纳米碳管

阅读 / 问答 / 标签

什么是纳米碳管?

1999年,我国科学院物理研究所不仅合成了世界上最长的“超级纤维”——纳米碳管,创造了一项“3毫米的世界之最”,而且合成出世界上最细的纳米碳管。纳米碳管猛一看像蜂窝的“微管”,牛间是空的,由类似石墨结构的六边形网格卷绕而成,整个“腰围”只有几到几十纳米。这种偶然被发现的“微管”,是一种一维纳米材料,它比钢轻,6位这种“微管人”只顶一位钢人重,但强度比钢高100倍,可以耐3593℃的高温。这种轻而柔韧的纳米材料是制作防弹背心的最好材料,也有人认为它将是用来制造地球到月球的乘人电梯的最好材料,因为如果用纳米管做成绳子,它将是从月球挂到地球表面而惟一不被自身重量所拉断的绳子。不过,目前世界上有很多研究小组更对纳米管的优越吸热性能感兴趣,研究人员预言,小到肉眼看不见、只有一根头发丝的一万分之一粗细的纳米管未来将对工程、电视和电脑运算等产生革命性的影响,纳米管优越的吸热性能使其在电脑运算和电子工业中大有用武之地。随着电路密集度的不断提高,芯片散热的问题也就显得愈加突出,为开发出结构紧凑、效率更高的电脑,这种纳米碳管会帮助创造奇迹。同时,个小的纳米管可以帮助缩小电路体积,提高计算机的运算能力。此外,纳米管还可应用于最需要导热性能的地方。例如,电动机如果采用纳米管作散热片,其中的塑料部件就不会被高温所熔化。这种微型材料还可置人需要耐受极度高温的材料之中,如飞机和火箭外部的嵌板等。美国国家航空航天局期望将纳米管置入从防热层到宇航服等各种装备设施之中。能源公司对纳米管也刮目相看。纳米管可以用来制造更小、更轻、效能更大的燃料电池,还可以用它制成储存罐,来储存用作能源的氢气。研究人员在平玻璃片或其他材料上,把无数个纳米管排列起来,让它们看起来像一片整齐的收割的麦田,由此他们发现纳米管还有更多潜在的用途。譬如,可以把这种由纳米管组成的“田野”做成薄如一张纸的璧挂式电视,屏,来取代目前电视机所采用的老式阴极射线管。纳米管还能让人实现“漫游”超微世界的梦想。美国一位研究人员用纳米管制造出一种灵敏度极高的人造耳,可以听见细菌“走路”(游动)的声音,也能听到细胞“打嗝”(活细胞内液体流动)的响声。美国哈佛大学的化学家发明了一台用纳米管制造的超大倍数显微镜,可以看到迄今为止最为清晰的生物分子的图像。

纳米碳管有什么用途?

1999年,我国科学院物理研究所不仅合成了世界上最长的“超级纤维”——纳米碳管,创造了一项“3毫米的世界之最”,而且合成出世界上最细的纳米碳管。纳米碳管猛一看像蜂窝的“微管”,牛间是空的,由类似石墨结构的六边形网格卷绕而成,整个“腰围”只有几到几十纳米。这种偶然被发现的“微管”,是一种一维纳米材料,它比钢轻,6位这种“微管人”只顶一位钢人重,但强度比钢高100倍,可以耐3593℃的高温。这种轻而柔韧的纳米材料是制作防弹背心的最好材料,也有人认为它将是用来制造地球到月球的乘人电梯的最好材料,因为如果用纳米管做成绳子,它将是从月球挂到地球表面而惟一不被自身重量所拉断的绳子。不过,目前世界上有很多研究小组更对纳米管的优越吸热性能感兴趣,研究人员预言,小到肉眼看不见、只有一根头发丝的一万分之一粗细的纳米管未来将对工程、电视和电脑运算等产生革命性的影响,纳米管优越的吸热性能使其在电脑运算和电子工业中大有用武之地。随着电路密集度的不断提高,芯片散热的问题也就显得愈加突出,为开发出结构紧凑、效率更高的电脑,这种纳米碳管会帮助创造奇迹。同时,个小的纳米管可以帮助缩小电路体积,提高计算机的运算能力。此外,纳米管还可应用于最需要导热性能的地方。例如,电动机如果采用纳米管作散热片,其中的塑料部件就不会被高温所熔化。这种微型材料还可置人需要耐受极度高温的材料之中,如飞机和火箭外部的嵌板等。美国国家航空航天局期望将纳米管置入从防热层到宇航服等各种装备设施之中。能源公司对纳米管也刮目相看。纳米管可以用来制造更小、更轻、效能更大的燃料电池,还可以用它制成储存罐,来储存用作能源的氢气。研究人员在平玻璃片或其他材料上,把无数个纳米管排列起来,让它们看起来像一片整齐的收割的麦田,由此他们发现纳米管还有更多潜在的用途。譬如,可以把这种由纳米管组成的“田野”做成薄如一张纸的璧挂式电视屏,来取代目前电视机所采用的老式阴极射线管。纳米管还能让人实现“漫游”超微世界的梦想。美国一位研究人员用纳米管制造出一种灵敏度极高的人造耳,可以听见细菌“走路”(游动)的声音,也能听到细胞“打嗝”(活细胞内液体流动)的响声。美国哈佛大学的化学家发明了一台用纳米管制造的超大倍数显微镜,可以看到迄今为止最为清晰的生物分子的图像。

