卡尔曼滤波

阅读 / 问答 / 标签

卡尔曼滤波和四元数哪个好

卡尔曼滤波比四元数好。卡尔曼滤波是一种递归算法,计算复杂度较低,适用于实时性要求较高的应用,四元数的计算复杂度相对较高,尤其在涉及大量四元数运算时,会增加计算负担和开销,所以卡尔曼滤波比四元数好。

矢量卡尔曼滤波器的递推计算公式

与标量卡尔曼滤波器递推计算公式的推导过程类似,可以导出矢量卡尔曼滤波器的相应公式。但是,考虑到矢量运算与标量运算之间存在着以下对应关系:标量a和b:a+b ab a2a2b(a+b)-1矩阵a和b:A+B AB AATABAT(A+B)-1可以直接由标量卡尔曼滤波器的一组递推计算公式(式(2-91))类比写出矢量卡尔曼滤波器的公式,则有地球物理信息处理基础

卡尔曼滤波一阶二阶区别

区别是:1、特性表示方式不同,一阶滤波器:特性用一阶线性微分方程表示,二阶滤波器:特性用二阶线性微分方程表示。2、特点不同,一阶滤波器:线性连续系统的特性除了可在“时域”中用微分方程或冲击响应表示外,也可用以频率为自变量的函数表示。

卡尔曼滤波器属于高通低通还是带通?

你好,卡尔曼滤波是属于现代滤波技术的手段,它不同于经典滤波,没有带通,低通,高通之分。经典滤波器是建立在信号和噪声频率分离的基础上,通过将噪声所在频率区域幅值衰减来达到提高信噪比,于是针对不同的频率段就产生了低通,高通,带通等滤波器之分而现代滤波器,则不是建立在频率领域,而是通过随机过程的数学手段,通过对噪声和信号的统计特性做一定的假定,然后通过合适的数学方式,来提供信噪比。譬如KALMAN滤波器中,总会假定状态噪声和测量噪声是不相关的。 在weiner滤波器中还必须假定信号是平稳的。等等。总之各有所用。要针对不同的问题采用不同的滤波器。譬如,要滤除工频50HZ的影响,哪显然不宜采用KALMAN滤波器,可以采用限波器就可以了

卡尔曼滤波为什么开始震荡

估计是一开始还没收敛

卡尔曼滤波的实例

卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列中预测出物体的坐标位置及速度。在很多工程应用(雷达、计算机视觉)中都可以找到它的身影。同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题。

【20】谁能告诉我卡尔曼滤波算法怎么用?

你连基本的原理都不知道,怎么用阿.

卡尔曼滤波的形式

卡尔曼滤波已经有很多不同的实现,卡尔曼最初提出的形式一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

加速度和陀螺仪结合测量目标姿态为什么要用卡尔曼滤波结合?怎样结合的?

卡尔曼是什么原理,建议你先BAIDU,了解下。怎样结合简单说不清楚。QQ:1970033596

在word文档中如何打出卡尔曼滤波公式

① Matlab Kalman滤波例子——小球跟踪解析 :matlab官方例子,单目标跟踪。匀速模型和匀加速模型②Matlab Kalman Filter based Multiple object Tracking 官方例子 多目标跟踪_hello world-CSDN博客matlab官方例子,多目标跟踪。注意有匈牙利轨迹分配算法,且其中的距离计算公式为观测与预测的马氏距离,这个来源于1987年的作者的著作中。 ③kalman滤波——公式推导_hello world-CSDN博客_卡尔曼滤波递推公式理解马氏距离的公式! 理解残差和残差协方差!④多目标跟踪——阶段性进展_hello world-CSDN博客_多目标跟踪 多目标综述、Kalman滤波公式推导⑤kalman简单例子——初始化参数对kalman性能的影响_hello world-CSDN博客⑥多目标跟踪中的目标是否静止判断_hello world-CSDN博客 判断是否静止,如何计算速度CheckStatic代码原理解析,数学公式推导。其它优秀的博客参考:⑦多目标跟踪(MOT)入门 - 知乎 比较好的多目标MOT综述!⑧《Towards Real-Time Multi-Object Tracking》论文翻译 - 知乎⑨ 视频轨迹跟踪分析——他山之石_hello world-CSDN博客

