勾股定理

阅读 / 问答 / 标签

初中数学勾股定理说课的课件怎么写啊?该怎么说课啊?有具体流程吗

现在,“说课”越来越受到关注,已逐渐成为各学科衡量一节课好坏的重要标尺.通过说课,展示你对某节课的思考和处理过程.1、说出该课(该章、该节)的教学目标在课标中的表述,即根据课标精神和要求确定该课的教学目标.显示出教者对教材和课标关系的熟练把握.2、说出该课(该章、该节)在单元中的地位,即在整体中给该课的教学准确定位,既照应单元整体性又突出单课独立性.显示出教者对教材科学而清醒的驾驭.3、说出该课(该章、该节)的教学重点和难点,并根据对学情的分析,确定教学中的详略,安排教学的进度.显示出教者的务实精神和处理教材的能力.4、说出该课(该章、该节)课堂实施的预设方案,包括所选用的课型,新课导入、各个教与学环节的先后安排.对重要的提问,讨论课题,板书、实物及多媒体画面的精彩细节,可做画龙点睛的说明和展示.让听者感受到教学的全过程.显示出教者的教学风格和教学艺术.5、说课切忌平铺直叙,要突出亮点,重要细节不可忽略,以给听者深切的感受.说课语言力求清晰流畅,说课稿文字力求简洁生动,书写格式、图片表格力求明快醒目,富有感染力.显示出教者的语言素养和文字功底.以上5项,在说课中不可或缺,但在具体操作中可合理整合,形式可灵活多样.

勾股定理16种证明方法

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 . 【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 9002, ∴ ∠AEH + ∠BEF = 9002. ∴ ∠HEF = 18002―9002= 9002. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 9002, ∴ ∠EHA + ∠GHD = 9002. 又∵ ∠GHE = 9002, ∴ ∠DHA = 9002+ 9002= 18002. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ . 【证法3】(赵爽证明) 以a、b 为直角边(b>a), 以c为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 9002, ∴ ∠EAB + ∠HAD = 9002, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 9002. ∴ EFGH是一个边长为b―a的正方形,它的面积等于 . ∴ . ∴ . 【证法4】(1876年美国总统Garfield证明) 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 9002, ∴ ∠AED + ∠BEC = 9002. ∴ ∠DEC = 18002―9002= 9002. ∴ ΔDEC是一个等腰直角三角形, 它的面积等于 . 又∵ ∠DAE = 9002, ∠EBC = 9002, ∴ AD‖BC. ∴ ABCD是一个直角梯形,它的面积等于 . ∴ . ∴ . 【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =18002―9002= 9002. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 9002. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 9002. 即 ∠CBD= 9002. 又∵ ∠BDE = 9002,∠BCP = 9002, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴ . 【证法6】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP‖BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 9002,QP‖BC, ∴ ∠MPC = 9002, ∵ BM⊥PQ, ∴ ∠BMP = 9002, ∴ BCPM是一个矩形,即∠MBC = 9002. ∵ ∠QBM + ∠MBA = ∠QBA = 9002, ∠ABC + ∠MBA = ∠MBC = 9002, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 9002,∠BCA = 9002,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明) 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点 L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于 , ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 = . 同理可证,矩形MLEB的面积 = . ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ ,即 . 【证法8】(利用相似三角形性质证明) 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 9002, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB. AD∶AC = AC ∶AB, 即 . 同理可证,ΔCDB ∽ ΔACB,从而有 . ∴ ,即 . 【证法9】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 9002,∠PAC = 9002, ∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 9002,∠BCA = 9002, AD = AB = c, ∴ RtΔDHA ≌ RtΔBCA. ∴ DH = BC = a,AH = AC = b. 由作法可知, PBCA 是一个矩形, 所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a. ∵ RtΔDGT ≌ RtΔBCA , RtΔDHA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA . ∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 9002,∠DHF = 9002, ∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 9002, ∴ DGFH是一个边长为a的正方形. ∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a . ∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a). 用数字表示面积的编号(如图),则以c为边长的正方形的面积为 ① ∵ = , , ∴ = . ② 把②代入①,得 = = . ∴ . 【证法10】(李锐证明) 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图). ∵ ∠ TBE = ∠ABH = 9002, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 9002, BT = BE = b, ∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 9002, ∠DBC + ∠BHT = ∠TBH + ∠BHT = 9002, ∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a, ∠HGF = ∠BDC = 9002, ∴ RtΔHGF ≌ RtΔBDC. 即 . 过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 9002,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 . 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 9002,∠BAE + ∠CAR = 9002,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR. 又∵ ∠QMF = ∠ARC = 9002,QM = AR = a, ∴ RtΔQMF ≌ RtΔARC. 即 . ∵ , , , 又∵ , , , ∴ = = , 即 . 【证法11】(利用切割线定理证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 9002,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得 = = = , 即 , ∴ . 【证法12】(利用多列米定理证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 , ∵ AB = DC = c,AD = BC = a, AC = BD = b, ∴ ,即 , ∴ . 【证法13】(作直角三角形的内切圆证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r. ∵ AE = AF,BF = BD,CD = CE, ∴ = = r + r = 2r, 即 , ∴ . ∴ , 即 , ∵ , ∴ , 又∵ = = = = , ∴ , ∴ , ∴ , ∴ . 【证法14】(利用反证法证明) 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 假设 ,即假设 ,则由 = = 可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB. 在ΔADC和ΔACB中, ∵ ∠A = ∠A, ∴ 若 AD:AC≠AC:AB,则 ∠ADC≠∠ACB. 在ΔCDB和ΔACB中, ∵ ∠B = ∠B, ∴ 若BD:BC≠BC:AB,则 ∠CDB≠∠ACB. 又∵ ∠ACB = 9002, ∴ ∠ADC≠9002,∠CDB≠9002. 这与作法CD⊥AB矛盾. 所以, 的假设不能成立. ∴ . 【证法15】(陈杰证明) 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b上截取ED = a,连结DA、DC, 则 AD = c. ∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM―ED = ―a = b. 又∵ ∠CMD = 9002,CM = a, ∠AED = 9002, AE = b, ∴ RtΔAED ≌ RtΔDMC. ∴ ∠EAD = ∠MDC,DC = AD = c. ∵ ∠ADE + ∠ADC+ ∠MDC =18002, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 9002, ∴ ∠ADC = 9002. ∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 9002, ∴ ∠BAF=∠DAE. 连结FB,在ΔABF和ΔADE中, ∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE. ∴ ∠AFB = ∠AED = 9002,BF = DE = a. ∴ 点B、F、G、H在一条直线上. 在RtΔABF和RtΔBCG中, ∵ AB = BC = c,BF = CG = a, ∴ RtΔABF ≌ RtΔBCG. ∵ , , , , ∴ = = = ∴ .

