的人说这并不诡异?

毕竟有了第三者的介入之后,那么就会导致结果发生改变,就像薛定谔的猫一样。

双缝干涉实验是什么?这个实验有什么意义呢?

俺寻思,会不会还是观测手段影响了结果。我查了下,光的双缝干涉实验观测手段是两次偏振,电子双缝干涉实验的观测手段好像是某种电磁设备。我想,偏振也许会稍微改变激光的频率,两次偏振后也许双方的光子的频率已经无法再共振了。电子在电磁设备的作用下,也许也发生了频率改变,而失去了共振。从而干涉条纹消失。按照物质波理论,任何质量同时具有波动频率,质量越小频率越大。也许在光子、电子的领域,很小的频率变化就会失去共振。看,一块三棱镜或者一道狭缝,就能使太阳光按照频率进行分解。可见偏振是有可能改变频率的,也许改变很小,但是两次不同方向的偏振,也许改变的频率就足够失去共振了。

杨氏双缝干涉实验原理是什么?

杨氏双缝干涉的原理是光波的叠加原理。光波解释了干涉现象。用强烈的单色光照射不透明的百叶窗,上面有一个小孔S,后面有一个小孔S1和S2。杨用光传播的惠更斯亚波假说解释了这个实验。S1和S2是完全相同的线光源,P是在屏幕上任意一点,这是x的交点年代行S1和S2的rl和R2远离S1和S2,双缝之间的距离是D,双缝和屏幕之间的距离是L。D=R2-R1=dsin=壳体=dx/Lsin=TG,因为两个缝之间的距离是远低于L从屏幕上的距离,δ=R2-R1=dsin=壳体=dx/Lsin=TG,这是因为在一个小角度,它可以被认为是近似相等。干涉亮条纹的位置可以极大条件kd=λ:x=(L/d)kλ,干扰暗条纹的位置可以最低条件d=(k+1/2)λ:x=(d/d)(k+1/2)λ之间的明亮的条纹,黑色条纹之间的距离是:Δx=λ(d/d)。扩展资料:干涉条纹是等距的,公式中包含波长参数。波长越长,差异越大。条纹形状:是一组平行于狭缝且等距的直线(有干涉条纹的特点)。菲涅耳双棱镜与菲涅耳双面镜和埃洛镜具有相似的干涉条件。光的干涉是指几个光波相遇时产生的光强分布不等于单个成员波产生的光强分布的总和,发生在明暗之间的现象。光的干涉现象的发现在光粒子理论到光波理论的历史发展过程中起到了不可磨灭的作用。1801年,托马斯·杨提出了干涉原理,并首次进行了双缝干涉实验。参考资料:百度百科-杨氏双缝干涉

双缝干涉实验是什么?

杨氏双缝干涉实验中,光源上下移动时,干涉条纹下上移动(移动方向与前者的相反)。干扰必须第一相干光绕过障碍物(事实上,衍射),然后相互叠加,形成了光与暗的条纹。双缝垂直,水平方向上,体积小,容易绕过去的光(衍射),位于左,右两侧;每个接缝,而垂直方向上的大小,是不容易的光绕过去,所以没有光上下。最终,每一个垂直缝左右两侧的光彼此叠加,形成明暗相间条纹,性质和平行的接缝。扩展资料:假若光束是由经典粒子组成,将光束照射于一条狭缝,通过狭缝后,冲击于探测屏,则在探射屏应该会观察到对应于狭缝尺寸与形状的图样。可是,假设实际进行这单缝实验,探测屏会显示出衍射图样,光束会被展开,狭缝越狭窄,则展开角度越大。在探测屏会显示出,在中央区域有一块比较明亮的光带,旁边衬托著两块比较暗淡的光带。参考资料来源:百度百科-双缝实验

什么电子双缝干涉实验?有何原理?

通过观察电子通过双缝的波频现象和规律来验证是否具有干涉现象。电子双缝干涉实验,不观测电子路径的时候,投屏出现干涉条纹。观测电子路径的时候投屏出现两条缝隙

双缝干涉实验是如何实现的?

光的双缝干涉中公式Δx =Lλ/d其中,Δx表示干涉条纹宽度,L指屏到狭缝的水平距离,λ表示波长,d表示双缝间距。双缝干涉的干涉条纹中间的明纹亮度较大,边上的明纹亮度逐渐减小。双缝的宽度为毫米量级,干涉条纹的宽度也不过几厘米。双缝与条纹上不同位置的距离相差极小、几乎相等,而干涉条纹里中间明纹和边上明纹的亮度差别明显,所以明纹亮度的差别不是因与双缝的距离不同而引起的。扩展资料双缝干涉实验:双缝干涉实验中,缝的宽度越小,干涉条纹的亮度就越小,所以理想的、或接近于理想的双缝干涉无法在实验中完成。理想的双缝干涉的理论结果无法用实验直接验证,但是计算机模拟实验可以在一定程度上验证理论结果的正确性,还可以使我们一睹理想双缝的干涉条纹的真容。真实的、缝有一定宽度的双缝干涉应该叫作双缝衍射,而双缝干涉就应该是指缝宽度为0的理想双缝干涉。遗憾的是,双缝衍射的称呼经常只出现于物理系高年级的量子力学课程之中。参考资料来源:百度百科-双缝干涉

双缝干涉实验到底是什么?原理呢?这里高三求告 谢谢!