卡尔曼滤波波形滞后啊,有什么方法优化吗

全球定位系统(GPS)是新一代的精密卫星导航定位系统。由于其全球性、全天候以及连续实时三维定位等特点,在军事和民用领域得到了广泛的发展。近年来,随着科学技术的发展,GPS导航和定位技术已向高精度、高动态的方向发展。但是由于GPS定位包含许多误差源,尤其是测量随机误差和卫星的几何位置误差,使定位精度受到影响。利用传统的方法很难消除。而GPS动态滤波是消除GPS定位随机误差的重要方法,即利用特定的滤波方法消除各种随机误差,从而提高GPS导航定位精度。 经典的最优滤波包括:Wiener滤波和Kalman滤波。由于Wiener滤波采用频域法,作用受到限制;而Kalman滤波采用时域状态空间法,适合于多变量系统和时变系统及非平稳随机过程,且由于其递推特点容易在计算机上实现,因此得到了广泛的应用。为此,本文对Kalman滤波方法进行了深入的研究,并取得了一些成果。 本文首先概述了GPS的组成、应用及最新动态。在此基础上介绍了GPS的导航定位原理,给出了卫星可见性算法、选星算法及定位算法。然后介绍了卡尔曼滤波的基本原理,在此基础上对动态用户的飞行轨迹进行了仿真,对“singer”模型下的8状态和11状态卡尔曼滤波算法进行了仿真分析,同时对“当前”统计模型下11状态卡尔曼滤波算法进行了仿真分析,并对滤波前后的定位精度进行了比较。在此基础上,就如何提高滤波器的动态性能作者提出了改进算法,即自适应卡尔曼滤波算法、带渐消因子的优化算法及改进的优化算法,并分别进行了仿真分析。最后作者将卡尔曼滤波算法分别应用于GPS/DR和GPS/INS组合导航定位系统中,并分别对这两种系统进行了建模和仿真分析,取得了较理想的结果。 本文的研究工作,对改进传统的滤波方法有一定的参考和应用价值,并对卡尔曼滤波方法在提高GPS动态导航定位精度方面的应用起到积极的促进作用。

卡尔曼滤波器的算法

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随机变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。  首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:  X(k)=A X(k-1)+B U(k)+W(k)  再加上系统的测量值:  Z(k)=H X(k)+V(k)  上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。  对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。  首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:  X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)  式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。  到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:  P(k|k-1)=A P(k-1|k-1) A"+Q ……… (2)  式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A"表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。  现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)  其中Kg为卡尔曼增益(Kalman Gain):  Kg(k)= P(k|k-1) H" / (H P(k|k-1) H" + R) ……… (4)  到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:  P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)  其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。  卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

卡尔曼滤波原理

品牌型号:Redmibook Pro 15 系统:Windows 10 卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。 数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态。由于它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用。 卡尔曼滤波不要求信号和噪声都是平稳过程的假设条件。对于每个时刻的系统扰动和观测误差(即噪声),只要对它们的统计性质作某些适当的假定,通过对含有噪声的观测信号进行处理,就能在平均的意义上,求得误差为最小的真实信号的估计值。因此,自从卡尔曼滤波理论问世以来,在通信系统、电力系统、航空航天、环境污染控制、工业控制、雷达信号处理等许多部门都得到了应用,取得了许多成功应用的成果。