如何用弦图证明勾股定理

c2 = 4(1/2 ab) + (b - a)2 展开得 = 2ab + b2 - 2ab + a2 化简得 c2 = a2 + b2证毕。

世界上最先证明勾股定理的人是谁?

世界上最先证明勾股定理的人,是古希腊数学家毕达哥拉斯,但谁也未见过他的证法。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得,他的证法采用演绎推理的形式,记载在世界上数学名著《几何原本》里。在我国,最先明确地证明勾股定理的人,是三国时期的数学家赵爽。赵爽的证法很有特色。首先,他作4个同样大小的直角三角形,将它们拼成设定的形状,然后再着手计算整个图形的面积。显然,整个图形是一个正方形,它的边长是C,面积为C2。另一方面,整个图形又可以看作是4个三角形与1个小正方形面积的和。4个三角形的总面积是2ab,中间那个小正方形的面积是(b-a)2,它们的和是2ab+(b-a)2=a2+b2。比较这两种方法算出的结果,就有,a2+b2=c2。赵爽的证法鲜明地体现了我国古代证题术的特色。这就是先对图形进行移、合、拼、补,然后再通过代数运算得出几何问题的证明。这种方法融几何代数于一体,不仅严谨,而且直观,显示出与古代西方数学完全不同的风格。比赵爽稍晚几年,我国数学家刘徽发明了一种更巧妙的证法。在刘徽的证法里,已经用不着进行代数运算了。刘徽想:直角三角形3条边的平方,可以看作3个不全相等的正方形,这样,要证明勾股定理,就可以理解为要证明:两条直角边上的正方形面积之和,等于斜边上正方形的面积。于是,刘徽首先作出两条直角边上的正方形,他把由一条直角边形成的正方形叫做“朱方”,把由另一条直角边形成的正方形叫做“青方”,然后把图中标注有“出”的那部分图形,移到标注有“入”的那些位置,就拼成了图中斜置的那个正方形。刘徽把斜置的那个正方形叫做“弦方”,它正好是由直角三角形斜边形成的一个正方形。经过这样一番移、合、拼、补,自然而然地得出结论:朱方十青方=弦方。即a2+b2=c2。“青朱出入图”,这是一幅多么神奇的图啊!甚至不用去标注任何文字,只要相应地涂上朱、青两种颜色,也能把蕴含于勾股定理中的数学真理,清晰地展示在世人面前。我国著名数学家华罗庚认为,无论是在哪个星球上,数学都是一切有智慧生物的共同语言。如果人类要与其他星球上的高级生物交流信息,最好是送去几个数学图形。其中,华罗庚特别推荐了这幅“青朱出入图”。我们深信,如果外星人真的见到了这幅图,一定很快就会明白:地球上生活着具有高度智慧和文明的友邻,那里的人们不仅懂得“数形关系”,而且还善于几何证明。

勾股定理的证明方法有哪些?

勾股定理的证明方法最简单的6种如下:一、正方形面积法这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。三、梯形证明法梯形证明法也是一种很好的证明方法。即选两个一样的直角三角形一个横放,一个竖放,将高处的两个点相连。计算梯形的面积等于三个三角形的面积分别相加,从而证明勾股定理。四、青出朱入图青出朱入图是我国古代数学家刘徽提出的一种证明勾股定理的方法,是使用割补的方法进行的。就是将两个大小不等的正方形边长分别为a,b,然后通过割补的方法将它们拼成一个较大的正方形。五、毕达哥拉斯证明毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。六、三角形相似证明利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。

勾股定理的证明方法5种

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 证明方法做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.可以看到,这两个正方形的边长都是a+b,所以面积相等.即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。勾股定理证明1.以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。2.AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。3.证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。十六种证明方法加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法。

勾股定理怎么证明呢?

勾股定理的证明方法最简单的6种如下:一、正方形面积法这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。三、梯形证明法梯形证明法也是一种很好的证明方法。即选两个一样的直角三角形一个横放,一个竖放,将高处的两个点相连。计算梯形的面积等于三个三角形的面积分别相加,从而证明勾股定理。四、青出朱入图青出朱入图是我国古代数学家刘徽提出的一种证明勾股定理的方法,是使用割补的方法进行的。就是将两个大小不等的正方形边长分别为a,b,然后通过割补的方法将它们拼成一个较大的正方形。五、毕达哥拉斯证明毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。六、三角形相似证明利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。

勾股定理的证明方法

简单的勾股定理的证明方法如下:做8个全等的直角三角形,设它们的两条直角边长分别为碰游a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,段神把它们像上图那样拼成两衫袜雹个正方形。发现四个直角三或帆角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长握吵亏为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。 列出式子可得:拓展资料:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最好模重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:勾股定理_百度百科

求勾股定理证明

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD u2022 BA, ① 由△CAD∽△BAC可得AC2=AD u2022 AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。

关于勾股定理证明

风2の2让3人人让学生学习撒气饿的23の2の2

最简单的勾股定理的证明方法是什么?

有!勾股定理魏德武证法从开始到结束仅仅只用四块全等直角三角形板和一个公知的长方形面积公式(s=ab),通过形变(先变二个长方形再变一个正方形)一目了然。可直接得:2s=2ab=C^2-(a-b)^2,,整理后:C^2=a^2+b^2;这样即不要割补也无需推算(因为前后形变后的四块全等直角三角形板面积不变),所以证明起来相当快捷,可一步到位。比起赵爽的割来补去的方法自然是更加简单、易懂,这是不争的事实难道不是吗?

