建模仿真

阅读 / 问答 / 标签

产线建模仿真时代已经来临——优化自动化生产线设计的必备工具

仿真建模如果加以合理利用, 可以帮助制造企业识别和消除风险, 确保正常的生产运营, 使企业价值最大化并有助于获得成功。 仿 真可以成为整个项目的强大工具,使项目团队在设计阶段就能将生产线的诸多方面实现可视化。 要规划新生产线或改造现有生产线必须回答许多问题,包括: 旨在使生产线可视化并在开发之前将其变为现实的技术,现在比以往更容易获得。 可以通过电子方式查看3D PDF 或视频,许多软件程序已经可以直接与虚拟现实(VR)头套眼睛集成,使相关工作人员可以进入精确的交互式生产线布局。 这种可视化帮助每个人更有效地理解设计参数,并在最终设计上达成共识。例如采用增强现实(AR)技术的智能手机应用程序和耳机,可以将3D 模型投射到现有空间中,从而提供生产线的另一种视图。静态或动态建模,可以显示干涉和障碍物,并有助于在项目初始阶段避免这些问题。 在设计阶段,还可以以另外一种方式来利用可视化:在不同约束条件下,突出显示产品的移动动态。仿真使用户能够设置生产线的运行参数——机器和传送带速度、传送带长度、设备位置、控制行为,并查看系统在不同参数下的执行情况。动画仿真通常会发现生产线潜在的设计问题,这在查看生产线布局或电子表格时,通常难以或无法发现。 从最近的一个例子可以看出仿真的重要性,这个应用需要一次装满4 个纸箱,然后同时将全部4 个纸箱从机器中推出。虽然机器平均速度为100 箱/ 分钟,但机器实际瞬时输出为0 或200 箱/ 分钟。在机器卸料时,如果传送带运行速度不是平均速度的两倍,则纸箱在退出时会重新进入机器,从而阻止机器装入新的空纸箱。 从表面上来看,速度看起来是正确的,但实际运行时可能发现机器却被阻塞了。有了仿真模型,在设计阶段就可以识别出该问题,因此可以在安装前进行纠正。 如果想要理解产品在生产线上的实时交互,物理建模是一种非常有价值的工具。设计师可以看到产品在传送带上位移的模式,并随之调整传送带设计以保持对产品的控制。 以前,这可以通过有根据的猜测和计算机辅助设计(CAD)布局来完成。然而,在一些特殊应用中,例如面团在传送带上滚动的动态是很难预测或准确可视化的。物理建模对计算机硬件要求很高。可以创建目标模型。从较小的模型中吸取的经验可以应用于较大的模型。 即使是设计优良的生产线,机器停机也是不可避免的。无法确定的停机时间所带来的影响很难预测。制造商可能对建立缓冲犹豫不决,认为他们会隐藏问题或鼓励不积极的运营人员。根据机器设计的不同,有些缓冲区对性能的影响很小,会造成不必要的资本支出。仿真可以对场景进行建模并考虑正常运行工况,以确定缓冲区的最佳数量、位置和容量,从而改善生产线的性能并避免不必要的费用。 仿真能够提供帮助的另一个重要方面是控制生产线。在设计过程初期,可编程逻辑控制器(PLC)还没有就位,仿真模型允许设计团队考虑如何控制。这样在购买设备之前,就可以测试和优化光电以及其它传感器的放置。 使用仿真最关键的时刻,也许就是PLC 程序准备进行测试的时候。一些建模软件可以连接到PLC。该模型通过仿真传感器向PLC 发出信号,并响应PLC 信号到其仿真的电机上。控制工程师可以使用逼真的、可以响应的系统来调试控制,而不是手动跟踪代码或尝试使用人机界面(HMI)来可视化性能。在模型中,可以对传感器布置进行精确的微调。 HMI 程序可以使用该模型与PLC 一起进行测试,由于模型由PLC 控制,在HMI 中按下按钮,就会仿真实时生产场景。因此,使用仿真模型可以大大减少生产线调试的启动时间。 