哪本书讲卡尔曼滤波讲得好

秦永元,卡尔曼滤波与组合导航原理国内最经典的吧

卡尔曼滤波延时有点严重要调什么参数

其实卡尔曼滤波我只会用,其具体的原理,其含义我还真不清楚

无迹卡尔曼滤波结果为什么会不收敛与真实值

真实值是不可接近的,只能依据最小均方误差使估计值尽可能的靠近真实值。下面这段文字对卡尔曼的解释很形象,看看吧。为了可以更加容易的理解卡尔曼滤波器,这里应用形象的描述方法讲解,不像参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声,也就是这些偏差跟前后时间是没有关系的而且符合高斯分配。另外,我们在房间里放一个温度计,但是这个温度计也是不准确的,测量值会比实际值有偏差。我们也把这些偏差看成是高斯白噪声。好了,现在对于某一分钟我们有两个有关该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。假如我们要估算k时刻的实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假定是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差(covariance)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值。Dr Kalman的卡尔曼滤波器。涉及一些基本的概念知识,包括概率(Probability),随机变量(Random Variable),高斯或正态分配(Gaussian Distribution)等。首先,要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声,他们的协方差(covariance)分别是Q,R(这里我们假设他们不随系统状态变化而变化)。对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一节那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A"+Q ……… (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A"表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H" / (H P(k|k-1) H" + R) ……… (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1)………(5)其中I为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5个基本公式。根据这5个公式,可以很容易的实现计算机的程序。这里举一个简单的例子来说明卡尔曼滤波器的工作过程。把房间看成一个系统,然后对这个系统建模。房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:X(k|k-1)=X(k-1|k-1) ……….. (6)式子(2)可以改成:P(k|k-1)=P(k-1|k-1) +Q ……… (7)因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)P(k|k)=(1-Kg(k))P(k|k-1)………(10)现在模拟一组测量值作为输入。假设房间的真实温度为25度,模拟200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声。为了令卡尔曼滤波器开始工作,需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。选取X(0|0)=1度,P(0|0)=10。

卡尔曼滤波中的真实值,测量值,预测值,估计值怎么区分?

关于卡尔曼滤波中的真实值,测量值,预测值,估计值,我的理解如下:真实值:理论上假设的一个参考值,不带偏差时的真值(实际上根本就不知道)。测量值:就是测量设备/传感器/等等测到的数值,带有偏差;预测值:根据自己的经验,从上一时刻的估计值出发,先验估计出来的值,带有偏差;估计值:综合考虑测量值和预测值,后验估计出来的值,也有偏差,只是偏差比测量值和预测值的都小。然后整个卡尔曼滤波就是不断地从估计值出发,去预测,更新。关于卡尔曼滤波,推荐这篇文章,写得很好:我所理解的卡尔曼滤波

小波分析和卡尔曼滤波的区别和联系

区别,小波分析:时域分解到时频域后通过降低高频‘噪声"信号进行降噪,还原之后可以预测卡尔曼滤波:需要知道状态模型及转移规则,通过预测值与观测值差距进行过滤噪声

卡尔曼滤波算法的发展历史如何?

全球定位系统(GPS)是新一代的精密卫星导航定位系统。由于其全球性、全天候以及连续实时三维定位等特点,在军事和民用领域得到了广泛的发展。近年来,随着科学技术的发展,GPS导航和定位技术已向高精度、高动态的方向发展。但是由于GPS定位包含许多误差源,尤其是测量随机误差和卫星的几何位置误差,使定位精度受到影响。利用传统的方法很难消除。而GPS动态滤波是消除GPS定位随机误差的重要方法,即利用特定的滤波方法消除各种随机误差,从而提高GPS导航定位精度。 经典的最优滤波包括:Wiener滤波和Kalman滤波。由于Wiener滤波采用频域法,作用受到限制;而Kalman滤波采用时域状态空间法,适合于多变量系统和时变系统及非平稳随机过程,且由于其递推特点容易在计算机上实现,因此得到了广泛的应用。为此,本文对Kalman滤波方法进行了深入的研究,并取得了一些成果。 本文首先概述了GPS的组成、应用及最新动态。在此基础上介绍了GPS的导航定位原理,给出了卫星可见性算法、选星算法及定位算法。然后介绍了卡尔曼滤波的基本原理,在此基础上对动态用户的飞行轨迹进行了仿真,对“singer”模型下的8状态和11状态卡尔曼滤波算法进行了仿真分析,同时对“当前”统计模型下11状态卡尔曼滤波算法进行了仿真分析,并对滤波前后的定位精度进行了比较。在此基础上,就如何提高滤波器的动态性能作者提出了改进算法,即自适应卡尔曼滤波算法、带渐消因子的优化算法及改进的优化算法,并分别进行了仿真分析。最后作者将卡尔曼滤波算法分别应用于GPS/DR和GPS/INS组合导航定位系统中,并分别对这两种系统进行了建模和仿真分析,取得了较理想的结果。 本文的研究工作,对改进传统的滤波方法有一定的参考和应用价值,并对卡尔曼滤波方法在提高GPS动态导航定位精度方面的应用起到积极的促进作用。