勾股定理的证明方法

勾股定理的证明方法:以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线。∵Rt△HAE≌Rt△EBF∴∠AHE=∠BEF∵∠AHE+∠AEH=90°∴∠BEF+∠AEH=90°∵A、E、B共线∴∠HEF=90°,四边形EFGH为正方形。由于上图中的四个直角三角形全等,易得四边形ABCD为正方形。∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积。∴(a+b)^2=4u2022(1/2)u2022ab+c^2,整理得a^2+b^2=c^2。

勾股定理的最简单的证明方法是什么?

简单的勾股定理的证明方法如下:拓展资料:勾股定理的使用方法:1、确保三角形是直角三角形。 勾股定理只适用于直角三角形中,所以,在应用定理之前,你需要先确定三角形是否是直角三角形,这一点非常重要。幸好,区分直接三角形和别的三角形的方法只有一个,那就是看一个三角形中是否有一个90度的角。2、确定变量a,b,c对应的三角形的边。在勾股定理中,a,b表示直角三角形的两条直角边,而c用来表示斜边,即直角对应的那条最长的边。所以,先给两条直角边分别标注上a,b(具体的对应关系没有要求),而斜边标注上c。3、确定你所要求的边。使用勾股定理可以求出直角三角形的任意一条边的长度,但前提是知道另外两条边的长度。先确定哪一条边的长度是未知的——a,b或者c。4、代入。将两条已知边的长度带入到公式a2 + b2 = c2中,其中a和b对应的是两直角边的长度,而c代表斜边长度。在上面的例子中,我们知道一条直角边和斜边的长度(3和5),然后将3和5代入到公式中,有32 + b2 = 2。5、计算平方。首先,计算两条已知边长度的平方值。或者,你也可以先不计算出来,然后保留平方,带到式子中直接计算平方和。在上述例子中,3和5的平方分别是9和25,所以方程可以改写为9 + b2 = 25。6、将未知变量移到等号一边。如果有必要的话,运用基本的代数操作,将未知变量移动到等号一侧,而将已知变量移动到等号的另一侧。如果你要求的是斜边长,那么就不需要再移动变量了。在上述例子中,方程式是9 + b2 = 25。两边同时减去9,等式变为b2= 16。7、求开方。现在等式两边一边是数字,另一边是变量,然后同时求两边的平方根。在上述例子中b2 = 16,两边同时求平方根,有b = 4。因此,未知边的长度就是4。参考资料来源:百度百科-勾股定理

勾股定理的证明方法

勾股定理有相当多的证明方法,你可以去数学的网上看看

勾股定理的10种证明方法常见勾股定理证明方法

勾股定理是我们初中学习数学几何的基础,为了更好的学习勾股定理的证明奠定基础。我整理了《勾股定理的10种证明方法常见勾股定理证明方法》,希望能为大家学习提供更多的方便! 勾股定理的10种证明方法:课本上的证明 勾股定理的10种证明方法:邹元治证明 勾股定理的10种证明方法:赵爽证明 勾股定理的10种证明方法:1876年美国总统Garfield证明 勾股定理的10种证明方法:项明达证明 勾股定理的10种证明方法:欧几里得证明 勾股定理的10种证明方法:杨作玫证明 勾股定理的10种证明方法:切割定理证明 勾股定理的10种证明方法:直角三角形内切圆证明 勾股定理的10种证明方法:反证法证明

勾股定理如何证明啊

实践证明

勾股定理的两个证明

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA"≌△AA""C。过C向A""B""引垂线,交AB于C",交A""B""于C""。△ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。于是,S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC,即a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴全等形的面积相等;⑵一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD=(a+b)2=(a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED=ab+ba+c2=(2ab+c2)。②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BDu2022BA,①由△CAD∽△BAC可得AC2=ADu2022AB。②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

勾股定理的3种证明方法

A方+B方=C方A方=C方—B方B方=C方—A方

勾股定理的几种证明方法

希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。

勾股定理的证明方法

a的平方+b的平方=c的平方

勾股定理证明方法

作弦图,青朱出入图

证明勾股定理都有些什么方法?

30*30+40*40=50*50

勾股定理的逆定理的多种证明

勾股定理的逆定理证明勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。由于a_+b_=c_,故cosC=0;因为0°<∠C<180°,所以∠C=90°。(证明完毕)已知在△ABC中,,求证∠C=90°证明:作AH⊥BC于H⑴若∠C为锐角,设BH=y,AH=x得x_+y_=c_,又∵a_+b_=c_,∴a_+b_=x_+y_(A)但a>y,b>x,∴a_+b_>x_+y_(B)(A)与(B)矛盾,∴∠C不为锐角⑵若∠C为钝角,设HC=y,AH=x得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_∵x_+y_=b_,得a_+b_=c_=a_+b_+2ay2ay=0∵a≠0,∴y=0这与∠C是钝角相矛盾,∴∠C不为钝角综上所述,∠C必为直角

勾股定理的证明方法有几种 还有这么证明

勾股定理的证明有上百种证明方法,下面例句最经典的中国方法: 画两个边长为(a b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故

勾股定理的证明方法

周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。对于勾股定理,记曰:“数之法,出于圆方,方出于矩,距出于九九八十一,故折矩,以为勾三,股四,弦五.直角三角形之间的关系:两条直角边的平方和等于斜边的平方,(a*a)+(b*b)=(c*c)” 三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成玹方。依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在玄方内,那一部分就不动了。 以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2 ).由此便可证得a2+b2=c2[编辑本段]伽菲尔德证明勾股定理的故事 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 如下: 解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。 勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方, a^2+b^2=c^2 说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。