将仿真模型连接到PLC 的过程还有利于培训。新的PLC 或HMI 程序员可以在现场生产之前识别错误、测试新想法并在低风险环境中建立信心。生产线运行人员可以在安装之前学习如何运行生产线并学习新PLC 程序。 仿真还可以带来其它间接好处。获得生产线动态背景知识,建模程序员可以在设计过程初期提出问题,而以往这些问题通常是要在开发之后才会得到解决。满足进度要求是仿真带来的另一个好处。通常,生产线已经设计和安装,但由于各种限制条件,导致只能在PLC 程序完成之前启动和调试。 如果模型在进入工厂之前进行测试,则有助于更快地验证程序。不过,仿真也有其限制。只有在输入或假设足够好时,模型输出才足够好。仿真无法预测运行人员的不良习惯、不良材料或冷凝物积聚等因素。重新审视和调整模型,以确保其反映准确的应用条件和行为,这一点非常重要。 - END -

军事建模与仿真 [主体技术 助力军事系统建模仿真]

  战争系统是典型的复杂系统,传统的建模方法已经不能很好地刻画和描述。而基于主体技术的建模仿真方法体现了一种“活”的建模思想,是最具活力、最有影响的方法之一。      主体建模仿真渗入信息化战争      战争系统是典型的复杂系统。随着以信息技术为核心的高新技术在军事领域的深入应用,信息化战争越来越呈现出超高维、不确定、非线性、动态性等复杂性特征。而建立在牛顿科学体系下的传统战争理论和方法,仍然习惯于从还原论的思想出发,以局部、静态为主的方式来研究战争问题,将战争视为简单系统,视为“机器”的战争,忽视了人、指挥控制、信息交互等因素在战争中至关重要的作用,越来越不适应于现代信息化战争。而基于主体技术的建模方法则是研究信息化战争的重要手段之一。   近年来,基于主体技术的建模仿真方法已在战争系统中得到了深入研究和广泛应用。本文重点介绍战争系统中基于主体的计算机生成兵力(Computer Generated Forces,CGF)、第三方虚拟决策实体,以及群体行为涌现等典型方面的研究应用情况。      计算机生成兵力      计算机生成兵力是指在分布式仿真战场环境中由计算机生成和控制的仿真实体。通过对人类作战行为的建模,这些实体能自主地对仿真战场环境中的事件和状态做出反应。CGF系统可以用来模拟敌方或友方的战斗实体,具有自主性、智能性等特征,并具备感知、通信以及协调的能力,在军事训练、武器研制和人员培训等领域有着广泛的应用。   由于CGF实体行为的最显著特征是模拟人的智能性,一个自然的想法是将人工智能领域相关的理论和研究成果应用到CGF建模领域。近年来,基于主体建模仿真理论和方法,为分布式作战仿真系统的CGF建模提供了一种有效的解决方案,已经成为军事仿真领域重要的研究方向。   基于主体的CGF建模方法是利用主体自然的描述能力,根据仿真应用对分辨率和逼真度等方面的需求,将作战想定中的各种指挥和作战实体(或者是它们的聚合体)映射为仿真系统中的主体,通过这些主体扮演相应的角色,模拟其物理特性和行为过程。并从组织的角度描述作战各方的兵力组织结构和组织关系,并且通过主体之间的交互模拟,综合战场环境中兵力实体的指挥控制、通信、侦查、机动、射击、协同等复杂的作战行为。基于主体的CGF建模框架如图1所示。      如图1所示,该框架包含三个阶段: 感知部分,用来感知和接受外界的战场信息; 认知处理部分,包括形势评估、决策制定、规划、学习等,这部分就是CGF行为建模,是其核心; 行为输出部分,输出行为并对战场环境加以影响。在认知处理部分,还需要与工作存储器(存放CGF对象获取的当前战场信息)、长期存储器(存放CGF对象已有的知识或任务等)进行交互。      