如何确定卡尔曼滤波的观测矩阵

  卡尔曼滤波的原理是使用观测值来动态的生成统计预测参数的。  X(k)=A X(k-1)+B U(k)+W(k) .(1)  Z(k)=H X(k)+V(k) .(2)  预测是通过(1)式中的 W(K) 和(2)式中的V(k)的噪声的统计“标准差”生成的.有说是“协方差”可能和后面三个跌代式子混了。  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)  Kg(k)= P(k|k-1) H" / (H P(k|k-1) H" + R) ……… (4)  P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)  (3)(4)(5)补充计算(1)(2)完成跌代过程.H是“马尔科夫”链中的预测矩阵。

无迹卡尔曼滤波算法计算电池剩余寿命是哪种预测方法

首先,引入一个离散控制过程的系统。该系统可用一个线性随机微分方程( LinearStochasticDifferenceequation)来描述:X(k)=AX(k-1)+BU(k)+W(k)再加上系统的测量值:Z(k)=HX(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H 是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声 (WhiteGaussianNoise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一节那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=AX(k-1|k-1)+BU(k)………..(1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:P(k|k-1)=AP(k-1|k-1)A"+Q(2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A"表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))(3)其中Kg为卡尔曼增益(KalmanGain):Kg(k)=P(k|k-1)H"/(HP(k|k-1)H"+R)(4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k)H)P(k|k-1)(5)其中I为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。卡尔曼滤波器算法的原理基本描述了,式子1,2,3,4和5就是他的5个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

请问卡尔曼滤波中该如何初始化,观测矩阵、状态转移矩阵、误差协方差矩阵的确定原理是什么?

卡尔曼滤波中,观测矩阵取决于你观测的项与你的状态选取相关,如果状态有两项,观测只有一项,那么观测矩阵H是一个[1 0],如果观测的有两项这两项(必须是跟状态相同的量,还没见过不同的量)那么观测的矩阵是[1 1];状态转移矩阵是根据你的上一状态跟当前状态之间的线性关系;误差协方差矩阵,有两个,一个是状态转移协方差矩阵,这个矩阵,是表示预测之后加上噪声之后的矩阵,直观的理解是,状态从上一个状态到下一个状态,你这个确信度的大小,如果状态协方差矩阵里面的值很大,那么你认为从上一个状态到下一个状态这个确信会减小,还有一个是观测噪声协方差矩阵,这个矩阵也是跟上面相同,描述的是观测的噪声引起的对最终值产生影响,直观上的理解也是,你这个观测会对确信影响。具体的原理参照知乎大婶。。本人小白一枚。。网页链接