勾股定理的10种证明方法 常见勾股定理证明方法

勾股定理是我们初中学习数学几何的基础,为了更好的学习勾股定理的证明奠定基础。我整理了《勾股定理的10种证明方法 常见勾股定理证明方法》,希望能为大家学习提供更多的方便! 勾股定理的10种证明方法:课本上的证明 勾股定理的10种证明方法:邹元治证明 勾股定理的10种证明方法:赵爽证明 勾股定理的10种证明方法:1876年美国总统Garfield证明 勾股定理的10种证明方法:项明达证明 勾股定理的10种证明方法:欧几里得证明 勾股定理的10种证明方法:杨作玫证明 勾股定理的10种证明方法:切割定理证明 勾股定理的10种证明方法:直角三角形内切圆证明 勾股定理的10种证明方法:反证法证明

怎么证明勾股定理

简单的勾股定理的证明方法如下:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

伽菲尔德怎样证明勾股定理(要图)

两个全等的Rt△ABC和Rt△BDE可以拼成直角梯形ACDE,则梯形面积等于三个直角三角形面积之和。即(AC+DE)×CD÷2=AC×BC÷2+BD×DE÷2+AB×BE÷2(a+b)2÷2=a×b÷2+a×b÷2+c×c÷2化简整理得a2+b2=c2

证明勾股定理的16种方法

证明勾股定理的16种方法如下:1、证法一(邹元治证明);2、证法二(课本的证明);3、证法三(赵爽弦图证明;4、证法四(总统证明);5、证法五(梅文鼎证明);6、证法六(项明达证明);7、证法七(欧几里得证明);8、证法八(相似三角形性质证明);9、证法九(杨作玫证明);10、证法十(李锐证明);11、证法十一(利用切割线定理证明);12、证法十二(利用多列米定理证明);13、证法十二(利用多列米定理证明);14、证法十四(利用反证法证明);15、证法十五(辛卜松证明);16、证法十六(陈杰证明)。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

证明勾股定理的方式

路过

欧几里得证明的勾股定理

勾股定理的证明方法(10种以上)

【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 . 【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90?, ∴ ∠AEH + ∠BEF = 90?. ∴ ∠HEF = 180?―90?= 90?. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90?, ∴ ∠EHA + ∠GHD = 90?. 又∵ ∠GHE = 90?, ∴ ∠DHA = 90?+ 90?= 180?. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ .

勾股定理的证明方法

【证法1】(梅文鼎证明) 作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2 【证法2】(项明达证明) 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP‖BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP‖BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°. ∵ ∠QBM + ∠MBA = ∠QBA = °, ∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2【证法3】(赵浩杰证明) 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ∠CFD = 90°, ∴RtΔCJB ≌ RtΔCFD , 同理,RtΔABG ≌ RtΔADE, ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, 所以a^2+b^2=c^2【证法4】(欧几里得证明) 作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ 即a的平方+b的平方=c的平方【证法5】欧几里得的证法 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。 其证明如下: 设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的

勾股定理最简单的四种几何证明办法 图文

这个经典的定理证明,网上非常全,需要可以搜

勾股定理的证明方法有几种?

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA"≌△AA""C。过C向A""B""引垂线,交AB于C",交A""B""于C""。△ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。于是,S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC,即a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴全等形的面积相等;⑵一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD=(a+b)2=(a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED=ab+ba+c2=(2ab+c2)。②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BDu2022BA,①由△CAD∽△BAC可得AC2=ADu2022AB。②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

勾股定理的十六种证明方法

是∠HEF不是∠AEF

勾股定理如何证明?

简单的勾股定理的证明方法如下:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。 列出式子可得:拓展资料:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:勾股定理_百度百科

勾股定理的10种证明方法 常见勾股定理证明方法

勾股定理是我们初中学习数学几何的基础,为了更好的学习勾股定理的证明奠定基础。我整理了《勾股定理的10种证明方法 常见勾股定理证明方法》,希望能为大家学习提供更多的方便! 勾股定理的10种证明方法:课本上的证明 勾股定理的10种证明方法:邹元治证明 勾股定理的10种证明方法:赵爽证明 勾股定理的10种证明方法:1876年美国总统Garfield证明 勾股定理的10种证明方法:项明达证明 勾股定理的10种证明方法:欧几里得证明 勾股定理的10种证明方法:杨作玫证明 勾股定理的10种证明方法:切割定理证明 勾股定理的10种证明方法:直角三角形内切圆证明 勾股定理的10种证明方法:反证法证明

毕达哥拉斯勾股定理怎么证明?

毕达哥拉斯证明勾股定理的方法如下:第一步,以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。第二步,AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。第三步,证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

关于勾股定理的证明!! 详解!!!!!!

勾股定理怎样证明

最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长玫秸ue420叫蜛bde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:4×(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。再给出两种1。做直角三角形的高,然后用相似三角形比例做出。2。把直角三角形内接于圆。然后扩张做出一矩形。最后用一下托勒密定理。

勾股定理的证明方法是什么

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 证明方法 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 可以看到,这两个正方形的边长都是a+b,所以面积相等.即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。 勾股定理证明 1.以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。 2.AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。 3.证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。 十六种证明方法 加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法。

勾股定理有几种证明方法?

勾股定理的证明方法最简单的6种如下:一、正方形面积法这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。三、梯形证明法梯形证明法也是一种很好的证明方法。即选两个一样的直角三角形一个横放,一个竖放,将高处的两个点相连。计算梯形的面积等于三个三角形的面积分别相加,从而证明勾股定理。四、青出朱入图青出朱入图是我国古代数学家刘徽提出的一种证明勾股定理的方法,是使用割补的方法进行的。就是将两个大小不等的正方形边长分别为a,b,然后通过割补的方法将它们拼成一个较大的正方形。五、毕达哥拉斯证明毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。六、三角形相似证明利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。

勾股定理的证明方法?