第三方虚拟决策实体      所谓第三方虚拟决策实体,是指在多方战略对抗演习中,不需要人员扮演或人员简单参与,由计算机模拟的虚拟决策方。我们以多主体建模理论为指导,遵循“由顶向下”的设计思路,将人工智能技术与基于主体建模思想相结合,模拟单个战略决策者的个体、群体和组织决策行为,构建了反映第三方国家决策组织机构的虚拟决策实体。实际上它是一个MAS(多主体)系统,在系统内部,多个主体自动协商、自主协作,共同做出战略决策,实现对国家战略决策的模拟。      由图2可知,第三方虚拟决策实体分为四层,即决策资源层、主体服务层、职能主体层和群决策主体层。决策资源层为各主体决策提供多种可能手段,由数据库、模型库和知识库构成最底层的基本资源,它们由相应的管理主体进行管理和使用。主体服务器层既是职能主体层和系统资源层之间的中介,负责系统资源的分配工作; 同时又是职能主体层多个职能主体之间的协调人,处理多个主体之间的协作关系。职能主体层主要是由外交部和国防部多主体组织决策模型组成的。外交部和国防部多主体组织决策模型分为总部、职能部门和地区三级结构。在群决策主体层,国家最高决策委员会(其每一成员是一个主体)根据具体职能部门提供的初步方案,采用群体一致性算法,确定最终方案。      群体行为涌现      群体行为涌现就是通过研究战争系统中“活的”智能实体的属性、行为、复杂交互,来探讨战争系统底层实体间相互作用如何涌现出高层战争行为,观察战争系统整体演变进化过程,为战争系统存在的诸多复杂性问题的研究和解决提供新的思路和启迪。目前,我们基于演化和进化的思想,以复杂适应系统(Complex Adaptive System,CAS)理论为指导,采用自底向上的“活的”主体的建模方法,在多领域中对战争系统进行探索性实践。先后建立了作战演化、特定民意、经济演化、舆论传播、国际政治生态等模型。      作战演化模型      作战演化模型旨在对未来信息化战争条件下的作战思想、作战样式、武器装备发展论证等重大概念进行演示和实验。其包含5大类主体: 作战主体、指挥控制主体、感知主体、通信主体、环境主体。作战主体是一个通用实体类,只需设定不同的参数即可生成陆军作战主体、海军作战主体、空军作战主体和防空兵主体等实例。指挥控制主体是分层的,不同层次指挥控制主体关注的战场态势是不同的,高层指挥控制主体关注全局的战场军事态势,忽略局部细节; 而底层指挥控制主体关注局部战场态势。感知主体是对战场信息感知实体的属性与行为的抽象,如雷达实体,侦察卫星等。通信主体抽象战场中的通信网络,模拟各主体间通过通信系统进行信息和命令的传输。环境主体是对战场地理空间环境的抽象,具有对战场地形的分析与推理、战场态势的评估模型等功能。      特定民意模型      建立热点地区特定民意模型的目的旨在通过仿真,分析某些因素对特定民意的影响以及预测民意走势,总体思路为: 借鉴民意调查的某些思想,在建立该热点地区虚拟社会(环境主体)和公民(个体主体)子模型的基础上,通过环境对微观个体的不断刺激、个体自身演化以及个体间的相互作用,使系统涌现出宏观行为――特定民意(公民某种政治倾向性)走势。      经济演化模型   信息化战争与经济系统的相互作用越来越成为影响战争进程不可忽视的重要因素。无论是战争的发起、进行还是结束,经济的影响都不可忽视,甚至是决定性的。经济系统不但是战争的对象,而且也成为达成战争目的的重要手段。为此,我们针对热点地区的经济实际情况,结合战争危机对经济的影响,抽象并构建了该热点地区在战争危机条件下的经济演化模型。   