卡尔曼滤波理解与实现

本文为离散卡尔曼滤波算法的一 一个简明教程,从算法思想、实现过程、理论推导和程序实现四个方面阐述和分析了卡尔曼滤波算法。 XU Ruilin完成本教程主要部分的编写,WANG Xuejun完成第3节的编写,ZHU Ximin完成2.2节的编写,WEN Shuhan完成2.3节的编写,MAO Bo完成全文整理、修订和排版。 卡尔曼滤波(Kalman Filtering)及其一系列的优化和改进算法是目前在求解运动状态推算问题上最为普遍和高效的方法。 鲁道夫·卡尔曼 (Rudolf Emil Kalman) 在NASA埃姆斯研究中心访问时,发现他的方法适用于解决阿波罗计划的轨迹预测问题。阿波罗飞船的导航电脑就是使用这种滤波器进行轨迹预测。 卡尔曼滤波尤其适用于动态系统,这种方法对于内存要求极低而运算速度快,且能够保持较好的计算精度,这使得这种方法非常适合解决实时问题和应用于嵌入式系统,也就是说,卡尔曼滤波天然的适用于解决舰艇指控系统的航迹推算问题。在接下来的内容里,我们将逐步领会卡尔曼滤波的这些绝佳特点。 不过,现在我们先从复杂的舰艇航迹推算问题中解脱出来,从一个更加熟悉和简单的问题中来理解这个滤波算法的思想、过程和算法。 假设有一辆无人车WALL-E,需要导引它从A点到达B点,共有两种手段( 图1 ): 显然,两种方法都有一定的误差。如果单独采用某一种方法进行定位,WALL-E在误差的影响下将无法到达B点。因此,需要将两种方法结合起来,得到一个更加精确的结果,这就是卡尔曼滤波要解决的问题。 卡尔曼滤波方法如何看待我们的问题呢?在探究这个问题之前,我们先对问题进行抽象,并用数学语言来描述我们的问题。 我们用矢量 来描述WALL-E的运动状态,这个列矢量 包括位置矢量 和速度矢量 两个分量。在WALL-E的问题上,我们现在不知道位置 和速度 的准确值,但是知道WALL-E的运动模型满足 状态方程 ,定位的方法,也即观测WALL-E运动状态的方法满足 观测方程 . 当然,我们也知道,这两种方法都存在一定的误差 ,那么我们的问题就可以转化为一个优化问题—— 在这一优化问题中,目标函数是要使预测(估计)误差最小,同时约束于估计方法 和 的条件下。在卡尔曼滤波中,我们的估计原则(也就是最小化估计误差的原则)是 最小方差无偏估计 [1] ,我们将通过后面的过程分析来说明这一点。 在我们正式开始引入公式分析卡尔曼滤波问题之前,我们还必须解决一个问题------把连续的线性系统离散化,也就是将连续时域问题转化为时间序列问题。当然,目前我们只讨论线性系统的情况,关于非线性系统问题,我们有扩展卡尔曼滤波(Extended Kalman Filtering, EKF)和无迹卡尔曼滤波(Unscented Kalman Filtering, UKF)两种方法来求解。 补充内容------连续线性时变系统的离散化 设连续线性时变系统的时域状态方程为 若采样周期为 ,则从时刻 到时刻 ,有 令 , ,则离散化的状态方程为 通过对线性系统的离散化处理,我们现在可以考虑每一个时刻WALL-E的运动状态。接下来,我们将用 来表示在 时刻运动状态的最优估计值;用 表示用 时刻对 时刻的状态预测值;用 表示对 时刻综合预测和观测两种方法的最优估计值。 在估计WALL-E位置的问题上,假定我们已经知道它是匀速直线运动,WALL-E身上还携带有一个GPS传感器可以提供它的位置信息,WALL-E在前进过程中可能会遇到一些情况,比如停止前进或是受到风的影响。 加入我们已知的是WALL-E上一个时刻的最佳估计状态,即k-1时刻的位置和速度,要求的是下一时刻即k时刻的最佳估计状态,即k时刻的位置和速度,我们可以发现有两种方法可以得到它的k时刻的状态: 一种是通过WALL-E设定程序计算得到下一秒的状态,比如现在设定是匀速直线运动,那么下一秒的速度应该是恒定不变的,而位置则是在上一秒位置的基础上加上时间乘以速度即一秒内走过的路程,但是现实生活中并不是理想的,机器人会受到摩擦力、风力等的影响,当然也可能会有顽皮的小孩挡住他前进的道路,这些因素使得WALL-E在k时的真实状态与我们计算得到的数据有所不同。 