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA"≌△AA""C。过C向A""B""引垂线,交AB于C",交A""B""于C""。△ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。于是,S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC,即a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴全等形的面积相等;⑵一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD=(a+b)2=(a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED=ab+ba+c2=(2ab+c2)。②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BDu2022BA,①由△CAD∽△BAC可得AC2=ADu2022AB。②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

勾股定理的证明方法(要有图)

三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是Hu2022Eu2022杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。下图的证明方法,据说是Lu2022达u2022芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:(AC)2=2△JAB=2△CAD=ADKL。同理,(BC)2=KEBL所以(AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有c/b=b/m,c/a=a/n,cm=b2cn=a2两边相加得a2+b2=c(m+n)=c2这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。有几位美国总统与数学有着微妙联系。Gu2022华盛顿曾经是一个著名的测量员。Tu2022杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得即a2+2ab+b2=2ab+c2a2+b2=c2这种证法,在中学生学习几何时往往感兴趣。关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。过C引CM‖BD,交AB于L,连接BC,CE。因为AB=AE,AC=AG ∠CAE=∠BAG,所以 △ACE≌△AGBSAEML=SACFG (1)同法可证SBLMD=SBKHC (2)(1)+(2)得SABDE=SACFG+SBKHC,即 c2=a2+b2证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。SCFGH=SABED+4×SABC,所以 a2+b2=c2证法3 如图26-4(梅文鼎图)。在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设五边形ACKDE的面积=S一方面,S=正方形ABDE面积+2倍△ABC面积=c2+ab (1)另一方面,S=正方形ACGF面积+正方形DHGK面积+2倍△ABC面积=b2+a2+ab. (2)由(1),(2)得c2=a2+b2证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。设五边形EKJBD的面积为S。一方面S=SABDE+2SABC=c2+ab (1)另一方面,S=SBEFG+2u2022S△ABC+SGHFK=b2+ab+a2由(1),(2)得出论证都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edaedu.com/21010000/vcm/0720ggdl.doc 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。勾股定理在我们生活中有很大范围的运用. 三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是Hu2022Eu2022杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。下图的证明方法,据说是Lu2022达u2022芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:(AC)2=2△JAB=2△CAD=ADKL。同理,(BC)2=KEBL所以(AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有c/b=b/m,c/a=a/n,cm=b2cn=a2两边相加得a2+b2=c(m+n)=c2这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。有几位美国总统与数学有着微妙联系。Gu2022华盛顿曾经是一个著名的测量员。Tu2022杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得即a2+2ab+b2=2ab+c2a2+b2=c2这种证法,在中学生学习几何时往往感兴趣。关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。过C引CM‖BD,交AB于L,连接BC,CE。因为AB=AE,AC=AG ∠CAE=∠BAG,所以 △ACE≌△AGBSAEML=SACFG (1)同法可证SBLMD=SBKHC (2)(1)+(2)得SABDE=SACFG+SBKHC,即 c2=a2+b2证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。SCFGH=SABED+4×SABC,所以 a2+b2=c2证法3 如图26-4(梅文鼎图)。在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设五边形ACKDE的面积=S一方面,S=正方形ABDE面积+2倍△ABC面积=c2+ab (1)另一方面,S=正方形ACGF面积+正方形DHGK面积+2倍△ABC面积=b2+a2+ab. (2)由(1),(2)得c2=a2+b2证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。设五边形EKJBD的面积为S。一方面S=SABDE+2SABC=c2+ab (1)另一方面,S=SBEFG+2u2022S△ABC+SGHFK=b2+ab+a2由(1),(2)得出论证都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edaedu.com/21010000/vcm/0720ggdl.doc 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。勾股定理在我们生活中有很大范围的运用. 三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是Hu2022Eu2022杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。下图的证明方法,据说是Lu2022达u2022芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:(AC)2=2△JAB=2△CAD=ADKL。同理,(BC)2=KEBL所以(AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有c/b=b/m,c/a=a/n,cm=b2cn=a2两边相加得a2+b2=c(m+n)=c2这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。有几位美国总统与数学有着微妙联系。Gu2022华盛顿曾经是一个著名的测量员。Tu2022杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得即a2+2ab+b2=2ab+c2a2+b2=c2这种证法,在中学生学习几何时往往感兴趣。关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。过C引CM‖BD,交AB于L,连接BC,CE。因为AB=AE,AC=AG ∠CAE=∠BAG,所以 △ACE≌△AGBSAEML=SACFG (1)同法可证SBLMD=SBKHC (2)(1)+(2)得SABDE=SACFG+SBKHC,即 c2=a2+b2证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。SCFGH=SABED+4×SABC,所以 a2+b2=c2证法3 如图26-4(梅文鼎图)。在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设五边形ACKDE的面积=S一方面,S=正方形ABDE面积+2倍△ABC面积=c2+ab (1)另一方面,S=正方形ACGF面积+正方形DHGK面积+2倍△ABC面积=b2+a2+ab. (2)由(1),(2)得c2=a2+b2证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。设五边形EKJBD的面积为S。一方面S=SABDE+2SABC=c2+ab (1)另一方面,S=SBEFG+2u2022S△ABC+SGHFK=b2+ab+a2由(1),(2)得出论证都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edaedu.com/21010000/vcm/0720ggdl.doc 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。勾股定理在我们生活中有很大范围的运用.

勾股定理的多种证明方法?

最常见的勾股定理证明方法是欧几里得证明,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

勾股定理的500种证明方法

勾股定理的证明方法如下:1、证法一。以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C三点共线,C、G、D三点共线。∵Rt△HAE≌Rt△EBF∴∠AHE=∠BEF∵∠AHE+∠AEH=90°∴∠BEF+∠AEH=90°∵A、E、B共线∴∠HEF=90°,四边形EFGH为正方形。由于上图中的四个直角三角形全等,易得四边形ABCD为正方形。∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积。∴(a+b)^2=4u2022(1/2)u2022ab+c^2,整理得a^2+b^2=c^2。2、证法二。如下图所示两个边长为a+b的正方形面积相等,所以a^2+b^2+4u2022(1/2)u2022ab=c^2+4u2022(1/2)u2022ab,故a^2+b^2=c^2。3、证法三。以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼。易得四边形ABCD和四边形EFGH都是正方形。∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴c^2=4u2022(1/2)u2022ab+(b-a)^2,整理得a^2+b^2=c^2。4、证法四。如下图所示。易得△CDE为等腰直角三角形∴梯形ABCD的面积=两个直角三角形的面积+一个等腰三角形的面积。∴1/2u2022(a+b)u2022(a+b)=2u2022(1/2)u2022ab+(1/2)u2022c^2,整理得a^2+b^2=c^2。