纳米碳管的介绍

纳米碳管(CNT),管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是SP2杂化,形成六边形平面的圆柱面。碳纳米管同样也有天然产出的碳晶特性。使纳米碳管成为人们认知的碳原子材料。科学发现自然,自然验证科学。

纳米碳管的历史

纳米碳管由1991年日本科学家Sumio Iijima发现,具有优良的场发射性能,制作成阴极显示管,储氢材料。我国自制的碳管储氢能力达到4%,居世界领先水平。1992年,科研人员发现碳纳米管随管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实了其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极;1998年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。我国科学家不仅在世界上合成出最长的碳纳米管,而且加紧了碳纳米管的应用研究,研制出具备良好储氢性能的碳纳米管和具备初步显示功能的碳纳米管显示器,并在利用其电子发射性能研制发光器件。从纳米碳管的发现,到今天,已经整整20年了,可惜还依然没有看到当初科学家为纳米碳管所描绘的应用前景。根据笔者多年在该领域的研究,可以归纳为以下一个原因:1.获得高纯的纳米碳管非常困难:众所周知,纳米碳管不是单一的分子形态,传统的分离纯化方法对它不起任何作用;同时碳管有单壁、多壁,长短,粗细,金属非金属之分,这些都为纳米碳管的分离纯化设置了难以逾越的障碍。2.宏观与微观的差异:纳米碳管在微观领域有非常优异的力学、电子、热力学等特性;但是,现实生活中的应用是在宏观领域,如果把纳米碳管组装成宏观的器件或工具,它的那些在微观领域所具有的优良性能还有保存吗?我想答案大多数情况下是否定的。3.科学工作者的一厢情愿:在科学领域,每当有新的发现,科学家都会对它寄予厚望:超导体是如此,纳米碳管也是如此。但是,很多时候,得到的结果却是事与愿违的。综上所述,不管是纳米碳管也罢,富勒烯也罢,石墨烯也罢,科学家发现它们之后,总会给他们描绘一个美好的愿景,但是,至于能否实现这一愿景,只有天知道!

纳米碳管有什么用途?

1999年,我国科学院物理研究所不仅合成了世界上最长的“超级纤维”——纳米碳管,创造了一项“3毫米的世界之最”,而且合成出世界上最细的纳米碳管。纳米碳管猛一看像蜂窝的“微管”,牛间是空的,由类似石墨结构的六边形网格卷绕而成,整个“腰围”只有几到几十纳米。这种偶然被发现的“微管”,是一种一维纳米材料,它比钢轻,6位这种“微管人”只顶一位钢人重,但强度比钢高100倍,可以耐3593℃的高温。这种轻而柔韧的纳米材料是制作防弹背心的最好材料,也有人认为它将是用来制造地球到月球的乘人电梯的最好材料,因为如果用纳米管做成绳子,它将是从月球挂到地球表面而惟一不被自身重量所拉断的绳子。不过,目前世界上有很多研究小组更对纳米管的优越吸热性能感兴趣,研究人员预言,小到肉眼看不见、只有一根头发丝的一万分之一粗细的纳米管未来将对工程、电视和电脑运算等产生革命性的影响,纳米管优越的吸热性能使其在电脑运算和电子工业中大有用武之地。随着电路密集度的不断提高,芯片散热的问题也就显得愈加突出,为开发出结构紧凑、效率更高的电脑,这种纳米碳管会帮助创造奇迹。同时,个小的纳米管可以帮助缩小电路体积,提高计算机的运算能力。此外,纳米管还可应用于最需要导热性能的地方。例如,电动机如果采用纳米管作散热片,其中的塑料部件就不会被高温所熔化。这种微型材料还可置人需要耐受极度高温的材料之中,如飞机和火箭外部的嵌板等。美国国家航空航天局期望将纳米管置入从防热层到宇航服等各种装备设施之中。能源公司对纳米管也刮目相看。纳米管可以用来制造更小、更轻、效能更大的燃料电池,还可以用它制成储存罐,来储存用作能源的氢气。研究人员在平玻璃片或其他材料上,把无数个纳米管排列起来,让它们看起来像一片整齐的收割的麦田,由此他们发现纳米管还有更多潜在的用途。譬如,可以把这种由纳米管组成的“田野”做成薄如一张纸的璧挂式电视屏,来取代目前电视机所采用的老式阴极射线管。纳米管还能让人实现“漫游”超微世界的梦想。美国一位研究人员用纳米管制造出一种灵敏度极高的人造耳,可以听见细菌“走路”(游动)的声音,也能听到细胞“打嗝”(活细胞内液体流动)的响声。美国哈佛大学的化学家发明了一台用纳米管制造的超大倍数显微镜,可以看到迄今为止最为清晰的生物分子的图像。