另一种是通过WALL-E所携带的GPS来确定它的位置,因为GPS是测量出的就是WALL-E的实时状态,因此它比较准确。但是GPS测量k时刻的状态有两个问题,一是GPS只能测出WALL-E的位置,而测不出它的速度;二是GPS传感器测量的时候也会有仪器的误差,只能说它是比较准确的,比较接近真实值的。 那么接下来问题来了,我们如何得到k时刻WALL-E的真实状态呢? 我们将第一种方法得到的状态值称为预测值,第二种方法得到的状态值称为测量值,对汽车的最佳估计就是将这两部分信息结合起来,尽量的去逼近k时刻的真实值。 下面再深入一些思考,怎么将这两部分结合起来? 在初始时间k-1, 是WALL-E的最佳估计值,WALL-E其实可以是估计值附近的任何位置,并且这种不确定性由该概率密度函数描述。WALL-E最有可能在这个分布的平均值附近。在下一个时间,估计的不确定性增加,用一个更大的方差表示,这是因为在时间步骤k-1和k之间,WALL-E可能收到了风力的影响,或者脚可能向前滑了一点,因此,它可能已经行进了与模型预测的距离不同的距离。 WALL-E位置的另一个信息来源来自测量,方差表示误差测量的不确定性,真正的位置同样可以是平均值附近的任何位置。 预测值和测量值,对WALL-E的最佳估计是将这两部分信息结合起来,将两个概率函数相乘得到另一个高斯函数,该估计值的方差小于先前估计值,并且该概率密度函数的平均值为我们提供了WALL-E位置的最佳估计。 以下,我们将进行e的运算推导 设: 则有实际目标变量的表达式: 数学模型中目标变量的表达式: 实际模型中测量变量的表达式: 数学模型中测量变量的表达式: 将目标变量的实际值和估计值相减: 将上述方程带入误差e的表达式,我们可得出误差e的解析解: 从推导结果中我们不难看出,估计值和实际值的误差随时间呈指数形式变化,当(F-KH)<1时,随着时间的推移,会无限趋近于零,也就是意味着估计值和实际值相吻合。这就是为什么卡尔曼滤波器可以完美预测出目标状态值的原理。 在估计WALL-E位置的问题上,我们不知道位置 和速度 的准确值,但是我们可以给出一个估计区间( 图5.a )。卡尔曼滤波假设所有的变量是随机的且符合高斯分布(正态分布)。每个变量有一个均值 和一个方差 ( 图5.b )。而 图5.c 则表示速度和位置是相关的。 假如我们已知上一个状态的位置值,现在要预测下一个状态的位置值。如果我们的速度值很高,我们移动的距离会远一点。相反,如果速度慢,WALL-E不会走的很远。这种关系在跟踪系统状态时很重要,它给了我们更多的信息:一个观测值告诉我们另一个观测值可能是什么样子。这就是卡尔曼滤波的目的------从所有不确定信息中提取有价值的信息。 根据数理统计知识,我们知道这种两个观测值(随机变量)之间的关系可以通过一个协方差矩阵 描述( 图6 )。 我们假设系统状态的分布为 高斯分布(正态分布) ,所以在 时刻我们需要两个信息:最佳预估值 及其协方差矩阵 (如式(2)所示)。 下一步,我们需要通过 时刻的状态来预测 时刻的状态。请注意,我们不知道状态的准确值,但是我们的预测函数并不在乎,它仅仅是对 时刻所有可能值的范围进行预测转移,然后得出一个k时刻新值的范围。在这个过程中,位置 和速度 的变化为 我们可以通过一个状态转移矩阵 来描述这个转换关系 同理,我们更新协方差矩阵 为 到目前为止,我们考虑的都是匀速运动的情况,也就是系统没有对WALL-E的运动状态进行控制的情况。那么,如果系统对WALL-E进行控制,例如发出一些指令启动或者制动轮子,对这些额外的信息,我们可以通过一个向量 来描述这些信息,并将其添加到我们的预测方程里作为一个修正。假如我们通过发出的指令得到预期的加速度 ,运动状态方程就更新为 引入矩阵表示为 式中 称为控制矩阵, 称为控制向量(例如加速度 )。