经济演化模型设计了如下微观经济实体: 家庭主体、企业主体、股市主体、战略储备主体、电力企业主体、外贸市场主体、商业银行主体、央行主体、政府主体以及债券市场主体等。我们针对热点地区可能发生的危机情况进行了相关实验。通过仿真实验,得到了在特定危机情况下的热点地区经济动态演化情况,如资金外逃、股票指数大幅下跌、宏观经济景气指标逐步下滑、能源储备量急剧下降等等。      舆论传播模型      信息化战争条件下,夺取战争中的制舆论权,对于赢得战争主动权、争取民心、鼓舞士气,进而影响战争各方决策和行动具有重要战略意义。舆论战已由过去的战役战术层次上升到战略层面,这在伊拉克战争中已经表现得非常充分。因此,深入研究信息化战争背景下的舆论传播与控制的特点、规律,是战争系统人工社会研究所必须面临的问题。为此,我们针对某地区的特点,在复杂网络理论指导下,构建了舆论传播模型。   舆论模型主要包括媒体主体和个体主体。其中,媒体主体包括报刊、广播、电视和互联网这4种主要媒体。个体主体代表某地区的民众,该民众在各种媒体影响以及相互作用下,对某一危机事件的态度(如赞成、反对和中立)将随时间演化。      国际政治生态模型      国际政治生态模型是现实国际世界映射到虚拟仿真世界的人工生态系统,描述在危机形势下国家(或地区)行为的演化,在战略层面刻画宏观国际态势。国际政治生态模型强调个体的适应性和系统的演化性,其研究目的不是对危机发展做出精确的预测,而是研究危机事件的演化过程与规律,着重探索国家间的交互对于最终国际态势的影响。   主体建模的发展与挑战   主体建模方法体现了一种“活”的建模思想,它通过对目标系统成员的行为和属性进行描述和刻画,从而在虚拟空间中建立虚拟的个体主体模型,通过模拟个体间“活”的相互作用和影响,涌现出目标系统的宏观属性。而基于解析公式的传统方法是一种“死”的建模思路。更应该看到的是,主体建模思想改变了我们思考问题的角度,是人类认识世界方法论方面的一个进步,是现代系统科学和其他相关学科发展的产物。   目前,战争系统中基于主体建立的模型已经很多,但绝大多数都是停留在框架研究层次,即使用主体建模思想对目标系统进行了描述。实际上,主体建模的核心问题是怎样对“人”或对有“人”参与单元的行为以及它们之间交互进行描述和刻画。这些描述和刻画的深入准确程度直接影响着建立的多主体模型质量。而这种描述刻画能力既受制于建模水平,也受制于人工智能发展的水平。这一点上,我们在第三方虚拟决策实体、群体行为涌现系列模型的研制过程中深有体会,不是对领域问题认识不清楚,就是对认识清楚的问题难以抽象描述。这个问题将长期困扰主体建模在战争系统中的研究和应用,这正是体现了“人”的介入导致系统的复杂性。这也是战争系统基于主体建模方法当前和今后研究的重点。

产线建模仿真时代已经来临——优化自动化生产线设计的必备工具

仿真建模如果加以合理利用, 可以帮助制造企业识别和消除风险, 确保正常的生产运营, 使企业价值最大化并有助于获得成功。 仿 真可以成为整个项目的强大工具,使项目团队在设计阶段就能将生产线的诸多方面实现可视化。 要规划新生产线或改造现有生产线必须回答许多问题,包括: 旨在使生产线可视化并在开发之前将其变为现实的技术,现在比以往更容易获得。 可以通过电子方式查看3D PDF 或视频,许多软件程序已经可以直接与虚拟现实(VR)头套眼睛集成,使相关工作人员可以进入精确的交互式生产线布局。 这种可视化帮助每个人更有效地理解设计参数,并在最终设计上达成共识。例如采用增强现实(AR)技术的智能手机应用程序和耳机,可以将3D 模型投射到现有空间中,从而提供生产线的另一种视图。