(1)双缝干涉两个独立的光源发出的光不是相干光,双缝干涉的装置使一束光通过双缝后变为两束相干光,在光屏上相通形成稳定的干涉条纹.在双缝干涉实验中,光屏上某点到双缝的路程差为半波长的偶数倍时,该点出现亮条纹;光屏上某点到双缝的路程差为半波长的奇数倍时,该点出现暗条纹.A、对干涉图样的研究可知:相邻两条明条纹(暗条纹)中心距离 与屏到双缝的距离L成正比;与双缝间距离d成反比;与照射光的波长成正比.B、在实验装置不变的情况下化、d不变),由于红光的波长大于紫光的波长,所以红光产生的干涉条纹间距较大,紫光产生的干涉条纹间距较小;初步了解通过双缝干涉测波长的原理. C、用白光进行干涉实验,各种单色光在光屏中央均为明纹,中央亮纹是各色光复合而成,所以是白色的.各色光由于波长不同,在光屏上产生的其它各级亮纹的位置均不相同,所以其它各级亮纹是彩色的.(2)薄膜干涉让一束光经薄膜的两个表面反射后,形成的两束反射光产生的干涉现象叫薄膜干涉.A、在薄膜干涉中,前、后表面反射光的路程差由膜的厚度决定,所以薄膜干涉中同一明条纹(暗条纹)应出现在膜的厚度相等的地方.由于光波波长极短,所以微薄膜干涉时,介质膜应足够薄,才能观察到干涉条纹.B、用手紧压两块玻璃板看到彩色条纹,阳光下的肥皂泡和水面飘浮油膜出现彩色等都是薄膜干涉.C、薄膜于涉在技术上可以检查镜面和精密部件表面形状;精密光学过镜上的增透膜(当增透膜的厚度是入射光在膜中波长的1/4时,透镜上透光损失的能量最小,增强了透镜的透光能力.)

双缝干涉实验是谁发现的?