勾股定理的证明

http://wenku.baidu.com/view/08cfca80d4d8d15abe234ec8.html

勾股定理的证明方法

勾股定理有相当多的证明方法,你可以去数学的网上看看

勾股定理的证明方法最简单的6种

勾股定理的证明方法最简单的6种如下:一、正方形面积法这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。三、梯形证明法梯形证明法也是一种很好的证明方法。即选两个一样的直角三角形一个横放,一个竖放,将高处的两个点相连。计算梯形的面积等于三个三角形的面积分别相加,从而证明勾股定理。四、青出朱入图青出朱入图是我国古代数学家刘徽提出的一种证明勾股定理的方法,是使用割补的方法进行的。就是将两个大小不等的正方形边长分别为a,b,然后通过割补的方法将它们拼成一个较大的正方形。五、毕达哥拉斯证明毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。六、三角形相似证明利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。

勾股定理的证明方法

简单的勾股定理的证明方法如下:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两衫袜雹个正方形。发现四个直角三或帆角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。 列出式子可得:拓展资料:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最好模重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:勾股定理_百度百科

勾股定理的证明方法

这张我学了,共有四种证明方法证法1:如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。过C引CM‖BD,交AB于L,连接BC,CE。因为AB=AE,AC=AG∠CAE=∠BAG,所以△ACE≌△AGBSAEML=SACFG(1)同法可证SBLMD=SBKHC(2)(1)+(2)得SABDE=SACFG+SBKHC,即c2=a2+b2证法2:如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。SCFGH=SABED+4×SABC,所以a2+b2=c2证法3:如图26-4(梅文鼎图)。在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设五边形ACKDE的面积=S一方面,S=正方形ABDE面积+2倍△ABC面积=c2+ab(1)另一方面,S=正方形ACGF面积+正方形DHGK面积+2倍△ABC面积=b2+a2+ab.(2)由(1),(2)得c2=a2+b2证法4:如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。设五边形EKJBD的面积为S。一方面S=SABDE+2SABC=c2+ab(1)另一方面,S=SBEFG+2S△ABC+SGHFK=b2+ab+a2由(1),(2)得出论证参考资料:图见:http://ett.edaedu.com/21010000/vcm/0720ggdl.doc勾股定理有上千种证法,只须了解几种就够了。

勾股定理的一种证明方法

勾股定理的证明方法如下:求证:勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。证明:分两种情况来讨论,即两条直角边长度不相等与相等。两条直角边长度不相等。如图,分别设直角三角形的边长为a、b、c,(a<b,c为斜边)。将四个同样大小的三角形拼成右图形式,则:则右图大正方形的面积为四个直角三角形的面积与中间小正方形的面积之和。得:c^2=4*(ab/2)+(b-a)^2=2ab+a^2+b^2-2ab=a^2+b^2即a^2+b^2=c^2,原命题得证。2. 两条直角边长度相等。如图,分别设直角三角形的直角边与斜边长为a、c。将四个同样大小的三角形拼成右图形式,则:则右图正方形的面积为四个直角三角形的面积之和。得:c^2=4*(aa/2)=2a^2=a^2+a^2即a^2+a^2=c^2,原命题得证。所以,直角三角形的两条直角边的平方和等于斜边的平方。

勾股定理怎么证明呢?

简单的勾股定理的证明方法如下:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。 列出式子可得:拓展资料:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:勾股定理_百度百科

急需:谁知道勾股定理的证明方法?(要20种)

20?

请教勾股定理证明

a2+b2=c2

勾股定理的证明方法是什么

1、做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。2、发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。3、所以可以看出以上两个大正方形面积相等。

勾股定理

http://baike.baidu.com/去看看吧

赵爽弦图怎么证明勾股定理

赵爽弦图证明勾股定理赵爽弦图是用四个全等的直角三角形围成一个边长为c的正方形,在图中间有一个边长为b–a的小正方形,这样就可以证明勾股定理了。边长为c的正方形面积S=c^2=1/2ab·4+(b-a)^2,所以 c^2=2ab+a^2+b^2-2ab,所以 c^2=a^2+b^2,定理得证。再在正方形c的外面拼接四个一样的全等直角三角形,就有一个边长a+b的正方形如图,也可以证明勾股定理。a+b边长的正方形的面积S=1/2ab·4+c^2=ab·4+(b-a)^2,2ab+c^2=4ab+a^2+b^2-2ab,所以 c^2=a^2+b^2。定理得证。也可以用邹元治的方法证明,即:a+b的正方形的面积S=(a+b)^2=c^2+1/2ab·4所以,a^2+b^2+2ab=c^2+2ab,得:a^2+b^2=c^2,定理得证。

怎么证明勾股定理?越简单越好

证明个P~还用初2的知识~你初2学什么了?就1个全等还是下半学期学的~你证明他又JB用,考试也不考你证明过程~会用公式会做题就得了~知道345就OK了。 勾股定理400多种证明方法,初三的学生大部分1种都不会,因为会不会没区别~~http://zhidao.baidu.com/question/320080673.html这个是用小学的知识解答的,自己慢慢看把~如果简单的证明方法射影定理一步就出来(高中知识)但是你初中老师初3学相似的时候会教

勾股定理五大证明方法

勾股定理5种证明方法如下:几何法证明:使用几何图形的性质来证明勾股定理。应用勾股定理法证明:使用已知的勾股定理来证明勾股定理。斜率法证明:使用斜率的定义来证明勾股定理。三角函数法证明:使用三角函数的性质来证明勾股定理。欧拉定理法证明:使用欧拉定理来证明勾股定理。勾股定理勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和勾股定理简史公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中勾股各自乘,并而开方除之,即弦,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。勾股定理意义1、勾股定理的证明是论证几何的发端。2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4、勾股定理是历史上第一个给出了完全解答的不定方程,它引出了费马大定理。5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