静态或动态建模,可以显示干涉和障碍物,并有助于在项目初始阶段避免这些问题。 在设计阶段,还可以以另外一种方式来利用可视化:在不同约束条件下,突出显示产品的移动动态。仿真使用户能够设置生产线的运行参数——机器和传送带速度、传送带长度、设备位置、控制行为,并查看系统在不同参数下的执行情况。动画仿真通常会发现生产线潜在的设计问题,这在查看生产线布局或电子表格时,通常难以或无法发现。 从最近的一个例子可以看出仿真的重要性,这个应用需要一次装满4 个纸箱,然后同时将全部4 个纸箱从机器中推出。虽然机器平均速度为100 箱/ 分钟,但机器实际瞬时输出为0 或200 箱/ 分钟。在机器卸料时,如果传送带运行速度不是平均速度的两倍,则纸箱在退出时会重新进入机器,从而阻止机器装入新的空纸箱。 从表面上来看,速度看起来是正确的,但实际运行时可能发现机器却被阻塞了。有了仿真模型,在设计阶段就可以识别出该问题,因此可以在安装前进行纠正。 如果想要理解产品在生产线上的实时交互,物理建模是一种非常有价值的工具。设计师可以看到产品在传送带上位移的模式,并随之调整传送带设计以保持对产品的控制。 以前,这可以通过有根据的猜测和计算机辅助设计(CAD)布局来完成。然而,在一些特殊应用中,例如面团在传送带上滚动的动态是很难预测或准确可视化的。物理建模对计算机硬件要求很高。可以创建目标模型。从较小的模型中吸取的经验可以应用于较大的模型。 即使是设计优良的生产线,机器停机也是不可避免的。无法确定的停机时间所带来的影响很难预测。制造商可能对建立缓冲犹豫不决,认为他们会隐藏问题或鼓励不积极的运营人员。根据机器设计的不同,有些缓冲区对性能的影响很小,会造成不必要的资本支出。仿真可以对场景进行建模并考虑正常运行工况,以确定缓冲区的最佳数量、位置和容量,从而改善生产线的性能并避免不必要的费用。 仿真能够提供帮助的另一个重要方面是控制生产线。在设计过程初期,可编程逻辑控制器(PLC)还没有就位,仿真模型允许设计团队考虑如何控制。这样在购买设备之前,就可以测试和优化光电以及其它传感器的放置。 使用仿真最关键的时刻,也许就是PLC 程序准备进行测试的时候。一些建模软件可以连接到PLC。该模型通过仿真传感器向PLC 发出信号,并响应PLC 信号到其仿真的电机上。控制工程师可以使用逼真的、可以响应的系统来调试控制,而不是手动跟踪代码或尝试使用人机界面(HMI)来可视化性能。在模型中,可以对传感器布置进行精确的微调。 HMI 程序可以使用该模型与PLC 一起进行测试,由于模型由PLC 控制,在HMI 中按下按钮,就会仿真实时生产场景。因此,使用仿真模型可以大大减少生产线调试的启动时间。 将仿真模型连接到PLC 的过程还有利于培训。新的PLC 或HMI 程序员可以在现场生产之前识别错误、测试新想法并在低风险环境中建立信心。生产线运行人员可以在安装之前学习如何运行生产线并学习新PLC 程序。 仿真还可以带来其它间接好处。获得生产线动态背景知识,建模程序员可以在设计过程初期提出问题,而以往这些问题通常是要在开发之后才会得到解决。满足进度要求是仿真带来的另一个好处。通常,生产线已经设计和安装,但由于各种限制条件,导致只能在PLC 程序完成之前启动和调试。 如果模型在进入工厂之前进行测试,则有助于更快地验证程序。不过,仿真也有其限制。只有在输入或假设足够好时,模型输出才足够好。仿真无法预测运行人员的不良习惯、不良材料或冷凝物积聚等因素。重新审视和调整模型,以确保其反映准确的应用条件和行为,这一点非常重要。 - END -