我们在高中的时候曾经学过一个实验,名字叫做双缝实验,我们准备一个蜡烛,在蜡烛后面放置一块只有一条长缝隙的挡板,然后在后面放置一块有两条长缝隙的挡板,最后再放置一块黑色屏幕,屏幕上会产生明暗条纹。这个实验是托马斯·杨所提出来的,他证实了光纤通过平行且距离很小的两个小孔,通过两小孔频率相同的光会发生互相影响投射出明暗相间的图案,第一个挡板的作用是让蜡烛发出的光先衍射,变成一束稳定的相干光源,这样可以排除干扰,能更清晰地观察到试验结果,第二块挡板的作用是让相干光变成同样的两列光源,这两列光源发生干涉,相位相同效果就加强,相位有差就抵消。在这个实验中托马斯·杨提出了干涉这个名词,杨氏双缝实验也被称为光的干涉现象。这个实验在当时造成了极大的轰动,最终导致托马斯·杨被学术界封杀,转而研究历史,因为在当时,牛顿的微粒说占据了学术界主流,被科学家奉为圣经。什么是微粒说呢?牛顿在法国数学家皮埃尔·伽森荻提出的物体是由大量坚硬粒子组成的基础上,根据光的直线传播规律、光的偏振现象,最终于 1675 年提出假设,认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播。微粒说由此产生。但是托马斯·杨的实验却证实了光的波动理论,光的波动说认为光是以波的形式在运动。微粒说和波动说在此后的数百年时间里一直在争论不休。20世纪初,随着科学家对世界的研究从宏观到微观,德布罗意在 1924 年提出了“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象。1927 年,C . J . 戴维孙和 L . H . 革末在观察镍单晶表面对能量为 100 电子伏的电子束进行散射时,发现了散射束强度随空间分布的不连续性,即晶体对电子的衍射现象。几乎与此同时,G . P. 汤姆孙和A.里德用能量为2万电子伏的电子束透过多晶薄膜做实验时,也观察到衍射图样。电子衍射的发现证实了 L. V . 德布罗意提出的电子具有波动性的设想,从而证实了一切物质都具有波粒二象性。这个时候双缝实验也从宏观变成了微观,变成了电子双缝实验,可以说直接颠覆了整个世界的认知。我来和大家梳理一下背景,双缝实验是指光通过木板的狭缝从而射在屏幕上,而深入到微观领域,那就变成了电子双缝实验,光子是以波的形式运动,由于存在干涉,穿过双缝后会出现一道道痕迹。(电子和光子都属于基本粒子)但即使是一个个光子发射,也同样会发生干涉现象,条纹清晰地出现在屏幕上,这究竟是发生了什么事情。哥本哈根解学派掌门人玻尔的解释是:“我们无需去关心它“本来”是什么,也无需担心大自然“本来”是什么,我只关心我们能“观测”到大自然是什么。电子又是粒子又是波,但每次我们观察它,它只展现出其中一面,这里的关键是我们“如何”观察它,而不是它“究竟”是什么。”这段话的意思就是:它既是一个粒子,同时也是一个波!你观察的角度不同,那么你看到的东西也就不同。。但是爱因斯坦却表示了反对态度,单个电子怎么可能通过两条缝隙,难道电子会分身术吗?因为两条缝隙的距离虽然非常小(10∧-9米),但是对于电子来说,这个距离是电子身高的270亿倍。后来科学家发现,单个光子并没有同时穿过双缝,而是只通过了其中一个缝,这表明此时的电子是以粒子的形态穿过去的,粒子一颗一颗打在屏幕上形成一条长光纹。那么光子究竟是怎么样做到的!这个问题不断困扰着所有人!如果我们根据电子的速度,当确定它已经通过双缝之后,迅速的在后面的板上放上摄像机,会出现什么情况?结果是当我们在确定电子已经通过双缝后,迅速的在后面的板上放上摄像机的结果是—没有干涉条纹,无论实验人员如何努力,干涉条纹都不再出现!反之亦然,如果迅速的拿掉摄像机,又会出现干涉条纹,即便我们在决定拿掉摄像机的时候,电子已经通过了双缝!究竟是摄像机,影响了电子的行为,还是人类的意识,影响了电子的行为呢?也或者真的是有造物主的存在,它设定好了一个既定的运行法则,不允许任何人窥探,也不容任何人打破,而人类的想法一旦产生,过去就会发生改变,从而修正最终的结果!后来约翰·惠勒提出了一个相当令人吃惊的构想,也就是所谓的“延迟双缝干涉实验”,延迟实验的原理相当于把探测器移到了挡板和屏幕之间,让粒子先做出选择然后再观察。要知道,它们在数百万年就已经出发,它们的旅程早已在出发前就已经被决定,也就说,当人类决定观察它们的时候,它们在数百万年前决定好的旅程路线就发生了变化!这种诡异的现象仿佛光子是有生命的,被人发现了就变成粒子态,没被发现就偷偷变成波态,完全颠覆了认知。目前来说,还没有哪个科学家能够对此作出完美的解释,惠勒后来引玻尔的话说,“任何一种基本量子现象只在其被记录之后才是一种现象”,我们是在光子上路之前还是途中来做出决定,这在量子实验中是没有区别的。历史不是确定和实在的——除非它已经被记录下来。更精确地说,光子在通过第一块透镜到我们插入第二块透镜这之间“到底”在哪里,是个什么,是一个无意义的问题,我们没有权利去谈论它,它不是一个“客观真实”!惠勒用那幅著名的“龙图”来说明这一点,龙的头和尾巴(输入输出)都是确定的清晰的,但它的身体(路径)却是一团迷雾,没有人可以说清。然而惠勒的解释依然没有拨开这个实验所笼罩的迷雾,宇宙还存在着太多的未知等待着我们去探寻谜底。

双缝干涉实验公式

双缝干涉公式:△x=Lλ/d,缝干涉的公式中的Δx、d、L和λ的单位都是米(m)。公式中的Δx是相邻两条亮(暗)纹间隔,d是双缝间距,L是双缝到屏的距离,λ是单色光的波长。距离的单位统一用米作为国际单位。

如何做双缝干涉实验

1、照射粒子束于刻有两条狭缝的不透明板,然后确认在探测屏出现了干涉图样。2、因为可见光波长很短,所以手指宽的缝隙根本无法完成光线的干涉和衍射。缝隙宽度应大致和头发丝一样宽,双缝间距应小于1毫米。3、找一小块不用的镜子,用刀片去划镜子背后的水银涂层,这样就可以做出符合要求的双缝,最主要的是,没有透过双缝的光线都会被镜子反射,不会影响背后形成的阴影。扩展资料:双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。参考资料来源:百度百科—双缝实验

双缝干涉实验证明了什么结果?

双缝干涉实验证实了光具有波动性。平行的单色光投射到一个有两条狭缝的挡板上,狭缝相距很近,平行光的光波会同时传到狭缝,它们就成了两个振动情况总是相同的波源称为相干波源,它们发出的光在档板后面的空间相互叠加,就发生了干涉现象。双缝实验在量子力学里,双缝实验(double-slit experiment)是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。光束是由经典粒子组成,将光束照射于一条狭缝,通过狭缝后,冲击于探测屏,则在探射屏应该会观察到对应于狭缝尺寸与形状的图样。可是,假设实际进行这单缝实验,探测屏会显示出衍射图样,光束会被展开,狭缝越狭窄,则展开角度越大。在探测屏会显示出,在中央区域有一块比较明亮的光带,旁边衬托著两块比较暗淡的光带。以上内容参考:百度百科——双缝实验