勾股定理的10种证明方法 常见勾股定理证明方法

勾股定理是我们初中学习数学几何的基础,为了更好的学习勾股定理的证明奠定基础。我整理了《勾股定理的10种证明方法 常见勾股定理证明方法》,希望能为大家学习提供更多的方便! 勾股定理的10种证明方法:课本上的证明 勾股定理的10种证明方法:邹元治证明 勾股定理的10种证明方法:赵爽证明 勾股定理的10种证明方法:1876年美国总统Garfield证明 勾股定理的10种证明方法:项明达证明 勾股定理的10种证明方法:欧几里得证明 勾股定理的10种证明方法:杨作玫证明 勾股定理的10种证明方法:切割定理证明 勾股定理的10种证明方法:直角三角形内切圆证明 勾股定理的10种证明方法:反证法证明

勾股定理的证明方法有哪些呀

http://www.edu-sp.com/static/html/20090310/13821.html

勾股定理的证明方法

勾股定理证明的方法

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD 61 BA, ① 由△CAD∽△BAC可得AC2=AD 61 AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

勾股定理的证明

勾股定理的证明方法(10种以上) 【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 . 【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90?, ∴ ∠AEH + ∠BEF = 90?. ∴ ∠HEF = 180?―90?= 90?. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90?, ∴ ∠EHA + ∠GHD = 90?. 又∵ ∠GHE = 90?, ∴ ∠DHA = 90?+ 90?= 180?. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ .。 勾股定理的证明方法 带图 勾股定理 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么 a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。 古埃及人利用打结作RT三角形 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,另一条直角边是4,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。 (称勾股定理的逆定理) 勾股定理的来源: 毕达哥拉斯树 毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。 我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 常用勾股数3 4 5;6 8 10;5 12 13;8 15 17 毕达哥拉斯 有关勾股定理书籍 《数学原理》人民教育出版社 《探究勾股定理》同济大学出版社 《优因培教数学》北京大学出版社 《勾股书籍》 新世纪出版社 《九章算术一书》 《优因培揭秘勾股定理》江西教育出版社 《几何原本》 (原著:欧几里得)人民日报出版社 毕达哥拉斯树 毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。 又因为重复数次后的形状好似一棵树,所以被称为毕达哥拉斯树。 直角三角形两个直角边平方的和等于斜边的平方。 两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。 利用不等式a^2+b^2≥2ab可以证明下面的结论: 三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。 [编辑本段]最早的勾股定理应用 从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。 问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图 设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米 ∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股三角形。 [编辑本段]《周髀算经》中勾股定理的公式与证明 《周髀算经》算经十书之一。 约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。 首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二) 而勾股定理的证明呢,就在《周髀算经》上卷一[2] —— 昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。 既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。 故禹之所以治天下者,此数之所生也。” 周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。 于是商高以勾股定理的证明为例,解释数学知识的由来。 《周髀算经》证明步骤 “数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。” :解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。 “故折矩①,以为句广三,股修四,径隅五。” :开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。 “②既方之,外半其一矩,环而共盘,得成三四五。” :这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。 “两矩共长③二十有五,是谓积矩。” :此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。 注意: ① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。 ② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。 经陈良佐[3]、李国伟[4]、李继闵[5]、。 勾股定理是怎么被证明出来的? 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识.其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了.稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方.如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的.其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多.如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年.其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52).所以现在数学界把它称为勾股定理,应该是非常恰当的.在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达.书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦.”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:4*(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)图2 勾股圆方图赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义.事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的.十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续.”。 勾股定理的证明方法有那些? 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。 这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。 从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。 右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"C 。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。 由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。 这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。 即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。 故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。 后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。 则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。 它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。 如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 另:八年级数学勾股定理的证明(介绍16种证明的方法)(数学教案) ydgz/。 勾股定理证明方法带图,较难的,多种方法 刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图.大意是:三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方.以盈补虚,将朱方、青放并成弦方.依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在弦方内,那一部分就不动了. 以勾为边的的正方形为朱方,以股为边的正方形为青方.以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c的平方 ).由此便可证得a的平方+b的平方=c的平方. 这个证明是由三国时代魏国的数学家刘徽所提出的.在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释.在注释中,他画了一幅像图五(b)中的图形来证明勾股定理.由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」.亦有人用「出入相补」这一词来表示这个证明的原理.。

勾股定理怎么证明

勾股定理用证明四边形是正方形的方法。以a b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。三角函数与勾股玄的区别是:勾股玄就是勾股定理,是直角三角形三边的关系,斜边的平方等于两直角边的平方和,三角函数的定义起源于直角三角形,在直角三角形中是边角关系,后来三角函数与平面直角坐标系结合有了新的发展。勾股定理的证明,勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解勾股定理是历史上第一个给出了完全解答的不定方程,它引出了费马大定理。勾股定理最早应该是周朝数学家商高提出来的。