纳米碳管是不是复合材料

不是,不过碳纳米管是复合材料的优异增强材料

纳米碳管这种材料的贮氢原理是什么

没有原理.这从头到尾就是一条错误的路http://www.sciencenet.cn/m/user_content.aspx?id=2668931997年3月,〔Nature〕magazine发表题为“单壁碳纳米管中的储氢 (Storage of hydrogen in single-walled carbon nanotubes)” 当时正值克林顿总统启动美国氢能源计划(1996年)不久,人们认识到氢在汽车上的储存携带是一个大难题,高效储氢成为热点,由于对储氢的机理认识尚不深入,人们对新材料寄予很大期望。此文根据前人关于毛细管凝聚的理论提出了一个假设,单壁碳纳米管由于壁很薄,管很细,可能在管中凝聚氢,从而形成高效储氢材料。为了吸引读者,作者给出了氢的程序升温脱附数据,但似乎有意混淆了物理吸附-毛细管凝聚与化学吸附的概念,给出的脱附曲线实际上是化学吸附部分,这当然延伸到了常温区,从曲线上也不能解读出有很大吸附量。两年多以后的99年7月[Science] magazine 发表的一篇题目为“碱掺杂的碳纳米管在常压常温下的高吸氢量”的文章则给出了引人注目的实验数据。这使人耳目一新,大吃一惊,碳纳米管加上碱金属氧化物可以使吸氢的量达到重量比百分之五到百分之二十,而且在接近常温常压下能够完成吸附脱附循环。当时美国能源部认为储氢材料若能够储存氢达到重量比百分之六,同时采用当时的质子交换膜燃料电池,则燃料电池汽车的能效和一次充气的行车里程就可以有商业价值,和汽油车竞争。同年11月,还是这个杂志,发表了另外一篇论文,题目是“室温下在单壁碳纳米管上的储氢”,同样给出了十分引人注目的实验数据。这后两篇工作的发表,又是在有名的 [Science] 杂志,似乎假设变成了现实,引导了大量有基础的和感兴趣的一拥而上,形成了碳纳米管储氢研究的热潮。美国能源部、中国国家科技部、基金委等资助机构一时间都把这一课题列入重点资助领域。随后的几年不仅有大量的论文发表,也耗用了大笔纳税人的金钱。敏感而严肃的资深吸附现象研究者 Ralph T. Yang 教授在99年10月即投稿Carbon(2000年第四期发表)说明[Science]发表的第一篇实验结果是基于错误的实验条件,指出在这一实验条件下氢气中的水蒸气会吸附和凝聚,所以观察到的增重不是因为氢的吸附。杨做了严谨的对比试验,当用含有极微量水分的氢气做原料时重复了Chen等在[Science]发表的实验现象。2001年3月杨教授再次投稿Carbon(2002年第三期发表),采用Ab initio molecular orbital方法,从理论上论证了碳上氢的化学吸附遵循化学吸附的一致原理,也解释了单壁碳纳米管不可能作为储氢材料的目标物质。天大资深吸附专家周理教授,自2003年开始发表论文,澄清吸附的概念,并花时间系统演绎吸附的理论基础,证明氢在碳纳米管上的大量吸附只有在接近其临界温度时才是可能的。周教授在此之前的国内学术会议和项目论证会议上,即多次论证,常温下吸附储氢,是良好的愿望,而大自然不作美支持。感觉辛酸的是,记得08年在瑞士Villars Sur Ollon组织能源科学讨论会,周教授仍在花时间认真论证氢的吸附原理。这一伪科学假说耗费了一个优秀科学家的多年时光。