当然,如果没有任何外界动力影响的系统,可以忽略这一部分。 我们增加另一个细节,假如我们的预测转换矩阵不是100%准确呢,会发生什么?如果状态只会根据系统自身特性演变,那样将不会有任何问题。如果所有外界作用力对系统的影响可以被计算得十分准确,那样也不会有任何问题。但是如果有些外力我们无法预测,例如我们在跟踪一个四轴飞行器,它会受到风力影响;或者在跟踪一个轮式机器人,轮子可能会打滑,地面上的突起会使它减速。我们无法跟踪这些因素,而这些不确定事件发生时,预测方程将会失灵。因此,我们将这些不确定性统一建模,在预测方程中增加一个不确定项。 通过这种方式,使得原始状态中的每一个点可以都会预测转换到一个范围,而不是某个确定的点( 图7.a )。 可以这样描述------ 中的每个点移动到一个符合方差 的高斯分布里( 图7.b )。换言之,我们把这些不确定因素描述为方差为 的高斯噪声,并用 表示。这样就会产生一个新的高斯分布,方差不同,但是均值相同( 图7.c )。 通过对 的叠加扩展,得到完整的预测转换方程为 新的预测转换方程只是引入了已知的系统控制因素。新的不确定性可以通过之前的不确定性计算得到。到这里,我们得到了一个模糊的估计范围------通过 和 描述的范围。 我们之前的工作仍然是在使用运动模型一种方法来估计系统的状态,现在,我们要把另一种方法,也就是观测(本问题中为GPS定位)考虑进来,以进一步修正对运动状态的估计( 图8 )。 我们用矩阵 来描述观测方法的作用,于是有 再加入观测噪声 ,观测方程为 从控制论的角度出发,我们定义新息(也即观测值与预测值的误差)为 当然我们也知道,观测本身也会存在误差,比如本问题中的GPS定位精度仅有10m. 因此,我们用矩阵 来描述这种不确定性( 图10 及 图11.a )。 这时,我们新息的协方差为 现在我们需要把两种方法得到的可能性融合起来( 图11.b )。对于任何状态,有两个可能性:1. 传感器的观测值更接近系统真实状态;2. 模型推算的估计值更接近系统真实状态。如果有两个相互独立的获取系统状态的方式,并且我们想知道两者都准确的概率值,于是我们可以通过加权来解决更相信谁的问题( 图11.c )。 我们现在知道,系统模型的状态预测 与对系统的状态观测 服从高斯分布,把这个问题抽象一下就是—— 根据我们的一个估计准则------ 最小方差估计 ,那么这个问题可以转化为优化问题求解 求导数(差分)得 则 ,从而 当维度高于一维时,我们用矩阵来描述,有 这里的 称为 卡尔曼增益 (Kalman Gain),也就是我们在解决更信任哪种方法时的偏向程度。 如果我们从两个独立的维度估计系统状态,那么根据系统模型的预测为 通过传感器的观测为 我们结合着两种方法得到 由 可知,卡尔曼增益为 将 约去( 中也含有 项),得 此时的卡尔曼增益实际为 我们最后再来验证一下 估计的无偏性 —— 这里我们设 时刻的真值为 ,由于 由于 ( 从初值而来的无偏传递性 )可知 ,即卡尔曼滤波满足无偏估计准则。显然,其中要求系统噪声和观测噪声是不相关、零期望的白噪声,且是线性系统,初始时刻的状态估计是无偏的。当这些条件不能满足时,卡尔曼滤波的估计结果是有偏的。 到这里,我们已经获得了卡尔曼滤波的全部要素。我们可以把整个过程总结为3个基本假设 假设一 和 都是零均值高斯白噪声,也即 , 假设二 与 无关,也即 假设三 系统初值 的均值和方差已知,且 与 均不相关。 以及5个基本方程 方程一 状态预测 方程二 协方差预测 方程三 卡尔曼增益

卡尔曼滤波器 里面的covariance什么意思啊?英文翻译里的协方差,感觉不对啊

covariance英 [kəʊ"veərɪəns] 美 [koʊ"verɪrns] n. 协方差

卡尔曼滤波里consensus ufb01lter这个是什么滤波器?搞不懂consensus是什么意思

共模滤波器器