八年级数学下册《勾股定理》知识点

  八年级数学下册《勾股定理》知识点 篇1   1.勾股定理的内容:   如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。   注:勾最短的边、股较长的直角边、弦斜边。   勾股定理又叫毕达哥拉斯定理   2.勾股定理的逆定理:   如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。   3.勾股数:   满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。   4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用   例题精讲:   练习:   例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为   解析:可知三边长度为3,4,5,因此周长为12   (变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为   解析:可知三边长度为6,8,10,则周长为24   例2:已知直角三角形的两边长分别为3、4,求第三边长.   解析:第一种情况:当直角边为3和4时,则斜边为5   第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7   《点评》此题是一道易错题目,同学们应该认真审题!   例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )   A.斜边长为25   B.三角形周长为25   C.斜边长为5   D.三角形面积为20   解析:根据勾股定理,可知斜边长度为5,选择C   八年级数学下册《勾股定理》知识点 篇2   勾股定理   在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a+b=c.   简介   勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。   他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。   勾股定理是一个基本的几何定理,是数形结合的纽带之一。   直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。   勾股定理内容   直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。   也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a+b=c。   勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。   中国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。   推广   1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。   2.勾股定理是余弦定理的特殊情况。   八年级数学下册《勾股定理》知识点 篇3   勾股定理   内容:直角三角形两直角边的平方和等于斜边的平方;   表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.   勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。   勾股定理的证明   勾股定理的证明方法很多,常见的是拼图的方法   用拼图的方法验证勾股定理的思路是   ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变   ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。   勾股定理的适用范围   勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。   勾股定理的逆定理   如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.   ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若,时,以a,b,c为三边的三角形是钝角三角形;若,时,以a,b,c为三边的三角形是锐角三角形;   ②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的"三角形是直角三角形,但是b为斜边.   ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形   质数和合数应用   1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。   2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。   数学的方法技巧整理   预习的方法   上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。   听懂课的习惯   注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。   不断练习   不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。   及时小结,温故知新   一要进行复习小结,及时再现当天或本单元所学的知识;二要积累资料进行整理。可将平时作业、小测验中技巧性强的、易错的题目及时收集成册——错题本,便于复习时参考。   八年级数学下册《勾股定理》知识点 篇4   一、勾股定理   勾股定理:直角三角形两直角边的平方和等于斜边的平方。   我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。   a2+b2=c2   2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。   2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股   数)。利用勾股数可以构造直角三角形。   二、平方根   1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。   2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。   3、求一个数a的平方根的运算,叫做开平方。   4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。   例如:4的平方根是±2,其中2叫做4的算术平方根,记作=2;2的平方根是±其中2的算术平方根。   0只有一个平方根,0的平方根也叫做0的算术平方根,即   三、立方根   1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。   2、求一个数a的立方根的运算,叫做开立方。   3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。   四、实数   1、无限不循环小数称为无理数。   2、有理数和无理数统称为实数。   3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。   五、近似数与有效数字   1、例如,本册数学课本约有100千字,这里100是一个近似似数。   2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

借助勾股定理,利用升旗的绳子、卷尺,请你设计一个方案,测算出旗杆的高度。

1.当旗子升上去(升到顶点)时,升旗的绳子也就拉下一段距离,只要测量拉下的这段绳子的长度(也就是说旗子升到顶的距离,应该就是相当旗杆的长度[当然要加上你拉绳的这一点到地面的高度]),测量的具体方法:向下拉绳子,拉下一米就测量一米,直到旗子到顶为止。这个方法无须勾股定理。2.利用升旗的绳子,斜拉绷直使手中的这一端落在地面上一点(一般升旗的绳子比旗杆要长,如果比旗杆短的话,就要增加条件:增加一段绳子)。然后测量这点到旗杆跟的距离[即直角三角形的一条直角边的长度],测量这段斜拉的绳子的长度[即直角三角形的斜边长度],然后用勾股定理斜边的平方等于两条直角边的平方和的原理求出旗杆的高度。希望能解决您的问题。

借助勾股定理,利用升旗的绳子,卷尺,设计一个方案,测算出旗杆的高度

数学题我国古代数学家刘徽利用出入相补的方法验证了勾股定理

对啊 怎么啦

勾股定理的魅力 老师让我们写的,请大家帮我想好吗,哪怕一句也行

很好很强大~~~

勾股定理的青朱出入图怎么做?

编辑词条青朱出入图刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图。以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2).由此便可证得a2+b2=c2这个证明是由三国时代魏国的数学家刘徽所提出的。在魏景元四年(即公元263年),刘徽为古籍《九章算术》作注释。在注释中,他画了一幅像图五(b)中的图形来证明勾股定理。由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」。亦有人用「出入相补」这一词来表示这个证明的原理。青朱出入图需要用三角形全等的知识进行证明。

勾股定理常用数组是什么?

常见的勾股数及几种通式有:(1)(3,4,5),(6,8,10)。3n,4n,5n (n是正整数)。(2)(5,12,13),(7,24,25),(9,40,41)。2n+1,2n^2+2n,2n^2+2n+1 (n是正整数)。(3) (8,15,17),(12,35,37)。2^2*(n+1),^2-1,^2+1 (n是正整数)。(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)。青朱出入图:青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。

求勾股定理的证法(必须在50种以上,反正越多越好!)

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"C 。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

勾股定理的证明方法~~~急急急急急急!!!!!要有图哦~~~~谢谢啦·~~~

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。 魅力无比的定理证明 ——勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。 参考资料:http://zhidao.baidu.com/question/5159445.html 回答者: 鹿丸秋 - 魔法师 四级 1-31 21:48忘了!好像是手臂的关系。勾三股四玄五。 回答者: fengtoutan - 助理 三级 1-31 21:48http://www.mmit.stc.sh.cn/telecenter/CnHisScience/ggdl.htm 有图 我只粘过来文字。 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们 pic1.gif (1230 bytes) 图1 直角三角形 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 亦即: c=(a2+b2)(1/2) 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: 4×(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即: c=(a2+b2)(1/2) pic2.gif (1586 bytes) 图2 勾股圆方图 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

勾股定理的解法

在直角三角形内,两条直角边的平方的和等于斜边的平方

勾股定理的证明图

http://zhidao.baidu.com/question/12363169.html

制作青朱出入图的具体步骤,以及如何证勾股定理(详细,最好配图)

编辑词条青朱出入图 刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图. 以勾为边的的正方形为朱方,以股为边的正方形为青方.以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2 ).由此便可证得a2+b2=c2 这个证明是由三国时代魏国的数学家刘徽所提出的.在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释.在注释中,他画了一幅像图五(b)中的图形来证明勾股定理.由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」.亦有人用「出入相补」这一词来表示这个证明的原理. 青朱出入图需要用三角形全等的知识进行证明.

勾股定理现有多少种证明方法?

大概400多种
 1 2  下一页  尾页